mirror of
				https://github.com/RGBCube/serenity
				synced 2025-10-31 11:12:45 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			272 lines
		
	
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			272 lines
		
	
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2020, Matthew Olsson <mattco@serenityos.org>
 | |
|  *
 | |
|  * SPDX-License-Identifier: BSD-2-Clause
 | |
|  */
 | |
| 
 | |
| #include <AK/Debug.h>
 | |
| #include <AK/ExtraMathConstants.h>
 | |
| #include <LibGfx/Painter.h>
 | |
| #include <LibGfx/Path.h>
 | |
| #include <LibWeb/DOM/Document.h>
 | |
| #include <LibWeb/DOM/Event.h>
 | |
| #include <LibWeb/Layout/SVGGeometryBox.h>
 | |
| #include <LibWeb/SVG/SVGPathElement.h>
 | |
| 
 | |
| namespace Web::SVG {
 | |
| 
 | |
| [[maybe_unused]] static void print_instruction(PathInstruction const& instruction)
 | |
| {
 | |
|     VERIFY(PATH_DEBUG);
 | |
| 
 | |
|     auto& data = instruction.data;
 | |
| 
 | |
|     switch (instruction.type) {
 | |
|     case PathInstructionType::Move:
 | |
|         dbgln("Move (absolute={})", instruction.absolute);
 | |
|         for (size_t i = 0; i < data.size(); i += 2)
 | |
|             dbgln("    x={}, y={}", data[i], data[i + 1]);
 | |
|         break;
 | |
|     case PathInstructionType::ClosePath:
 | |
|         dbgln("ClosePath (absolute={})", instruction.absolute);
 | |
|         break;
 | |
|     case PathInstructionType::Line:
 | |
|         dbgln("Line (absolute={})", instruction.absolute);
 | |
|         for (size_t i = 0; i < data.size(); i += 2)
 | |
|             dbgln("    x={}, y={}", data[i], data[i + 1]);
 | |
|         break;
 | |
|     case PathInstructionType::HorizontalLine:
 | |
|         dbgln("HorizontalLine (absolute={})", instruction.absolute);
 | |
|         for (size_t i = 0; i < data.size(); ++i)
 | |
|             dbgln("    x={}", data[i]);
 | |
|         break;
 | |
|     case PathInstructionType::VerticalLine:
 | |
|         dbgln("VerticalLine (absolute={})", instruction.absolute);
 | |
|         for (size_t i = 0; i < data.size(); ++i)
 | |
|             dbgln("    y={}", data[i]);
 | |
|         break;
 | |
|     case PathInstructionType::Curve:
 | |
|         dbgln("Curve (absolute={})", instruction.absolute);
 | |
|         for (size_t i = 0; i < data.size(); i += 6)
 | |
|             dbgln("    (x1={}, y1={}, x2={}, y2={}), (x={}, y={})", data[i], data[i + 1], data[i + 2], data[i + 3], data[i + 4], data[i + 5]);
 | |
|         break;
 | |
|     case PathInstructionType::SmoothCurve:
 | |
|         dbgln("SmoothCurve (absolute={})", instruction.absolute);
 | |
|         for (size_t i = 0; i < data.size(); i += 4)
 | |
|             dbgln("    (x2={}, y2={}), (x={}, y={})", data[i], data[i + 1], data[i + 2], data[i + 3]);
 | |
|         break;
 | |
|     case PathInstructionType::QuadraticBezierCurve:
 | |
|         dbgln("QuadraticBezierCurve (absolute={})", instruction.absolute);
 | |
|         for (size_t i = 0; i < data.size(); i += 4)
 | |
|             dbgln("    (x1={}, y1={}), (x={}, y={})", data[i], data[i + 1], data[i + 2], data[i + 3]);
 | |
|         break;
 | |
|     case PathInstructionType::SmoothQuadraticBezierCurve:
 | |
|         dbgln("SmoothQuadraticBezierCurve (absolute={})", instruction.absolute);
 | |
|         for (size_t i = 0; i < data.size(); i += 2)
 | |
|             dbgln("    x={}, y={}", data[i], data[i + 1]);
 | |
|         break;
 | |
|     case PathInstructionType::EllipticalArc:
 | |
|         dbgln("EllipticalArc (absolute={})", instruction.absolute);
 | |
|         for (size_t i = 0; i < data.size(); i += 7)
 | |
|             dbgln("    (rx={}, ry={}) x-axis-rotation={}, large-arc-flag={}, sweep-flag={}, (x={}, y={})",
 | |
|                 data[i],
 | |
|                 data[i + 1],
 | |
|                 data[i + 2],
 | |
|                 data[i + 3],
 | |
|                 data[i + 4],
 | |
|                 data[i + 5],
 | |
|                 data[i + 6]);
 | |
|         break;
 | |
|     case PathInstructionType::Invalid:
 | |
|         dbgln("Invalid");
