mirror of
				https://github.com/RGBCube/serenity
				synced 2025-10-31 01:52:43 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			264 lines
		
	
	
	
		
			9.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			264 lines
		
	
	
	
		
			9.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2020, Ali Mohammad Pur <ali.mpfard@gmail.com>
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions are met:
 | |
|  *
 | |
|  * 1. Redistributions of source code must retain the above copyright notice, this
 | |
|  *    list of conditions and the following disclaimer.
 | |
|  *
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright notice,
 | |
|  *    this list of conditions and the following disclaimer in the documentation
 | |
|  *    and/or other materials provided with the distribution.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 | |
|  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 | |
|  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 | |
|  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | |
|  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 | |
|  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 | |
|  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 | |
|  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
|  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
|  */
 | |
| 
 | |
| #include <AK/Types.h>
 | |
| #include <LibCrypto/Hash/SHA2.h>
 | |
| 
 | |
| namespace Crypto {
 | |
| namespace Hash {
 | |
| constexpr inline static auto ROTRIGHT(u32 a, size_t b) { return (a >> b) | (a << (32 - b)); }
 | |
| constexpr inline static auto CH(u32 x, u32 y, u32 z) { return (x & y) ^ (z & ~x); }
 | |
| constexpr inline static auto MAJ(u32 x, u32 y, u32 z) { return (x & y) ^ (x & z) ^ (y & z); }
 | |
| constexpr inline static auto EP0(u32 x) { return ROTRIGHT(x, 2) ^ ROTRIGHT(x, 13) ^ ROTRIGHT(x, 22); }
 | |
| constexpr inline static auto EP1(u32 x) { return ROTRIGHT(x, 6) ^ ROTRIGHT(x, 11) ^ ROTRIGHT(x, 25); }
 | |
| constexpr inline static auto SIGN0(u32 x) { return ROTRIGHT(x, 7) ^ ROTRIGHT(x, 18) ^ (x >> 3); }
 | |
| constexpr inline static auto SIGN1(u32 x) { return ROTRIGHT(x, 17) ^ ROTRIGHT(x, 19) ^ (x >> 10); }
 | |
| 
 | |
| constexpr inline static auto ROTRIGHT(u64 a, size_t b) { return (a >> b) | (a << (64 - b)); }
 | |
| constexpr inline static auto CH(u64 x, u64 y, u64 z) { return (x & y) ^ (z & ~x); }
 | |
| constexpr inline static auto MAJ(u64 x, u64 y, u64 z) { return (x & y) ^ (x & z) ^ (y & z); }
 | |
| constexpr inline static auto EP0(u64 x) { return ROTRIGHT(x, 28) ^ ROTRIGHT(x, 34) ^ ROTRIGHT(x, 39); }
 | |
| constexpr inline static auto EP1(u64 x) { return ROTRIGHT(x, 14) ^ ROTRIGHT(x, 18) ^ ROTRIGHT(x, 41); }
 | |
| constexpr inline static auto SIGN0(u64 x) { return ROTRIGHT(x, 1) ^ ROTRIGHT(x, 8) ^ (x >> 7); }
 | |
| constexpr inline static auto SIGN1(u64 x) { return ROTRIGHT(x, 19) ^ ROTRIGHT(x, 61) ^ (x >> 6); }
 | |
| 
 | |
| inline void SHA256::transform(const u8* data)
 | |
| {
 | |
|     u32 m[64];
 | |
| 
 | |
|     size_t i = 0;
 | |
|     for (size_t j = 0; i < 16; ++i, j += 4) {
 | |
|         m[i] = (data[j] << 24) | (data[j + 1] << 16) | (data[j + 2] << 8) | data[j + 3];
 | |
|     }
 | |
| 
 | |
|     for (; i < BlockSize; ++i) {
 | |
|         m[i] = SIGN1(m[i - 2]) + m[i - 7] + SIGN0(m[i - 15]) + m[i - 16];
 | |
|     }
 | |
| 
 | |
|     auto a = m_state[0], b = m_state[1],
 | |
|          c = m_state[2], d = m_state[3],
 | |
|          e = m_state[4], f = m_state[5],
 | |
|          g = m_state[6], h = m_state[7];
 | |
| 
 | |
|     for (size_t i = 0; i < Rounds; ++i) {
 | |
|         auto temp0 = h + EP1(e) + CH(e, f, g) + SHA256Constants::RoundConstants[i] + m[i];
