mirror of
				https://github.com/RGBCube/serenity
				synced 2025-10-31 08:22:45 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			456 lines
		
	
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			456 lines
		
	
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions are met:
 | |
|  *
 | |
|  * 1. Redistributions of source code must retain the above copyright notice, this
 | |
|  *    list of conditions and the following disclaimer.
 | |
|  *
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright notice,
 | |
|  *    this list of conditions and the following disclaimer in the documentation
 | |
|  *    and/or other materials provided with the distribution.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 | |
|  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 | |
|  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 | |
|  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | |
|  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 | |
|  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 | |
|  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 | |
|  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
|  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
|  */
 | |
| 
 | |
| #include <LibC/assert.h>
 | |
| #include <LibM/math.h>
 | |
| #include <stdint.h>
 | |
| #include <stdlib.h>
 | |
| 
 | |
| template<size_t>
 | |
| constexpr double e_to_power();
 | |
| template<>
 | |
| constexpr double e_to_power<0>() { return 1; }
 | |
| template<size_t exponent>
 | |
| constexpr double e_to_power() { return M_E * e_to_power<exponent - 1>(); }
 | |
| 
 | |
| template<size_t>
 | |
| constexpr size_t factorial();
 | |
| template<>
 | |
| constexpr size_t factorial<0>() { return 1; }
 | |
| template<size_t value>
 | |
| constexpr size_t factorial() { return value * factorial<value - 1>(); }
 | |
| 
 | |
| template<size_t>
 | |
| constexpr size_t product_even();
 | |
| template<>
 | |
| constexpr size_t product_even<2>() { return 2; }
 | |
| template<size_t value>
 | |
| constexpr size_t product_even() { return value * product_even<value - 2>(); }
 | |
| 
 | |
| template<size_t>
 | |
| constexpr size_t product_odd();
 | |
| template<>
 | |
| constexpr size_t product_odd<1>() { return 1; }
 | |
| template<size_t value>
 | |
| constexpr size_t product_odd() { return value * product_odd<value - 2>(); }
 | |
| 
 | |
| extern "C" {
 | |
| 
 | |
| double trunc(double x)
 | |
| {
 | |
|     return (int64_t)x;
 | |
| }
 | |
| 
 | |
| double cos(double angle)
 | |
| {
 | |
|     return sin(angle + M_PI_2);
 | |
| }
 | |
| 
 | |
| float cosf(float angle)
 | |
| {
 | |
|     return sinf(angle + M_PI_2);
 | |
| }
 | |
| 
 | |
| // This can also be done with a taylor expansion, but for
 | |
| // now this works pretty well (and doesn't mess anything up
 | |
| // in quake in particular, which is very Floating-Point precision
 | |
| // heavy)
 | |
| double sin(double angle)
 | |
| {
 | |
|     double ret = 0.0;
 | |
|     __asm__(
 | |
|         "fsin"
 | |
|         : "=t"(ret)
 | |
|         : "0"(angle));
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| float sinf(float angle)
 | |
| {
 | |
|     float ret = 0.0f;
 | |
|     __asm__(
 | |
|         "fsin"
 | |
|         : "=t"(ret)
 | |
|         : "0"(angle));
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| double pow(double x, double y)
 | |
| {
 | |
|     // FIXME: Please fix me. I am naive.
 | |
|     if (y == 0)
 | |
|         return 1;
 | |
|     if (y == 1)
 | |
|         return x;
 | |
|     int y_as_int = (int)y;
 | |
|     if (y == (double)y_as_int) {
 | |
|         double result = x;
 | |
|         for (int i = 0; i < abs(y) - 1; ++i)
 | |
|             result *= x;
 | |
|         if (y < 0)
 | |
|             result = 1.0 / result;
 | |
|         return result;
 | |
|     }
 | |
|     return exp(y * log(x));
 | |
| }
 | |
| 
 | |
| float powf(float x, float y)
 | |
| {
 | |
|     // FIXME: Please fix me. I am naive.