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| SVGPathElement::SVGPathElement(DOM::Document& document, DOM::QualifiedName qualified_name)
 | |
|     : SVGGeometryElement(document, move(qualified_name))
 | |
| {
 | |
| }
 | |
| 
 | |
| void SVGPathElement::parse_attribute(FlyString const& name, String const& value)
 | |
| {
 | |
|     SVGGeometryElement::parse_attribute(name, value);
 | |
| 
 | |
|     if (name == "d") {
 | |
|         m_instructions = AttributeParser::parse_path_data(value);
 | |
|         m_path.clear();
 | |
|     }
 | |
| }
 | |
| 
 | |
| Gfx::Path& SVGPathElement::get_path()
 | |
| {
 | |
|     if (m_path.has_value())
 | |
|         return m_path.value();
 | |
| 
 | |
|     Gfx::Path path;
 | |
|     PathInstructionType last_instruction = PathInstructionType::Invalid;
 | |
| 
 | |
|     for (auto& instruction : m_instructions) {
 | |
|         // If the first path element uses relative coordinates, we treat them as absolute by making them relative to (0, 0).
 | |
|         auto last_point = path.segments().is_empty() ? Gfx::FloatPoint { 0, 0 } : path.segments().last().point();
 | |
| 
 | |
|         auto& absolute = instruction.absolute;
 | |
|         auto& data = instruction.data;
 | |
| 
 | |
|         if constexpr (PATH_DEBUG) {
 | |
|             print_instruction(instruction);
 | |
|         }
 | |
| 
 | |
|         bool clear_last_control_point = true;
 | |
| 
 | |
|         switch (instruction.type) {
 | |
|         case PathInstructionType::Move: {
 | |
|             Gfx::FloatPoint point = { data[0], data[1] };
 | |
|             if (absolute) {
 | |
|                 path.move_to(point);
 | |
|             } else {
 | |
|                 path.move_to(point + last_point);
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
|         case PathInstructionType::ClosePath:
 | |
|             path.close();
 | |
|             break;
 | |
|         case PathInstructionType::Line: {
 | |
|             Gfx::FloatPoint point = { data[0], data[1] };
 | |
|             if (absolute) {
 | |
|                 path.line_to(point);
 | |
|             } else {
 | |
|                 path.line_to(point + last_point);
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
|         case PathInstructionType::HorizontalLine: {
 | |
|             if (absolute)
 | |
|                 path.line_to(Gfx::FloatPoint { data[0], last_point.y() });
 | |
|             else
 | |
|                 path.line_to(Gfx::FloatPoint { data[0] + last_point.x(), last_point.y() });
 | |
|             break;
 | |
|         }
 | |
|         case PathInstructionType::VerticalLine: {
 | |
|             if (absolute)
 | |
|                 path.line_to(Gfx::FloatPoint { last_point.x(), data[0] });
 | |
|             else
 | |
|                 path.line_to(Gfx::FloatPoint { last_point.x(), data[0] + last_point.y() });
 | |
|             break;
 | |
|         }
 | |
|         case PathInstructionType::EllipticalArc: {
 | |
|             double rx = data[0];
 | |
|             double ry = data[1];
 | |
|             double x_axis_rotation = double { data[2] } * M_DEG2RAD;
 | |
|             double large_arc_flag = data[3];
 | |
|             double sweep_flag = data[4];
 | |
| 
 | |
|             Gfx::FloatPoint next_point;
 | |
| 
 | |
|             if (absolute)
 | |
|                 next_point = { data[5], data[6] };
 | |
|             else
 | |
|                 next_point = { data[5] + last_point.x(), data[6] + last_point.y() };
 | |
| 
 | |
|             path.elliptical_arc_to(next_point, { rx, ry }, x_axis_rotation, large_arc_flag != 0, sweep_flag != 0);
 | |
|             break;
 | |
|         }
 | |
|         case PathInstructionType::QuadraticBezierCurve: {
 | |
|             clear_last_control_point = false;
 | |
| 
 | |
|             Gfx::FloatPoint through = { data[0], data[1] };
 | |
|             Gfx::FloatPoint point = { data[2], data[3] };
 | |
| 
 | |
|             if (absolute) {
 | |
|                 path.quadratic_bezier_curve_to(through, point);
 | |
|                 m_previous_control_point = through;
 | |
|             } else {
 | |
|                 auto control_point = through + last_point;
 | |
