mirror of
				https://github.com/RGBCube/serenity
				synced 2025-10-31 00:32:45 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			630 lines
		
	
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			630 lines
		
	
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
 | |
|  *
 | |
|  * SPDX-License-Identifier: BSD-2-Clause
 | |
|  */
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <AK/Array.h>
 | |
| #include <AK/Assertions.h>
 | |
| #include <AK/Badge.h>
 | |
| #include <AK/Checked.h>
 | |
| #include <AK/Platform.h>
 | |
| #include <AK/Types.h>
 | |
| 
 | |
| #if defined(AK_OS_SERENITY) && defined(KERNEL)
 | |
| #    include <Kernel/API/POSIX/sys/time.h>
 | |
| #    include <Kernel/API/POSIX/time.h>
 | |
| 
 | |
| // We need a Badge<TimeManagement> for some MonotonicTime operations.
 | |
| namespace Kernel {
 | |
| class TimeManagement;
 | |
| }
 | |
| 
 | |
| #else
 | |
| #    include <sys/time.h>
 | |
| #    include <time.h>
 | |
| #endif
 | |
| 
 | |
| namespace AK {
 | |
| 
 | |
| // Concept to detect types which look like timespec without requiring the type.
 | |
| template<typename T>
 | |
| concept TimeSpecType = requires(T t) {
 | |
|     t.tv_sec;
 | |
|     t.tv_nsec;
 | |
| };
 | |
| 
 | |
| constexpr bool is_leap_year(int year)
 | |
| {
 | |
|     return year % 4 == 0 && (year % 100 != 0 || year % 400 == 0);
 | |
| }
 | |
| 
 | |
| // Month and day start at 1. Month must be >= 1 and <= 12.
 | |
| // The return value is 0-indexed, that is 0 is Sunday, 1 is Monday, etc.
 | |
| // Day may be negative or larger than the number of days
 | |
| // in the given month.
 | |
| unsigned day_of_week(int year, unsigned month, int day);
 | |
| 
 | |
| // Month and day start at 1. Month must be >= 1 and <= 12.
 | |
| // The return value is 0-indexed, that is Jan 1 is day 0.
 | |
| // Day may be negative or larger than the number of days
 | |
| // in the given month. If day is negative enough, the result
 | |
| // can be negative.
 | |
| constexpr int day_of_year(int year, unsigned month, int day)
 | |
| {
 | |
|     if (is_constant_evaluated())
 | |
|         VERIFY(month >= 1 && month <= 12); // Note that this prevents bad constexpr months, but never actually prints anything.
 | |
|     else if (!(month >= 1 && month <= 12))
 | |
|         return 0;
 | |
| 
 | |
|     constexpr Array seek_table = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
 | |
|     int day_of_year = seek_table[month - 1] + day - 1;
 | |
| 
 | |
|     if (is_leap_year(year) && month >= 3)
 | |
|         day_of_year++;
 | |
| 
 | |
|     return day_of_year;
 | |
| }
 | |
| 
 | |
| // Month starts at 1. Month must be >= 1 and <= 12.
 | |
| int days_in_month(int year, unsigned month);
 | |
| 
 | |
| constexpr int days_in_year(int year)
 | |
| {
 | |
|     return 365 + (is_leap_year(year) ? 1 : 0);
 | |
| }
 | |
| 
 | |
| namespace Detail {
 | |
| // Integer division rounding towards negative infinity.
 | |
| // TODO: This feels like there should be an easier way to do this.
 | |
| template<int divisor>
 | |
| constexpr i64 floor_div_by(i64 dividend)
 | |
| {
 | |
|     static_assert(divisor > 1);
 | |
|     int is_negative = dividend < 0;
 | |
|     return (dividend + is_negative) / divisor - is_negative;
 | |
| }
 | |
| 
 | |
| // Counts how many integers n are in the interval [begin, end) with n % positive_mod == 0.
 | |
| // NOTE: "end" is not considered to be part of the range, hence "[begin, end)".
