mirror of
https://github.com/RGBCube/serenity
synced 2025-05-14 20:04:59 +00:00

This class is intended to replace all IOAddress usages in the Kernel codebase altogether. The idea is to ensure IO can be done in arch-specific manner that is determined mostly in compile-time, but to still be able to use most of the Kernel code in non-x86 builds. Specific devices that rely on x86-specific IO instructions are already placed in the Arch/x86 directory and are omitted for non-x86 builds. The reason this works so well is the fact that x86 IO space acts in a similar fashion to the traditional memory space being available in most CPU architectures - the x86 IO space is essentially just an array of bytes like the physical memory address space, but requires x86 IO instructions to load and store data. Therefore, many devices allow host software to interact with the hardware registers in both ways, with a noticeable trend even in the modern x86 hardware to move away from the old x86 IO space to exclusively using memory-mapped IO. Therefore, the IOWindow class encapsulates both methods for x86 builds. The idea is to allow PCI devices to be used in either way in x86 builds, so when trying to map an IOWindow on a PCI BAR, the Kernel will try to find the proper method being declared with the PCI BAR flags. For old PCI hardware on non-x86 builds this might turn into a problem as we can't use port mapped IO, so the Kernel will gracefully fail with ENOTSUP error code if that's the case, as there's really nothing we can do within such case. For general IO, the read{8,16,32} and write{8,16,32} methods are available as a convenient API for other places in the Kernel. There are simply no direct 64-bit IO API methods yet, as it's not needed right now and is not considered to be Arch-agnostic too - the x86 IO space doesn't support generating 64 bit cycle on IO bus and instead requires two 2 32-bit accesses. If for whatever reason it appears to be necessary to do IO in such manner, it could probably be added with some neat tricks to do so. It is recommended to use Memory::TypedMapping struct if direct 64 bit IO is actually needed.
221 lines
6.6 KiB
C++
221 lines
6.6 KiB
C++
/*
|
|
* Copyright (c) 2021, Liav A. <liavalb@hotmail.co.il>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include <Kernel/Bus/PCI/API.h>
|
|
#include <Kernel/Bus/PCI/Access.h>
|
|
#include <Kernel/Sections.h>
|
|
|
|
namespace Kernel::PCI {
|
|
|
|
void write8(Address address, PCI::RegisterOffset field, u8 value) { Access::the().write8_field(address, to_underlying(field), value); }
|
|
void write16(Address address, PCI::RegisterOffset field, u16 value) { Access::the().write16_field(address, to_underlying(field), value); }
|
|
void write32(Address address, PCI::RegisterOffset field, u32 value) { Access::the().write32_field(address, to_underlying(field), value); }
|
|
u8 read8(Address address, PCI::RegisterOffset field) { return Access::the().read8_field(address, to_underlying(field)); }
|
|
u16 read16(Address address, PCI::RegisterOffset field) { return Access::the().read16_field(address, to_underlying(field)); }
|
|
u32 read32(Address address, PCI::RegisterOffset field) { return Access::the().read32_field(address, to_underlying(field)); }
|
|
|
|
ErrorOr<void> enumerate(Function<void(DeviceIdentifier const&)> callback)
|
|
{
|
|
return Access::the().fast_enumerate(callback);
|
|
}
|
|
|
|
DeviceIdentifier get_device_identifier(Address address)
|
|
{
|
|
return Access::the().get_device_identifier(address);
|
|
}
|
|
|
|
HardwareID get_hardware_id(Address address)
|
|
{
|
|
return { read16(address, PCI::RegisterOffset::VENDOR_ID), read16(address, PCI::RegisterOffset::DEVICE_ID) };
|
|
}
|
|
|
|
void enable_io_space(Address address)
|
|
{
|
|
write16(address, PCI::RegisterOffset::COMMAND, read16(address, PCI::RegisterOffset::COMMAND) | (1 << 0));
|
|
}
|
|
void disable_io_space(Address address)
|
|
{
|
|
write16(address, PCI::RegisterOffset::COMMAND, read16(address, PCI::RegisterOffset::COMMAND) & ~(1 << 0));
|
|
}
|
|
|
|
void enable_memory_space(Address address)
|
|
{
|
|
write16(address, PCI::RegisterOffset::COMMAND, read16(address, PCI::RegisterOffset::COMMAND) | (1 << 1));
|
|
}
|
|
void disable_memory_space(Address address)
|
|
{
|
|
write16(address, PCI::RegisterOffset::COMMAND, read16(address, PCI::RegisterOffset::COMMAND) & ~(1 << 1));
|
|
}
|
|
bool is_io_space_enabled(Address address)
|
|
{
|
|
return (read16(address, PCI::RegisterOffset::COMMAND) & 1) != 0;
|
|
}
|
|
|
|
void enable_interrupt_line(Address address)
|
|
{
|
|
write16(address, PCI::RegisterOffset::COMMAND, read16(address, PCI::RegisterOffset::COMMAND) & ~(1 << 10));
|
|
}
|
|
|
|
void disable_interrupt_line(Address address)
|
|
{
|
|
write16(address, PCI::RegisterOffset::COMMAND, read16(address, PCI::RegisterOffset::COMMAND) | 1 << 10);
|
|
}
|
|
|
|
u32 get_BAR0(Address address)
|
|
{
|
|
return read32(address, PCI::RegisterOffset::BAR0);
|
|
}
|
|
|
|
u32 get_BAR1(Address address)
|
|
{
|
|
return read32(address, PCI::RegisterOffset::BAR1);
|
|
}
|
|
|
|
u32 get_BAR2(Address address)
|
|
{
|
|
return read32(address, PCI::RegisterOffset::BAR2);
|
|
}
|
|
|
|
u32 get_BAR3(Address address)
|
|
{
|
|
return read16(address, PCI::RegisterOffset::BAR3);
|
|
}
|
|
|
|
u32 get_BAR4(Address address)
|
|
{
|
|
return read32(address, PCI::RegisterOffset::BAR4);
|
|
}
|
|
|
|
u32 get_BAR5(Address address)
|
|
{
|
|
return read32(address, PCI::RegisterOffset::BAR5);
|
|
}
|
|
|
|
u32 get_BAR(Address address, HeaderType0BaseRegister pci_bar)
|
|
{
|
|
VERIFY(to_underlying(pci_bar) <= 5);
|
|
switch (to_underlying(pci_bar)) {
|
|
case 0:
|
|
return get_BAR0(address);
|
|
case 1:
|
|
return get_BAR1(address);
|
|
case 2:
|
|
return get_BAR2(address);
|
|
case 3:
|
|
return get_BAR3(address);
|
|
case 4:
|
|
return get_BAR4(address);
|
|
case 5:
|
|
return get_BAR5(address);
|
|
default:
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
}
|
|
|
|
BARSpaceType get_BAR_space_type(u32 pci_bar_value)
|
|
{
|
|
// Note: For IO space, bit 0 is set to 1.