|                 path.quadratic_bezier_curve_to(control_point, point + last_point);
 | |
|                 m_previous_control_point = control_point;
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
|         case PathInstructionType::SmoothQuadraticBezierCurve: {
 | |
|             clear_last_control_point = false;
 | |
| 
 | |
|             if (m_previous_control_point.is_null()
 | |
|                 || ((last_instruction != PathInstructionType::QuadraticBezierCurve) && (last_instruction != PathInstructionType::SmoothQuadraticBezierCurve))) {
 | |
|                 m_previous_control_point = last_point;
 | |
|             }
 | |
| 
 | |
|             auto dx_end_control = last_point.dx_relative_to(m_previous_control_point);
 | |
|             auto dy_end_control = last_point.dy_relative_to(m_previous_control_point);
 | |
|             auto control_point = Gfx::FloatPoint { last_point.x() + dx_end_control, last_point.y() + dy_end_control };
 | |
| 
 | |
|             Gfx::FloatPoint end_point = { data[0], data[1] };
 | |
| 
 | |
|             if (absolute) {
 | |
|                 path.quadratic_bezier_curve_to(control_point, end_point);
 | |
|             } else {
 | |
|                 path.quadratic_bezier_curve_to(control_point, end_point + last_point);
 | |
|             }
 | |
| 
 | |
|             m_previous_control_point = control_point;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         case PathInstructionType::Curve: {
 | |
|             clear_last_control_point = false;
 | |
| 
 | |
|             Gfx::FloatPoint c1 = { data[0], data[1] };
 | |
|             Gfx::FloatPoint c2 = { data[2], data[3] };
 | |
|             Gfx::FloatPoint p2 = { data[4], data[5] };
 | |
|             if (!absolute) {
 | |
|                 p2 += last_point;
 | |
|                 c1 += last_point;
 | |
|                 c2 += last_point;
 | |
|             }
 | |
|             path.cubic_bezier_curve_to(c1, c2, p2);
 | |
| 
 | |
|             m_previous_control_point = c2;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         case PathInstructionType::SmoothCurve: {
 | |
|             clear_last_control_point = false;
 | |
| 
 | |
|             if (m_previous_control_point.is_null()
 | |
|                 || ((last_instruction != PathInstructionType::Curve) && (last_instruction != PathInstructionType::SmoothCurve))) {
 | |
|                 m_previous_control_point = last_point;
 | |
|             }
 | |
| 
 | |
|             // 9.5.2. Reflected control points https://svgwg.org/svg2-draft/paths.html#ReflectedControlPoints
 | |
|             // If the current point is (curx, cury) and the final control point of the previous path segment is (oldx2, oldy2),
 | |
|             // then the reflected point (i.e., (newx1, newy1), the first control point of the current path segment) is:
 | |
|             // (newx1, newy1) = (curx - (oldx2 - curx), cury - (oldy2 - cury))
 | |
|             auto reflected_previous_control_x = last_point.x() - m_previous_control_point.dx_relative_to(last_point);
 | |
|             auto reflected_previous_control_y = last_point.y() - m_previous_control_point.dy_relative_to(last_point);
 | |
|             Gfx::FloatPoint c1 = Gfx::FloatPoint { reflected_previous_control_x, reflected_previous_control_y };
 | |
|             Gfx::FloatPoint c2 = { data[0], data[1] };
 | |
|             Gfx::FloatPoint p2 = { data[2], data[3] };
 | |
|             if (!absolute) {
 | |
|                 p2 += last_point;
 | |
|                 c2 += last_point;
 | |
|             }
 | |
|             path.cubic_bezier_curve_to(c1, c2, p2);
 | |
| 
 | |
|             m_previous_control_point = c2;
 | |
|             break;
 | |
|         }
 | |
|         case PathInstructionType::Invalid:
 | |
|             VERIFY_NOT_REACHED();
 | |
|         }
 | |
| 
 | |
|         if (clear_last_control_point) {
 | |
|             m_previous_control_point = Gfx::FloatPoint {};
 | |
|         }
 | |
|         last_instruction = instruction.type;
 | |
|     }
 | |
| 
 | |
|     m_path = path;
 | |
|     return m_path.value();
 | |
| }
 | |
| 
 | |
| }
 | 