 | |
|         auto temp1 = EP0(a) + MAJ(a, b, c);
 | |
|         h = g;
 | |
|         g = f;
 | |
|         f = e;
 | |
|         e = d + temp0;
 | |
|         d = c;
 | |
|         c = b;
 | |
|         b = a;
 | |
|         a = temp0 + temp1;
 | |
|     }
 | |
| 
 | |
|     m_state[0] += a;
 | |
|     m_state[1] += b;
 | |
|     m_state[2] += c;
 | |
|     m_state[3] += d;
 | |
|     m_state[4] += e;
 | |
|     m_state[5] += f;
 | |
|     m_state[6] += g;
 | |
|     m_state[7] += h;
 | |
| }
 | |
| 
 | |
| void SHA256::update(const u8* message, size_t length)
 | |
| {
 | |
|     for (size_t i = 0; i < length; ++i) {
 | |
|         if (m_data_length == BlockSize) {
 | |
|             transform(m_data_buffer);
 | |
|             m_bit_length += 512;
 | |
|             m_data_length = 0;
 | |
|         }
 | |
|         m_data_buffer[m_data_length++] = message[i];
 | |
|     }
 | |
| }
 | |
| 
 | |
| SHA256::DigestType SHA256::digest()
 | |
| {
 | |
|     auto digest = peek();
 | |
|     reset();
 | |
|     return digest;
 | |
| }
 | |
| 
 | |
| SHA256::DigestType SHA256::peek()
 | |
| {
 | |
|     DigestType digest;
 | |
|     size_t i = m_data_length;
 | |
| 
 | |
|     if (m_data_length < FinalBlockDataSize) {
 | |
|         m_data_buffer[i++] = 0x80;
 | |
|         while (i < FinalBlockDataSize)
 | |
|             m_data_buffer[i++] = 0x00;
 | |
| 
 | |
|     } else {
 | |
|         m_data_buffer[i++] = 0x80;
 | |
|         while (i < BlockSize)
 | |
|             m_data_buffer[i++] = 0x00;
 | |
| 
 | |
|         transform(m_data_buffer);
 | |
|         __builtin_memset(m_data_buffer, 0, FinalBlockDataSize);
 | |
|     }
 | |
| 
 | |
|     // append total message length
 | |
|     m_bit_length += m_data_length * 8;
 | |
|     m_data_buffer[BlockSize - 1] = m_bit_length;
 | |
|     m_data_buffer[BlockSize - 2] = m_bit_length >> 8;
 | |
|     m_data_buffer[BlockSize - 3] = m_bit_length >> 16;
 | |
|     m_data_buffer[BlockSize - 4] = m_bit_length >> 24;
 | |
|     m_data_buffer[BlockSize - 5] = m_bit_length >> 32;
 | |
|     m_data_buffer[BlockSize - 6] = m_bit_length >> 40;
 | |
|     m_data_buffer[BlockSize - 7] = m_bit_length >> 48;
 | |
|     m_data_buffer[BlockSize - 8] = m_bit_length >> 56;
 | |
| 
 | |
|     transform(m_data_buffer);
 | |
| 
 | |
|     // SHA uses big-endian and we assume little-endian
 | |
|     // FIXME: looks like a thing for AK::NetworkOrdered,
 | |
|     //        but he doesn't support shifting operations
 | |
|     for (size_t i = 0; i < 4; ++i) {
 | |
|         digest.data[i + 0] = (m_state[0] >> (24 - i * 8)) & 0x000000ff;
 | |
|         digest.data[i + 4] = (m_state[1] >> (24 - i * 8)) & 0x000000ff;
 | |
|         digest.data[i + 8] = (m_state[2] >> (24 - i * 8)) & 0x000000ff;
 | |
|         digest.data[i + 12] = (m_state[3] >> (24 - i * 8)) & 0x000000ff;
 | |
|         digest.data[i + 16] = (m_state[4] >> (24 - i * 8)) & 0x000000ff;
 | |
|         digest.data[i + 20] = (m_state[5] >> (24 - i * 8)) & 0x000000ff;
 | |
|         digest.data[i + 24] = (m_state[6] >> (24 - i * 8)) & 0x000000ff;
 | |
|         digest.data[i + 28] = (m_state[7] >> (24 - i * 8)) & 0x000000ff;
 | |
|     }
 | |
|     return digest;
 | |
| }
 | |
| 
 | |
| inline void SHA512::transform(const u8* data)
 | |
| {
 | |
|     u64 m[80];
 | |
| 
 | |
|     size_t i = 0;
 | |
|     for (size_t j = 0; i < 16; ++i, j += 8) {
 | |
|         m[i] = ((u64)data[j] << 56) | ((u64)data[j + 1] << 48) | ((u64)data[j + 2] << 40) | ((u64)data[j + 3] << 32) | ((u64)data[j + 4] << 24) | ((u64)data[j + 5] << 16) | ((u64)data[j + 6] << 8) | (u64)data[j + 7];
 | |
|     }
 | |
| 
 | |
|     for (; i < Rounds; ++i) {