 | |
| template<int positive_mod>
 | |
| constexpr i64 mod_zeros_in_range(i64 begin, i64 end)
 | |
| {
 | |
|     return floor_div_by<positive_mod>(end - 1) - floor_div_by<positive_mod>(begin - 1);
 | |
| }
 | |
| }
 | |
| 
 | |
| constexpr i64 years_to_days_since_epoch(int year)
 | |
| {
 | |
|     int begin_year, end_year, leap_sign;
 | |
|     if (year < 1970) {
 | |
|         begin_year = year;
 | |
|         end_year = 1970;
 | |
|         leap_sign = -1;
 | |
|     } else {
 | |
|         begin_year = 1970;
 | |
|         end_year = year;
 | |
|         leap_sign = +1;
 | |
|     }
 | |
|     i64 year_i64 = year;
 | |
|     // This duplicates the logic of 'is_leap_year', with the advantage of not needing any loops.
 | |
|     // Given that the definition of leap years is not expected to change, this should be a good trade-off.
 | |
|     i64 days = 365 * (year_i64 - 1970);
 | |
|     i64 extra_leap_days = 0;
 | |
|     extra_leap_days += Detail::mod_zeros_in_range<4>(begin_year, end_year);
 | |
|     extra_leap_days -= Detail::mod_zeros_in_range<100>(begin_year, end_year);
 | |
|     extra_leap_days += Detail::mod_zeros_in_range<400>(begin_year, end_year);
 | |
|     return days + extra_leap_days * leap_sign;
 | |
| }
 | |
| 
 | |
| constexpr i64 days_since_epoch(int year, int month, int day)
 | |
| {
 | |
|     return years_to_days_since_epoch(year) + day_of_year(year, month, day);
 | |
| }
 | |
| 
 | |
| constexpr i64 seconds_since_epoch_to_year(i64 seconds)
 | |
| {
 | |
|     constexpr double seconds_per_year = 60.0 * 60.0 * 24.0 * 365.2425;
 | |
| 
 | |
|     // NOTE: We are not using floor() from <math.h> to avoid LibC / DynamicLoader dependency issues.
 | |
|     auto round_down = [](double value) -> i64 {
 | |
|         auto as_i64 = static_cast<i64>(value);
 | |
| 
 | |
|         if ((value == as_i64) || (as_i64 >= 0))
 | |
|             return as_i64;
 | |
|         return as_i64 - 1;
 | |
|     };
 | |
| 
 | |
|     auto years_since_epoch = static_cast<double>(seconds) / seconds_per_year;
 | |
|     return 1970 + round_down(years_since_epoch);
 | |
| }
 | |
| 
 | |
| // Represents a duration in a "safe" way.
 | |
| // Minimum: -(2**63) seconds, 0 nanoseconds
 | |
| // Maximum: 2**63-1 seconds, 999'999'999 nanoseconds
 | |
| // If any operation (e.g. 'from_timeval' or operator-) would over- or underflow, the closest legal value is returned instead.
 | |
| // Inputs (e.g. to 'from_timespec') are allowed to be in non-normal form (e.g. "1 second, 2'012'345'678 nanoseconds" or "1 second, -2 microseconds").
 | |
| // Outputs (e.g. from 'to_timeval') are always in normal form.
 | |
| //
 | |
| // NOTE: This class is naive. It may represent either absolute offsets or relative durations. It does not have a reference point in itself,
 | |
| //       and therefore comparing multiple instances of this class is only sensible if you are sure that their reference point is identical.
 | |
| //       You should not be using this class directly to represent absolute time.
 | |
| class Duration {
 | |
| public:
 | |
|     constexpr Duration() = default;
 | |
|     constexpr Duration(Duration const&) = default;
 | |
|     constexpr Duration& operator=(Duration const&) = default;
 | |
| 
 | |
|     constexpr Duration(Duration&& other)
 | |
|         : m_seconds(exchange(other.m_seconds, 0))
 | |
|         , m_nanoseconds(exchange(other.m_nanoseconds, 0))
 | |
|     {
 | |
|     }
 | |
|     constexpr Duration& operator=(Duration&& other)
 | |
|     {
 | |
|         if (this != &other) {
 | |
|             m_seconds = exchange(other.m_seconds, 0);
 | |
|             m_nanoseconds = exchange(other.m_nanoseconds, 0);
 | |
|         }
 | |
|         return *this;
 | |
|     }
 | |
| 
 | |
| private:
 | |
|     // This must be part of the header in order to make the various 'from_*' functions constexpr.