 | |
|     if (y == 0)
 | |
|         return 1;
 | |
|     if (y == 1)
 | |
|         return x;
 | |
|     int y_as_int = (int)y;
 | |
|     if (y == (float)y_as_int) {
 | |
|         float result = x;
 | |
|         for (int i = 0; i < abs(y) - 1; ++i)
 | |
|             result *= x;
 | |
|         if (y < 0)
 | |
|             result = 1.0 / result;
 | |
|         return result;
 | |
|     }
 | |
|     return (float)exp((double)y * log((double)x));
 | |
| }
 | |
| 
 | |
| double ldexp(double x, int exp)
 | |
| {
 | |
|     // FIXME: Please fix me. I am naive.
 | |
|     double val = pow(2, exp);
 | |
|     return x * val;
 | |
| }
 | |
| 
 | |
| double tanh(double x)
 | |
| {
 | |
|     if (x > 0) {
 | |
|         double exponentiated = exp(2 * x);
 | |
|         return (exponentiated - 1) / (exponentiated + 1);
 | |
|     }
 | |
|     double plusX = exp(x);
 | |
|     double minusX = 1 / plusX;
 | |
|     return (plusX - minusX) / (plusX + minusX);
 | |
| }
 | |
| 
 | |
| double ampsin(double angle)
 | |
| {
 | |
|     double looped_angle = fmod(M_PI + angle, M_TAU) - M_PI;
 | |
|     double looped_angle_squared = looped_angle * looped_angle;
 | |
| 
 | |
|     double quadratic_term;
 | |
|     if (looped_angle > 0) {
 | |
|         quadratic_term = -looped_angle_squared;
 | |
|     } else {
 | |
|         quadratic_term = looped_angle_squared;
 | |
|     }
 | |
| 
 | |
|     double linear_term = M_PI * looped_angle;
 | |
| 
 | |
|     return quadratic_term + linear_term;
 | |
| }
 | |
| 
 | |
| double tan(double angle)
 | |
| {
 | |
|     return ampsin(angle) / ampsin(M_PI_2 + angle);
 | |
| }
 | |
| 
 | |
| double sqrt(double x)
 | |
| {
 | |
|     double res;
 | |
|     __asm__("fsqrt"
 | |
|             : "=t"(res)
 | |
|             : "0"(x));
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| float sqrtf(float x)
 | |
| {
 | |
|     float res;
 | |
|     __asm__("fsqrt"
 | |
|             : "=t"(res)
 | |
|             : "0"(x));
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| double sinh(double x)
 | |
| {
 | |
|     double exponentiated = exp(x);
 | |
|     if (x > 0)
 | |
|         return (exponentiated * exponentiated - 1) / 2 / exponentiated;
 | |
|     return (exponentiated - 1 / exponentiated) / 2;
 | |
| }
 | |
| 
 | |
| double log10(double x)
 | |
| {
 | |
|     return log(x) / M_LN10;
 | |
| }
 | |
| 
 | |
| double log(double x)
 | |
| {
 | |
|     if (x < 0)
 | |
|         return __builtin_nan("");
 | |
|     if (x == 0)
 | |
|         return -__builtin_huge_val();
 | |
|     double y = 1 + 2 * (x - 1) / (x + 1);
 | |
|     double exponentiated = exp(y);
 | |
|     y = y + 2 * (x - exponentiated) / (x + exponentiated);
 | |
|     exponentiated = exp(y);
 | |
|     y = y + 2 * (x - exponentiated) / (x + exponentiated);
 | |
|     exponentiated = exp(y);
 | |
|     return y + 2 * (x - exponentiated) / (x + exponentiated);
 | |
| }
 | |
| 
 | |
| float logf(float x)
 | |
| {
 | |
|     return (float)log(x);
 | |
| }
 | |
| 
 | |
| double fmod(double index, double period)
 | |
| {
 | |
|     return index - trunc(index / period) * period;
 | |
| }
 | |
| 
 | |
| float fmodf(float index, float period)
 | |
| {
 | |
