1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-06-01 03:28:13 +00:00
serenity/Userland/Libraries/LibVideo/VP9/Decoder.h
Zaggy1024 074f771b59 LibVideo: Add VideoFrame class for decoded video frames
The class is virtual and has one subclass, SubsampledYUVFrame, which
is used by the VP9 decoder to return a single frame. The
output_to_bitmap(Bitmap&) function can be used to set pixels on an
existing bitmap of the correct size to the RGB values that
should be displayed. The to_bitmap() function will allocate a new bitmap
and fill it using output_to_bitmap.

This new class also implements bilinear scaling of the subsampled U and
V planes so that subsampled videos' colors will appear smoother.
2022-10-31 14:47:13 +01:00

171 lines
7.7 KiB
C++

/*
* Copyright (c) 2021, Hunter Salyer <thefalsehonesty@gmail.com>
* Copyright (c) 2022, Gregory Bertilson <zaggy1024@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/ByteBuffer.h>
#include <AK/Error.h>
#include <AK/NonnullOwnPtr.h>
#include <AK/Span.h>
#include <LibVideo/Color/CodingIndependentCodePoints.h>
#include <LibVideo/DecoderError.h>
#include <LibVideo/VideoFrame.h>
#include "Parser.h"
namespace Video::VP9 {
class Decoder {
friend class Parser;
public:
Decoder();
/* (8.1) General */
DecoderErrorOr<void> receive_sample(Span<u8 const>);
DecoderErrorOr<void> receive_sample(ByteBuffer const&);
void dump_frame_info();
DecoderErrorOr<NonnullOwnPtr<VideoFrame>> get_decoded_frame();
private:
typedef i32 Intermediate;
DecoderErrorOr<void> decode_frame(Span<u8 const>);
DecoderErrorOr<void> allocate_buffers();
Vector<Intermediate>& get_temp_buffer(u8 plane);
Vector<u16>& get_output_buffer(u8 plane);
/* (8.4) Probability Adaptation Process */
u8 merge_prob(u8 pre_prob, u8 count_0, u8 count_1, u8 count_sat, u8 max_update_factor);
u8 merge_probs(int const* tree, int index, u8* probs, u8* counts, u8 count_sat, u8 max_update_factor);
DecoderErrorOr<void> adapt_coef_probs();
DecoderErrorOr<void> adapt_non_coef_probs();
void adapt_probs(int const* tree, u8* probs, u8* counts);
u8 adapt_prob(u8 prob, u8 counts[2]);
/* (8.5) Prediction Processes */
// (8.5.1) Intra prediction process
DecoderErrorOr<void> predict_intra(u8 plane, u32 x, u32 y, bool have_left, bool have_above, bool not_on_right, TXSize tx_size, u32 block_index);
// (8.5.1) Inter prediction process
DecoderErrorOr<void> predict_inter(u8 plane, u32 x, u32 y, u32 width, u32 height, u32 block_index);
// (8.5.2.1) Motion vector selection process
MotionVector select_motion_vector(u8 plane, u8 ref_list, u32 block_index);
// (8.5.2.2) Motion vector clamping process
MotionVector clamp_motion_vector(u8 plane, MotionVector vector);
// (8.5.2.3) Motion vector scaling process
DecoderErrorOr<MotionVector> scale_motion_vector(u8 plane, u8 ref_list, u32 x, u32 y, MotionVector vector);
// From (8.5.1) Inter prediction process, steps 2-5
DecoderErrorOr<void> predict_inter_block(u8 plane, u8 ref_list, u32 x, u32 y, u32 width, u32 height, u32 block_index, Vector<u16>& buffer);
/* (8.6) Reconstruction and Dequantization */
// FIXME: These should be inline or constexpr
u16 dc_q(u8 b);
u16 ac_q(u8 b);
// Returns the quantizer index for the current block
u8 get_qindex();
// Returns the quantizer value for the dc coefficient for a particular plane
u16 get_dc_quant(u8 plane);
// Returns the quantizer value for the ac coefficient for a particular plane
u16 get_ac_quant(u8 plane);
// (8.6.2) Reconstruct process
DecoderErrorOr<void> reconstruct(u8 plane, u32 transform_block_x, u32 transform_block_y, TXSize transform_block_size);
// (8.7) Inverse transform process
DecoderErrorOr<void> inverse_transform_2d(Vector<Intermediate>& dequantized, u8 log2_of_block_size);
// (8.7.1) 1D Transforms
// (8.7.1.1) Butterfly functions
inline i32 cos64(u8 angle);
inline i32 sin64(u8 angle);
// The function B( a, b, angle, 0 ) performs a butterfly rotation.
inline void butterfly_rotation_in_place(Vector<Intermediate>& data, size_t index_a, size_t index_b, u8 angle, bool flip);