 | |
|     // However, sane_mod can only deal with a limited range of values for 'denominator', so this can't be made public.
 | |
|     ALWAYS_INLINE static constexpr i64 sane_mod(i64& numerator, i64 denominator)
 | |
|     {
 | |
|         VERIFY(2 <= denominator && denominator <= 1'000'000'000);
 | |
|         // '%' in C/C++ does not work in the obvious way:
 | |
|         // For example, -9 % 7 is -2, not +5.
 | |
|         // However, we want a representation like "(-2)*7 + (+5)".
 | |
|         i64 dividend = numerator / denominator;
 | |
|         numerator %= denominator;
 | |
|         if (numerator < 0) {
 | |
|             // Does not overflow: different signs.
 | |
|             numerator += denominator;
 | |
|             // Does not underflow: denominator >= 2.
 | |
|             dividend -= 1;
 | |
|         }
 | |
|         return dividend;
 | |
|     }
 | |
|     ALWAYS_INLINE static constexpr i32 sane_mod(i32& numerator, i32 denominator)
 | |
|     {
 | |
|         i64 numerator_64 = numerator;
 | |
|         i64 dividend = sane_mod(numerator_64, denominator);
 | |
|         // Does not underflow: numerator can only become smaller.
 | |
|         numerator = static_cast<i32>(numerator_64);
 | |
|         // Does not overflow: Will be smaller than original value of 'numerator'.
 | |
|         return static_cast<i32>(dividend);
 | |
|     }
 | |
| 
 | |
| public:
 | |
|     [[nodiscard]] constexpr static Duration from_seconds(i64 seconds) { return Duration(seconds, 0); }
 | |
|     [[nodiscard]] constexpr static Duration from_nanoseconds(i64 nanoseconds)
 | |
|     {
 | |
|         i64 seconds = sane_mod(nanoseconds, 1'000'000'000);
 | |
|         return Duration(seconds, nanoseconds);
 | |
|     }
 | |
|     [[nodiscard]] constexpr static Duration from_microseconds(i64 microseconds)
 | |
|     {
 | |
|         i64 seconds = sane_mod(microseconds, 1'000'000);
 | |
|         return Duration(seconds, microseconds * 1'000);
 | |
|     }
 | |
|     [[nodiscard]] constexpr static Duration from_milliseconds(i64 milliseconds)
 | |
|     {
 | |
|         i64 seconds = sane_mod(milliseconds, 1'000);
 | |
|         return Duration(seconds, milliseconds * 1'000'000);
 | |
|     }
 | |
|     [[nodiscard]] static Duration from_ticks(clock_t, time_t);
 | |
|     [[nodiscard]] static Duration from_timespec(const struct timespec&);
 | |
|     [[nodiscard]] static Duration from_timeval(const struct timeval&);
 | |
|     // We don't pull in <stdint.h> for the pretty min/max definitions because this file is also included in the Kernel
 | |
|     [[nodiscard]] constexpr static Duration min() { return Duration(-__INT64_MAX__ - 1LL, 0); }
 | |
|     [[nodiscard]] constexpr static Duration zero() { return Duration(0, 0); }
 | |
|     [[nodiscard]] constexpr static Duration max() { return Duration(__INT64_MAX__, 999'999'999); }
 | |
| 
 | |
|     // Truncates towards zero (2.8s to 2s, -2.8s to -2s).
 | |
|     [[nodiscard]] i64 to_truncated_seconds() const;
 | |
|     [[nodiscard]] i64 to_truncated_milliseconds() const;
 | |
|     [[nodiscard]] i64 to_truncated_microseconds() const;
 | |
|     // Rounds away from zero (2.3s to 3s, -2.3s to -3s).