|
|
if (pci_bar_value & (1 << 0))
|
|
return BARSpaceType::IOSpace;
|
|
auto memory_space_type = (pci_bar_value >> 1) & 0b11;
|
|
switch (memory_space_type) {
|
|
case 0:
|
|
return BARSpaceType::Memory32BitSpace;
|
|
case 1:
|
|
return BARSpaceType::Memory16BitSpace;
|
|
case 2:
|
|
return BARSpaceType::Memory64BitSpace;
|
|
default:
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
}
|
|
|
|
void enable_bus_mastering(Address address)
|
|
{
|
|
auto value = read16(address, PCI::RegisterOffset::COMMAND);
|
|
value |= (1 << 2);
|
|
value |= (1 << 0);
|
|
write16(address, PCI::RegisterOffset::COMMAND, value);
|
|
}
|
|
|
|
void disable_bus_mastering(Address address)
|
|
{
|
|
auto value = read16(address, PCI::RegisterOffset::COMMAND);
|
|
value &= ~(1 << 2);
|
|
value |= (1 << 0);
|
|
write16(address, PCI::RegisterOffset::COMMAND, value);
|
|
}
|
|
|
|
static void write8_offsetted(Address address, u32 field, u8 value) { Access::the().write8_field(address, field, value); }
|
|
static void write16_offsetted(Address address, u32 field, u16 value) { Access::the().write16_field(address, field, value); }
|
|
static void write32_offsetted(Address address, u32 field, u32 value) { Access::the().write32_field(address, field, value); }
|
|
static u8 read8_offsetted(Address address, u32 field) { return Access::the().read8_field(address, field); }
|
|
static u16 read16_offsetted(Address address, u32 field) { return Access::the().read16_field(address, field); }
|
|
static u32 read32_offsetted(Address address, u32 field) { return Access::the().read32_field(address, field); }
|
|
|
|
size_t get_BAR_space_size(Address address, HeaderType0BaseRegister pci_bar)
|
|
{
|
|
// See PCI Spec 2.3, Page 222
|
|
VERIFY(to_underlying(pci_bar) < 6);
|
|
u8 field = to_underlying(PCI::RegisterOffset::BAR0) + (to_underlying(pci_bar) << 2);
|
|
u32 bar_reserved = read32_offsetted(address, field);
|
|
write32_offsetted(address, field, 0xFFFFFFFF);
|
|
u32 space_size = read32_offsetted(address, field);
|
|
write32_offsetted(address, field, bar_reserved);
|
|
space_size &= 0xfffffff0;
|
|
space_size = (~space_size) + 1;
|
|
return space_size;
|
|
}
|
|
|
|
void raw_access(Address address, u32 field, size_t access_size, u32 value)
|
|
{
|
|
VERIFY(access_size != 0);
|
|
if (access_size == 1) {
|
|
write8_offsetted(address, field, value);
|
|
return;
|
|
}
|
|
if (access_size == 2) {
|
|
write16_offsetted(address, field, value);
|
|
return;
|
|
}
|
|
if (access_size == 4) {
|
|
write32_offsetted(address, field, value);
|
|
return;
|
|
}
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
|
|
u8 Capability::read8(u32 field) const
|
|
{
|
|
return read8_offsetted(m_address, m_ptr + field);
|
|
}
|
|
|
|
u16 Capability::read16(u32 field) const
|
|
{
|
|
return read16_offsetted(m_address, m_ptr + field);
|
|
}
|
|
|
|
u32 Capability::read32(u32 field) const
|
|
{
|
|
return read32_offsetted(m_address, m_ptr + field);
|
|
}
|
|
|
|
void Capability::write8(u32 field, u8 value)
|
|
{
|
|
write8_offsetted(m_address, m_ptr + field, value);
|
|
}
|
|
|
|
void Capability::write16(u32 field, u16 value)
|
|
{
|
|
write16_offsetted(m_address, m_ptr + field, value);
|
|
}
|
|
|
|
void Capability::write32(u32 field, u32 value)
|
|
{
|
|
write32_offsetted(m_address, m_ptr + field, value);
|
|
}
|
|
|
|
}
|