mirror of
				https://github.com/RGBCube/serenity
				synced 2025-10-31 12:32:43 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			182 lines
		
	
	
	
		
			7.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			182 lines
		
	
	
	
		
			7.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2023, stelar7 <dudedbz@gmail.com>
 | |
|  *
 | |
|  * SPDX-License-Identifier: BSD-2-Clause
 | |
|  */
 | |
| 
 | |
| #include <AK/ByteReader.h>
 | |
| #include <AK/Endian.h>
 | |
| #include <LibCrypto/AEAD/ChaCha20Poly1305.h>
 | |
| #include <LibCrypto/Authentication/Poly1305.h>
 | |
| #include <LibCrypto/Cipher/ChaCha20.h>
 | |
| 
 | |
| namespace Crypto::AEAD {
 | |
| 
 | |
| // https://datatracker.ietf.org/doc/html/rfc8439#section-2.6
 | |
| ErrorOr<ByteBuffer> ChaCha20Poly1305::poly1305_key()
 | |
| {
 | |
|     Crypto::Cipher::ChaCha20 cipher(m_key, m_nonce, 0);
 | |
|     cipher.generate_block();
 | |
|     auto state = cipher.block();
 | |
|     return TRY(ByteBuffer::copy(state.slice(0, 32)));
 | |
| }
 | |
| 
 | |
| // https://datatracker.ietf.org/doc/html/rfc8439#section-2.8
 | |
| ErrorOr<ByteBuffer> ChaCha20Poly1305::encrypt(ReadonlyBytes aad, ReadonlyBytes input_plaintext)
 | |
| {
 | |
|     // First, a Poly1305 one-time key is generated from the 256-bit key
 | |
|     // and nonce using the procedure described in Section 2.6.
 | |
|     auto otk = TRY(poly1305_key());
 | |
| 
 | |
|     // Next, the ChaCha20 encryption function is called to encrypt the
 | |
|     // plaintext, using the same key and nonce, and with the initial
 | |
|     // counter set to 1.
 | |
|     auto ciphertext_buffer = TRY(ByteBuffer::create_zeroed(input_plaintext.size()));
 | |
|     auto ciphertext = ciphertext_buffer.bytes();
 | |
|     auto chacha = Crypto::Cipher::ChaCha20(m_key, m_nonce, 1);
 | |
|     chacha.encrypt(input_plaintext, ciphertext);
 | |
| 
 | |
|     // Finally, the Poly1305 function is called with the Poly1305 key
 | |
|     // calculated above, and a message constructed as a concatenation of
 | |
|     // the following:
 | |
|     auto mac_data = TRY(ByteBuffer::create_zeroed(0));
 | |
|     auto buffer_size = aad.size() + pad_to_16(aad) + ciphertext_buffer.size() + pad_to_16(ciphertext_buffer) + sizeof(u64) + sizeof(u64);
 | |
|     mac_data.ensure_capacity(buffer_size);
 | |
| 
 | |
|     // The AAD
 | |
|     mac_data.append(aad);
 | |
| 
 | |
|     // padding1 -- the padding is up to 15 zero bytes, and it brings
 | |
|     // the total length so far to an integral multiple of 16.  If the
 | |
|     // length of the AAD was already an integral multiple of 16 bytes,
 | |
|     // this field is zero-length.
 | |
|     for (size_t i = 0; i < pad_to_16(aad); ++i)
 | |
|         mac_data.append(0);
 | |
| 
 | |
|     // The ciphertext
 | |
|     mac_data.append(ciphertext);
 | |
| 
 | |
|     // padding2 -- the padding is up to 15 zero bytes, and it brings
 | |
|     // the total length so far to an integral multiple of 16.  If the
 | |
|     // length of the ciphertext was already an integral multiple of 16
 | |
|     // bytes, this field is zero-length.
 | |
|     for (size_t i = 0; i < pad_to_16(ciphertext); ++i)
 | |
|         mac_data.append(0);
 | |
| 
 | |
|     u8 placeholder[8] = { 0 };
 | |
|     // The length of the additional data in octets (as a 64-bit little-endian integer).
 | |
|     mac_data.append(ReadonlyBytes { placeholder, 8 });
 | |
|     ByteReader::store(static_cast<u8*>(mac_data.end_pointer()) - sizeof(u64), AK::convert_between_host_and_little_endian(static_cast<u64>(aad.size())));
 | |
| 
 | |
|     // The length of the ciphertext in octets (as a 64-bit little-endian integer).
 | |
|     mac_data.append(ReadonlyBytes { placeholder, 8 });
 | |
|     ByteReader::store(static_cast<u8*>(mac_data.end_pointer()) - sizeof(u64), AK::convert_between_host_and_little_endian(static_cast<u64>(ciphertext.size())));
 | |
| 
 | |
|     Crypto::Authentication::Poly1305 mac_function(otk);
 | |
|     mac_function.update(mac_data.bytes());
 | |
|     auto tag = TRY(mac_function.digest());
 | |
| 
 | |
|     // The output from the AEAD is the concatenation of:
 | |
|     auto result = TRY(ByteBuffer::create_zeroed(0));
 | |
|     result.ensure_capacity(ciphertext.size() + tag.size());
 | |
| 
 | |
|     // A ciphertext of the same length as the plaintext.
 | |
|     result.append(ciphertext);
 | |
| 
 | |
|     // A 128-bit tag, which is the output of the Poly1305 function.
 | |
|     result.append(tag);
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // https://datatracker.ietf.org/doc/html/rfc8439#section-2.8
 | |