 | |
|     [[nodiscard]] i64 to_seconds() const;
 | |
|     [[nodiscard]] i64 to_milliseconds() const;
 | |
|     [[nodiscard]] i64 to_microseconds() const;
 | |
|     [[nodiscard]] i64 to_nanoseconds() const;
 | |
|     [[nodiscard]] timespec to_timespec() const;
 | |
|     // Rounds towards -inf (it was the easiest to implement).
 | |
|     [[nodiscard]] timeval to_timeval() const;
 | |
| 
 | |
|     [[nodiscard]] bool is_zero() const { return (m_seconds == 0) && (m_nanoseconds == 0); }
 | |
|     [[nodiscard]] bool is_negative() const { return m_seconds < 0; }
 | |
| 
 | |
|     constexpr Duration operator+(Duration const& other) const
 | |
|     {
 | |
|         VERIFY(m_nanoseconds < 1'000'000'000);
 | |
|         VERIFY(other.m_nanoseconds < 1'000'000'000);
 | |
| 
 | |
|         u32 new_nsecs = m_nanoseconds + other.m_nanoseconds;
 | |
|         u32 extra_secs = new_nsecs / 1'000'000'000;
 | |
|         new_nsecs %= 1'000'000'000;
 | |
| 
 | |
|         i64 this_secs = m_seconds;
 | |
|         i64 other_secs = other.m_seconds;
 | |
|         // We would like to just add "this_secs + other_secs + extra_secs".
 | |
|         // However, computing this naively may overflow even though the result is in-bounds.
 | |
|         // Example in 8-bit: (-127) + (-2) + (+1) = (-128), which fits in an i8.
 | |
|         // Example in 8-bit, the other way around: (-2) + (127) + (+1) = 126.
 | |
|         // So we do something more sophisticated:
 | |
|         if (extra_secs) {
 | |
|             VERIFY(extra_secs == 1);
 | |
|             if (this_secs != 0x7fff'ffff'ffff'ffff) {
 | |
|                 this_secs += 1;
 | |
|             } else if (other_secs != 0x7fff'ffff'ffff'ffff) {
 | |
|                 other_secs += 1;
 | |
|             } else {
 | |
|                 /* If *both* are INT64_MAX, then adding them will overflow in any case. */
 | |
|                 return Duration::max();
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         Checked<i64> new_secs { this_secs };
 | |
|         new_secs += other_secs;
 | |
|         if (new_secs.has_overflow()) {
 | |
|             if (other_secs > 0)
 | |
|                 return Duration::max();
 | |
|             else
 | |
|                 return Duration::min();
 | |
|         }
 | |
| 
 | |
|         return Duration { new_secs.value(), new_nsecs };
 | |
|     }
 | |
| 
 | |
|     constexpr Duration& operator+=(Duration const& other)
 | |
|     {
 | |
|         *this = *this + other;
 | |
|         return *this;
 | |
|     }
 | |
| 
 | |
|     constexpr Duration operator-(Duration const& other) const
 | |
|     {
 | |
|         VERIFY(m_nanoseconds < 1'000'000'000);
 | |
|         VERIFY(other.m_nanoseconds < 1'000'000'000);
 | |
| 
 | |
|         if (other.m_nanoseconds)
 | |
|             return *this + Duration((i64) ~(u64)other.m_seconds, 1'000'000'000 - other.m_nanoseconds);
 | |
| 
 | |
|         if (other.m_seconds != (i64)-0x8000'0000'0000'0000)
 | |
|             return *this + Duration(-other.m_seconds, 0);
 | |
| 
 | |
|         // Only remaining case: We want to subtract -0x8000'0000'0000'0000 seconds,
 | |
|         // i.e. add a very large number.