 | |
|         m[i] = SIGN1(m[i - 2]) + m[i - 7] + SIGN0(m[i - 15]) + m[i - 16];
 | |
|     }
 | |
| 
 | |
|     auto a = m_state[0], b = m_state[1],
 | |
|          c = m_state[2], d = m_state[3],
 | |
|          e = m_state[4], f = m_state[5],
 | |
|          g = m_state[6], h = m_state[7];
 | |
| 
 | |
|     for (size_t i = 0; i < Rounds; ++i) {
 | |
|         auto temp0 = h + EP1(e) + CH(e, f, g) + SHA512Constants::RoundConstants[i] + m[i];
 | |
|         auto temp1 = EP0(a) + MAJ(a, b, c);
 | |
|         h = g;
 | |
|         g = f;
 | |
|         f = e;
 | |
|         e = d + temp0;
 | |
|         d = c;
 | |
|         c = b;
 | |
|         b = a;
 | |
|         a = temp0 + temp1;
 | |
|     }
 | |
| 
 | |
|     m_state[0] += a;
 | |
|     m_state[1] += b;
 | |
|     m_state[2] += c;
 | |
|     m_state[3] += d;
 | |
|     m_state[4] += e;
 | |
|     m_state[5] += f;
 | |
|     m_state[6] += g;
 | |
|     m_state[7] += h;
 | |
| }
 | |
| 
 | |
| void SHA512::update(const u8* message, size_t length)
 | |
| {
 | |
|     for (size_t i = 0; i < length; ++i) {
 | |
|         if (m_data_length == BlockSize) {
 | |
|             transform(m_data_buffer);
 | |
|             m_bit_length += 1024;
 | |
|             m_data_length = 0;
 | |
|         }
 | |
|         m_data_buffer[m_data_length++] = message[i];
 | |
|     }
 | |
| }
 | |
| 
 | |
| SHA512::DigestType SHA512::digest()
 | |
| {
 | |
|     auto digest = peek();
 | |
|     reset();
 | |
|     return digest;
 | |
| }
 | |
| 
 | |
| SHA512::DigestType SHA512::peek()
 | |
| {
 | |
|     DigestType digest;
 | |
|     size_t i = m_data_length;
 | |
| 
 | |
|     if (m_data_length < FinalBlockDataSize) {
 | |
|         m_data_buffer[i++] = 0x80;
 | |
|         while (i < FinalBlockDataSize)
 | |
|             m_data_buffer[i++] = 0x00;
 | |
| 
 | |
|     } else {
 | |
|         m_data_buffer[i++] = 0x80;
 | |
|         while (i < BlockSize)
 | |
|             m_data_buffer[i++] = 0x00;
 | |
| 
 | |
|         transform(m_data_buffer);
 | |
|         __builtin_memset(m_data_buffer, 0, FinalBlockDataSize);
 | |
|     }
 | |
| 
 | |
|     // append total message length
 | |
|     m_bit_length += m_data_length * 8;
 | |
|     m_data_buffer[BlockSize - 1] = m_bit_length;
 | |
|     m_data_buffer[BlockSize - 2] = m_bit_length >> 8;
 | |
|     m_data_buffer[BlockSize - 3] = m_bit_length >> 16;
 | |
|     m_data_buffer[BlockSize - 4] = m_bit_length >> 24;
 | |
|     m_data_buffer[BlockSize - 5] = m_bit_length >> 32;
 | |
|     m_data_buffer[BlockSize - 6] = m_bit_length >> 40;
 | |
|     m_data_buffer[BlockSize - 7] = m_bit_length >> 48;
 | |
|     m_data_buffer[BlockSize - 8] = m_bit_length >> 56;
 | |
| 
 | |
|     transform(m_data_buffer);
 | |
| 
 | |
|     // SHA uses big-endian and we assume little-endian
 | |
|     // FIXME: looks like a thing for AK::NetworkOrdered,
 | |
|     //        but he doesn't support shifting operations
 | |
|     for (size_t i = 0; i < 8; ++i) {
 | |
|         digest.data[i + 0] = (m_state[0] >> (56 - i * 8)) & 0x000000ff;
 | |
|         digest.data[i + 8] = (m_state[1] >> (56 - i * 8)) & 0x000000ff;
 | |
|         digest.data[i + 16] = (m_state[2] >> (56 - i * 8)) & 0x000000ff;
 | |
|         digest.data[i + 24] = (m_state[3] >> (56 - i * 8)) & 0x000000ff;
 | |
|         digest.data[i + 32] = (m_state[4] >> (56 - i * 8)) & 0x000000ff;
 | |
|         digest.data[i + 40] = (m_state[5] >> (56 - i * 8)) & 0x000000ff;
 | |
|         digest.data[i + 48] = (m_state[6] >> (56 - i * 8)) & 0x000000ff;
 | |
|         digest.data[i + 56] = (m_state[7] >> (56 - i * 8)) & 0x000000ff;
 | |
|     }
 | |
|     return digest;
 | |
| }
 | |
| }
 | |
| }
 | 