|     return index - trunc(index / period) * period;
 | |
| }
 | |
| 
 | |
| double exp(double exponent)
 | |
| {
 | |
|     double result = 1;
 | |
|     if (exponent >= 1) {
 | |
|         size_t integer_part = (size_t)exponent;
 | |
|         if (integer_part & 1)
 | |
|             result *= e_to_power<1>();
 | |
|         if (integer_part & 2)
 | |
|             result *= e_to_power<2>();
 | |
|         if (integer_part > 3) {
 | |
|             if (integer_part & 4)
 | |
|                 result *= e_to_power<4>();
 | |
|             if (integer_part & 8)
 | |
|                 result *= e_to_power<8>();
 | |
|             if (integer_part & 16)
 | |
|                 result *= e_to_power<16>();
 | |
|             if (integer_part & 32)
 | |
|                 result *= e_to_power<32>();
 | |
|             if (integer_part >= 64)
 | |
|                 return __builtin_huge_val();
 | |
|         }
 | |
|         exponent -= integer_part;
 | |
|     } else if (exponent < 0)
 | |
|         return 1 / exp(-exponent);
 | |
|     double taylor_series_result = 1 + exponent;
 | |
|     double taylor_series_numerator = exponent * exponent;
 | |
|     taylor_series_result += taylor_series_numerator / factorial<2>();
 | |
|     taylor_series_numerator *= exponent;
 | |
|     taylor_series_result += taylor_series_numerator / factorial<3>();
 | |
|     taylor_series_numerator *= exponent;
 | |
|     taylor_series_result += taylor_series_numerator / factorial<4>();
 | |
|     taylor_series_numerator *= exponent;
 | |
|     taylor_series_result += taylor_series_numerator / factorial<5>();
 | |
|     return result * taylor_series_result;
 | |
| }
 | |
| 
 | |
| float expf(float exponent)
 | |
| {
 | |
|     return (float)exp(exponent);
 | |
| }
 | |
| 
 | |
| double cosh(double x)
 | |
| {
 | |
|     double exponentiated = exp(-x);
 | |
|     if (x < 0)
 | |
|         return (1 + exponentiated * exponentiated) / 2 / exponentiated;
 | |
|     return (1 / exponentiated + exponentiated) / 2;
 | |
| }
 | |
| 
 | |
| double atan2(double y, double x)
 | |
| {
 | |
|     if (x > 0)
 | |
|         return atan(y / x);
 | |
|     if (x == 0) {
 | |
|         if (y > 0)
 | |
|             return M_PI_2;
 | |
|         if (y < 0)
 | |
|             return -M_PI_2;
 | |
|         return 0;
 | |
|     }
 | |
|     if (y >= 0)
 | |
|         return atan(y / x) + M_PI;
 | |
|     return atan(y / x) - M_PI;
 | |
| }
 | |
| 
 | |
| float atan2f(float y, float x)
 | |
| {
 | |
|     return (float)atan2(y, x);
 | |
| }
 | |
| 
 | |
| double atan(double x)
 | |
| {
 | |
|     if (x < 0)
 | |
|         return -atan(-x);
 | |
|     if (x > 1)
 | |
|         return M_PI_2 - atan(1 / x);
 | |
|     double squared = x * x;
 | |
|     return x / (1 + 1 * 1 * squared / (3 + 2 * 2 * squared / (5 + 3 * 3 * squared / (7 + 4 * 4 * squared / (9 + 5 * 5 * squared / (11 + 6 * 6 * squared / (13 + 7 * 7 * squared)))))));
 | |
| }
 | |
| 
 | |
| double asin(double x)
 | |
| {
 | |
|     if (x > 1 || x < -1)
 | |
|         return __builtin_nan("");
 | |
|     if (x > 0.5 || x < -0.5)
 | |
|         return 2 * atan(x / (1 + sqrt(1 - x * x)));
 | |
|     double squared = x * x;
 | |