 | |
| 
 | |
|         if (m_seconds >= 0)
 | |
|             return Duration::max();
 | |
|         return Duration { (m_seconds + 0x4000'0000'0000'0000) + 0x4000'0000'0000'0000, m_nanoseconds };
 | |
|     }
 | |
| 
 | |
|     constexpr Duration& operator-=(Duration const& other)
 | |
|     {
 | |
|         *this = *this - other;
 | |
|         return *this;
 | |
|     }
 | |
| 
 | |
|     constexpr bool operator==(Duration const& other) const = default;
 | |
|     constexpr int operator<=>(Duration const& other) const
 | |
|     {
 | |
|         if (int cmp = (m_seconds > other.m_seconds ? 1 : m_seconds < other.m_seconds ? -1
 | |
|                                                                                      : 0);
 | |
|             cmp != 0)
 | |
|             return cmp;
 | |
|         if (int cmp = (m_nanoseconds > other.m_nanoseconds ? 1 : m_nanoseconds < other.m_nanoseconds ? -1
 | |
|                                                                                                      : 0);
 | |
|             cmp != 0)
 | |
|             return cmp;
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
| private:
 | |
|     constexpr explicit Duration(i64 seconds, u32 nanoseconds)
 | |
|         : m_seconds(seconds)
 | |
|         , m_nanoseconds(nanoseconds)
 | |
|     {
 | |
|     }
 | |
| 
 | |
|     [[nodiscard]] static Duration from_half_sanitized(i64 seconds, i32 extra_seconds, u32 nanoseconds);
 | |
| 
 | |
|     i64 m_seconds { 0 };
 | |
|     u32 m_nanoseconds { 0 }; // Always less than 1'000'000'000
 | |
| };
 | |
| 
 | |
| namespace Detail {
 | |
| 
 | |
| // Common base class for all unaware time types.
 | |
| // Naive, or unaware, in the time context means to make heavily simplifying assumptions about time.
 | |
| // In the case of this class and its children, they are not timezone-aware and strictly ordered.
 | |
| class UnawareTime {
 | |
| public:
 | |
|     constexpr UnawareTime(UnawareTime const&) = default;
 | |
|     constexpr UnawareTime& operator=(UnawareTime const&) = default;
 | |
| 
 | |
|     [[nodiscard]] timespec to_timespec() const { return m_offset.to_timespec(); }
 | |
|     // Rounds towards -inf.
 | |
|     [[nodiscard]] timeval to_timeval() const { return m_offset.to_timeval(); }
 | |
| 
 | |
|     // We intentionally do not define a comparison operator here to avoid accidentally comparing incompatible time types.
 | |
| 
 | |
| protected:
 | |
|     constexpr explicit UnawareTime(Duration offset)
 | |
|         : m_offset(offset)
 | |
|     {
 | |
|     }
 | |
| 
 | |
|     Duration m_offset {};
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| // Naive UNIX time, representing an offset from 1970-01-01 00:00:00Z, without accounting for UTC leap seconds.
 | |
| // This class is mainly intended for interoperating with anything that expects a unix timestamp.
 | |
| class UnixDateTime : public Detail::UnawareTime {
 | |
| public:
 | |
|     constexpr UnixDateTime()
 | |
|         : Detail::UnawareTime(Duration::zero())
 | |
|     {
 | |
|     }
 | |
| 
 | |
|     constexpr static UnixDateTime epoch()
 | |
|     {
 | |
|         return UnixDateTime {};
 | |
|     }
 | |
| 
 | |
|     // Creates UNIX time from a unix timestamp.
 | |
|     // Note that the returned time is probably not equivalent to the same timestamp in UTC time, since UNIX time does not observe leap seconds.
 | |
|     [[nodiscard]] constexpr static UnixDateTime from_unix_time_parts(i32 year, u8 month, u8 day, u8 hour, u8 minute, u8 second, u16 millisecond)
 | |
|     {
 | |
|         constexpr auto seconds_per_day = 86'400;
 | |
|         constexpr auto seconds_per_hour = 3'600;
 | |
|         constexpr auto seconds_per_minute = 60;
 | |
| 
 | |
|         i64 days = days_since_epoch(year, month, day);
 | |
|         // With year=2'147'483'648, we can end up with days=569'603'931'504.