| ErrorOr<ByteBuffer> ChaCha20Poly1305::decrypt(ReadonlyBytes aad, ReadonlyBytes ciphertext)
 | |
| {
 | |
|     // Decryption is similar with the following differences:
 | |
|     // o  The roles of ciphertext and plaintext are reversed, so the
 | |
|     //    ChaCha20 encryption function is applied to the ciphertext,
 | |
|     //    producing the plaintext.
 | |
|     // o  The Poly1305 function is still run on the AAD and the ciphertext,
 | |
|     //    not the plaintext.
 | |
| 
 | |
|     // First, a Poly1305 one-time key is generated from the 256-bit key
 | |
|     // and nonce using the procedure described in Section 2.6.
 | |
|     auto otk = TRY(poly1305_key());
 | |
| 
 | |
|     // Next, the ChaCha20 encryption function is called to decrypt the
 | |
|     // ciphertext, using the same key and nonce, and with the initial
 | |
|     // counter set to 1.
 | |
|     auto chacha = Crypto::Cipher::ChaCha20(m_key, m_nonce, 1);
 | |
|     auto plaintext_buffer = TRY(ByteBuffer::create_zeroed(ciphertext.size()));
 | |
|     auto plaintext = plaintext_buffer.bytes();
 | |
|     chacha.encrypt(ciphertext, plaintext);
 | |
| 
 | |
|     // Finally, the Poly1305 function is called with the Poly1305 key
 | |
|     // calculated above, and a message constructed as a concatenation of
 | |
|     // the following:
 | |
|     auto mac_data = TRY(ByteBuffer::create_zeroed(0));
 | |
|     auto buffer_size = aad.size() + pad_to_16(aad) + ciphertext.size() + pad_to_16(ciphertext) + sizeof(u64) + sizeof(u64);
 | |
|     mac_data.ensure_capacity(buffer_size);
 | |
| 
 | |
|     // The AAD
 | |
|     mac_data.append(aad);
 | |
| 
 | |
|     // padding1 -- the padding is up to 15 zero bytes, and it brings
 | |
|     // the total length so far to an integral multiple of 16.  If the
 | |
|     // length of the AAD was already an integral multiple of 16 bytes,
 | |
|     // this field is zero-length.
 | |
|     for (size_t i = 0; i < pad_to_16(aad); ++i)
 | |
|         mac_data.append(0);
 | |
| 
 | |
|     // The ciphertext
 | |
|     mac_data.append(ciphertext);
 | |
| 
 | |
|     // padding2 -- the padding is up to 15 zero bytes, and it brings
 | |
|     // the total length so far to an integral multiple of 16.  If the
 | |
|     // length of the ciphertext was already an integral multiple of 16
 | |
|     // bytes, this field is zero-length.
 | |
|     for (size_t i = 0; i < pad_to_16(ciphertext); ++i)
 | |
|         mac_data.append(0);
 | |
| 
 | |
|     u8 placeholder[8] = { 0 };
 | |
|     // The length of the additional data in octets (as a 64-bit little-endian integer).
 | |
|     mac_data.append(ReadonlyBytes { placeholder, 8 });
 | |
|     ByteReader::store(static_cast<u8*>(mac_data.end_pointer()) - sizeof(u64), AK::convert_between_host_and_little_endian(static_cast<u64>(aad.size())));
 | |
| 
 | |
|     // The length of the ciphertext in octets (as a 64-bit little-endian integer).
 | |
|     mac_data.append(ReadonlyBytes { placeholder, 8 });
 | |
|     ByteReader::store(static_cast<u8*>(mac_data.end_pointer()) - sizeof(u64), AK::convert_between_host_and_little_endian(static_cast<u64>(ciphertext.size())));
 | |
| 
 | |
|     Crypto::Authentication::Poly1305 mac_function(otk);
 | |
|     mac_function.update(mac_data.bytes());
 | |
|     auto tag = TRY(mac_function.digest());
 | |
| 
 | |
|     // The output from the AEAD is the concatenation of:
 | |
|     auto result = TRY(ByteBuffer::create_zeroed(0));
 | |
|     result.ensure_capacity(plaintext.size() + tag.size());
 | |
| 
 | |
|     // A plaintext of the same length as the ciphertext.
 | |
|     result.append(plaintext);
 | |
| 
 | |
|     // A 128-bit tag, which is the output of the Poly1305 function.
 | |
|     result.append(tag);
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // https://datatracker.ietf.org/doc/html/rfc8439#section-4
 | |
| bool ChaCha20Poly1305::verify_tag(ReadonlyBytes encrypted, ReadonlyBytes decrypted)
 | |
| {
 | |
|     // With online protocols, implementation MUST use a constant-time comparison function rather
 | |
|     // than relying on optimized but insecure library functions such as the C language's memcmp().
 | |
|     auto encrypted_tag = encrypted.slice_from_end(16);
 | |
|     auto decrypted_tag = decrypted.slice_from_end(16);
 | |
| 
 | |
|     if (encrypted_tag.size() != decrypted_tag.size())
 | |
|         return false;
 | |
| 
 | |
|     auto result = 0;
 | |
|     for (size_t i = 0; i < encrypted_tag.size(); ++i)
 | |
|         result |= encrypted_tag[i] ^ decrypted_tag[i];
 | |
| 
 | |
|     return result == 0;
 | |
| }
 | |
| }
 | 