|     double value = x;
 | |
|     double i = x * squared;
 | |
|     value += i * product_odd<1>() / product_even<2>() / 3;
 | |
|     i *= squared;
 | |
|     value += i * product_odd<3>() / product_even<4>() / 5;
 | |
|     i *= squared;
 | |
|     value += i * product_odd<5>() / product_even<6>() / 7;
 | |
|     i *= squared;
 | |
|     value += i * product_odd<7>() / product_even<8>() / 9;
 | |
|     i *= squared;
 | |
|     value += i * product_odd<9>() / product_even<10>() / 11;
 | |
|     i *= squared;
 | |
|     value += i * product_odd<11>() / product_even<12>() / 13;
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| float asinf(float x)
 | |
| {
 | |
|     return (float)asin(x);
 | |
| }
 | |
| 
 | |
| double acos(double x)
 | |
| {
 | |
|     return M_PI_2 - asin(x);
 | |
| }
 | |
| 
 | |
| float acosf(float x)
 | |
| {
 | |
|     return M_PI_2 - asinf(x);
 | |
| }
 | |
| 
 | |
| double fabs(double value)
 | |
| {
 | |
|     return value < 0 ? -value : value;
 | |
| }
 | |
| 
 | |
| double log2(double x)
 | |
| {
 | |
|     return log(x) / M_LN2;
 | |
| }
 | |
| 
 | |
| float log2f(float x)
 | |
| {
 | |
|     return log2(x);
 | |
| }
 | |
| 
 | |
| long double log2l(long double x)
 | |
| {
 | |
|     return log2(x);
 | |
| }
 | |
| 
 | |
| double frexp(double, int*)
 | |
| {
 | |
|     ASSERT_NOT_REACHED();
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| float frexpf(float, int*)
 | |
| {
 | |
|     ASSERT_NOT_REACHED();
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| long double frexpl(long double, int*)
 | |
| {
 | |
|     ASSERT_NOT_REACHED();
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| double round(double value)
 | |
| {
 | |
|     // FIXME: Please fix me. I am naive.
 | |
|     if (value >= 0.0)
 | |
|         return (double)(int)(value + 0.5);
 | |
|     return (double)(int)(value - 0.5);
 | |
| }
 | |
| 
 | |
| float roundf(float value)
 | |
| {
 | |
|     // FIXME: Please fix me. I am naive.
 | |
|     if (value >= 0.0f)
 | |
|         return (float)(int)(value + 0.5f);
 | |
|     return (float)(int)(value - 0.5f);
 | |
| }
 | |
| 
 | |
| double floor(double value)
 | |
| {
 | |
|     return (int)value;
 | |
| }
 | |
| 
 | |
| double rint(double value)
 | |
| {
 | |
|     return (int)roundf(value);
 | |
| }
 | |
| 
 | |
| float ceilf(float value)
 | |
| {
 | |
|     // FIXME: Please fix me. I am naive.
 | |
|     int as_int = (int)value;
 | |
|     if (value == (float)as_int)
 | |
|         return as_int;
 | |
|     if (value < 0) {
 | |
|         if (as_int == 0)
 | |
|             return -0;
 | |
|         return as_int;
 | |
|     }
 | |
|     return as_int + 1;
 | |
| }
 | |
| 
 | |
| double ceil(double value)
 | |
| {
 | |
|     // FIXME: Please fix me. I am naive.
 | |
|     int as_int = (int)value;
 | |
|     if (value == (double)as_int)
 | |
|         return as_int;
 | |
|     if (value < 0) {
 | |
|         if (as_int == 0)
 | |
|             return -0;
 | |
|         return as_int;
 | |
|     }
 | |
|     return as_int + 1;
 | |
| }
 | |
| 
 | |
| double modf(double x, double* intpart)
 | |
| {
 | |
|     *intpart = (double)((int)(x));
 | |
|     return x - (int)x;
 | |
| }
 | |
| }
 | 