 | |
|         // Expressing that in milliseconds would require more than 64 bits,
 | |
|         // so we must choose seconds here, and not milliseconds.
 | |
|         i64 seconds_since_epoch = days * seconds_per_day;
 | |
| 
 | |
|         seconds_since_epoch += hour * seconds_per_hour;
 | |
|         seconds_since_epoch += minute * seconds_per_minute;
 | |
|         seconds_since_epoch += second;
 | |
|         return from_seconds_since_epoch(seconds_since_epoch) + Duration::from_milliseconds(millisecond);
 | |
|     }
 | |
| 
 | |
|     [[nodiscard]] constexpr static UnixDateTime from_seconds_since_epoch(i64 seconds)
 | |
|     {
 | |
|         return UnixDateTime { Duration::from_seconds(seconds) };
 | |
|     }
 | |
| 
 | |
|     [[nodiscard]] constexpr static UnixDateTime from_milliseconds_since_epoch(i64 milliseconds)
 | |
|     {
 | |
|         return UnixDateTime { Duration::from_milliseconds(milliseconds) };
 | |
|     }
 | |
| 
 | |
|     [[nodiscard]] constexpr static UnixDateTime from_nanoseconds_since_epoch(i64 nanoseconds)
 | |
|     {
 | |
|         return UnixDateTime { Duration::from_nanoseconds(nanoseconds) };
 | |
|     }
 | |
| 
 | |
|     [[nodiscard]] static UnixDateTime from_unix_timespec(struct timespec const& time)
 | |
|     {
 | |
|         return UnixDateTime { Duration::from_timespec(time) };
 | |
|     }
 | |
| 
 | |
|     // Earliest and latest representable UNIX timestamps.
 | |
|     [[nodiscard]] constexpr static UnixDateTime earliest() { return UnixDateTime { Duration::min() }; }
 | |
|     [[nodiscard]] constexpr static UnixDateTime latest() { return UnixDateTime { Duration::max() }; }
 | |
| 
 | |
|     [[nodiscard]] constexpr Duration offset_to_epoch() const { return m_offset; }
 | |
|     // May return an epoch offset *after* what this UnixDateTime contains, because rounding to seconds occurs.
 | |
|     [[nodiscard]] i64 seconds_since_epoch() const { return m_offset.to_seconds(); }
 | |
|     [[nodiscard]] i64 milliseconds_since_epoch() const { return m_offset.to_milliseconds(); }
 | |
|     [[nodiscard]] i64 nanoseconds_since_epoch() const { return m_offset.to_nanoseconds(); }
 | |
|     // Never returns a point after this UnixDateTime, since fractional seconds are cut off.
 | |
|     [[nodiscard]] i64 truncated_seconds_since_epoch() const { return m_offset.to_truncated_seconds(); }
 | |
| 
 | |
|     // Offsetting a UNIX time by a duration yields another UNIX time.
 | |
|     constexpr UnixDateTime operator+(Duration const& other) const { return UnixDateTime { m_offset + other }; }
 | |
|     constexpr UnixDateTime& operator+=(Duration const& other)
 | |
|     {
 | |
|         this->m_offset = this->m_offset + other;
 | |
|         return *this;
 | |
|     }
 | |
| 
 | |
|     constexpr UnixDateTime operator-(Duration const& other) const { return UnixDateTime { m_offset - other }; }
 | |
|     constexpr UnixDateTime& operator-=(Duration const& other)
 | |
|     {
 | |
|         m_offset = m_offset - other;
 | |
|         return *this;
 | |
|     }
 | |
| 
 | |
|     // Subtracting two UNIX times yields their time difference.