// The function H( a, b, 0 ) performs a Hadamard rotation.
inline void hadamard_rotation_in_place(Vector<Intermediate>& data, size_t index_a, size_t index_b, bool flip);
// The function SB( a, b, angle, 0 ) performs a butterfly rotation.
// Spec defines the source as array T, and the destination array as S.
template<typename S, typename D>
inline void butterfly_rotation(Vector<S>& source, Vector<D>& destination, size_t index_a, size_t index_b, u8 angle, bool flip);
// The function SH( a, b ) performs a Hadamard rotation and rounding.
// Spec defines the source array as S, and the destination array as T.
template<typename S, typename D>
inline void hadamard_rotation(Vector<S>& source, Vector<D>& destination, size_t index_a, size_t index_b);
template<typename T>
inline i32 round_2(T value, u8 bits);
// Checks whether the value is representable by a signed integer with (8 + bit_depth) bits.
inline bool check_intermediate_bounds(Intermediate value);
// (8.7.1.10) This process does an in-place Walsh-Hadamard transform of the array T (of length 4).
inline DecoderErrorOr<void> inverse_walsh_hadamard_transform(Vector<Intermediate>& data, u8 log2_of_block_size, u8 shift);
// (8.7.1.2) Inverse DCT array permutation process
inline DecoderErrorOr<void> inverse_discrete_cosine_transform_array_permutation(Vector<Intermediate>& data, u8 log2_of_block_size);
// (8.7.1.3) Inverse DCT process
inline DecoderErrorOr<void> inverse_discrete_cosine_transform(Vector<Intermediate>& data, u8 log2_of_block_size);
// (8.7.1.4) This process performs the in-place permutation of the array T of length 2 n which is required as the first step of
// the inverse ADST.
inline void inverse_asymmetric_discrete_sine_transform_input_array_permutation(Vector<Intermediate>& data, Vector<Intermediate>& temp, u8 log2_of_block_size);
// (8.7.1.5) This process performs the in-place permutation of the array T of length 2 n which is required before the final
// step of the inverse ADST.
inline void inverse_asymmetric_discrete_sine_transform_output_array_permutation(Vector<Intermediate>& data, Vector<Intermediate>& temp, u8 log2_of_block_size);
// (8.7.1.6) This process does an in-place transform of the array T to perform an inverse ADST.
inline void inverse_asymmetric_discrete_sine_transform_4(Vector<Intermediate>& data);
// (8.7.1.7) This process does an in-place transform of the array T using a higher precision array S for intermediate
// results.
inline DecoderErrorOr<void> inverse_asymmetric_discrete_sine_transform_8(Vector<Intermediate>& data);
// (8.7.1.8) This process does an in-place transform of the array T using a higher precision array S for intermediate
// results.
inline DecoderErrorOr<void> inverse_asymmetric_discrete_sine_transform_16(Vector<Intermediate>& data);
// (8.7.1.9) This process performs an in-place inverse ADST process on the array T of size 2 n for 2 ≤ n ≤ 4.
inline DecoderErrorOr<void> inverse_asymmetric_discrete_sine_transform(Vector<Intermediate>& data, u8 log2_of_block_size);
/* (8.10) Reference Frame Update Process */
DecoderErrorOr<void> update_reference_frames();
inline CodingIndependentCodePoints get_cicp_color_space();
NonnullOwnPtr<Parser> m_parser;
struct {
// FIXME: We may be able to consolidate some of these to reduce memory consumption.
// FIXME: Create a new struct to store these buffers, specifying size and providing
// helper functions to get values at coordinates. All *_at(row, column)
// functions in Decoder.cpp and functions returning row * width + column
// should be replaced if possible.
Vector<Intermediate> dequantized;
Vector<Intermediate> row_or_column;
// predict_intra
Vector<Intermediate> above_row;
Vector<Intermediate> left_column;
Vector<Intermediate> predicted_samples;
// transforms (dct, adst)
Vector<Intermediate> transform_temp;
Vector<i64> adst_temp;
// predict_inter
Vector<u16> inter_horizontal;
Vector<u16> inter_predicted;
Vector<u16> inter_predicted_compound;
Vector<Intermediate> intermediate[3];
Vector<u16> output[3];
} m_buffers;
};
}