 | |
|     constexpr Duration operator-(UnixDateTime const& other) const { return m_offset - other.m_offset; }
 | |
| 
 | |
| #ifndef KERNEL
 | |
|     [[nodiscard]] static UnixDateTime now();
 | |
|     [[nodiscard]] static UnixDateTime now_coarse();
 | |
| #endif
 | |
| 
 | |
|     constexpr bool operator==(UnixDateTime const& other) const
 | |
|     {
 | |
|         return this->m_offset == other.m_offset;
 | |
|     }
 | |
|     constexpr int operator<=>(UnixDateTime const& other) const { return this->m_offset <=> other.m_offset; }
 | |
| 
 | |
| private:
 | |
|     constexpr explicit UnixDateTime(Duration offset)
 | |
|         : Detail::UnawareTime(offset)
 | |
|     {
 | |
|     }
 | |
| };
 | |
| 
 | |
| // Monotonic time represents time returned from the CLOCK_MONOTONIC clock, which has an arbitrary fixed reference point.
 | |
| class MonotonicTime : private Detail::UnawareTime {
 | |
| public:
 | |
|     // Monotonic time does not have a defined reference point.
 | |
|     // A MonotonicTime at the reference point is therefore meaningless.
 | |
|     MonotonicTime() = delete;
 | |
|     constexpr MonotonicTime(MonotonicTime const&) = default;
 | |
|     constexpr MonotonicTime(MonotonicTime&&) = default;
 | |
|     constexpr MonotonicTime& operator=(MonotonicTime const&) = default;
 | |
|     constexpr MonotonicTime& operator=(MonotonicTime&&) = default;
 | |
| 
 | |
| #ifndef KERNEL
 | |
|     [[nodiscard]] static MonotonicTime now();
 | |
|     [[nodiscard]] static MonotonicTime now_coarse();
 | |
| #endif
 | |
| 
 | |
|     // clang-format off
 | |
|     // Clang-format likes to expand this function for some reason.
 | |
|     [[nodiscard]] i64 seconds() const { return m_offset.to_seconds(); }
 | |
|     // clang-format on
 | |
|     [[nodiscard]] i64 milliseconds() const { return m_offset.to_milliseconds(); }
 | |
|     [[nodiscard]] i64 nanoseconds() const { return m_offset.to_nanoseconds(); }
 | |
|     // Never returns a point in the future, since fractional seconds are cut off.
 | |
|     [[nodiscard]] i64 truncated_seconds() const { return m_offset.to_truncated_seconds(); }
 | |
|     [[nodiscard]] i64 nanoseconds_within_second() const { return to_timespec().tv_nsec; }
 | |
| 
 | |
|     constexpr bool operator==(MonotonicTime const& other) const { return this->m_offset == other.m_offset; }
 | |
|     constexpr int operator<=>(MonotonicTime const& other) const { return this->m_offset <=> other.m_offset; }
 | |
| 
 | |
|     constexpr MonotonicTime operator+(Duration const& other) const { return MonotonicTime { m_offset + other }; }
 | |
|     constexpr MonotonicTime& operator+=(Duration const& other)
 | |
|     {
 | |
|         this->m_offset = this->m_offset + other;
 | |
|         return *this;
 | |
|     }
 | |
|     constexpr MonotonicTime operator-(Duration const& other) const { return MonotonicTime { m_offset - other }; }
 | |
|     constexpr Duration operator-(MonotonicTime const& other) const { return m_offset - other.m_offset; }
 | |
| 
 | |
| #ifdef KERNEL
 | |
|     // Required in the Kernel in order to create monotonic time information from hardware timers.
 | |
|     [[nodiscard]] static MonotonicTime from_hardware_time(Badge<Kernel::TimeManagement>, time_t seconds, long nanoseconds)
 | |
|     {
 | |
|         return MonotonicTime { Duration::from_timespec({ seconds, nanoseconds }) };
 | |
|     }
 | |
| 
 | |
|     // "Start" is whenever the hardware timers started counting (e.g. for HPET it's most certainly boot).
 | |
|     [[nodiscard]] Duration time_since_start(Badge<Kernel::TimeManagement>)
 | |
|     {
 | |
|         return m_offset;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| private:
 | |
|     constexpr explicit MonotonicTime(Duration offset)
 | |
|         : Detail::UnawareTime(offset)
 | |
|     {
 | |
|     }
 | |
| };
 | |
| 
 | |
| template<typename TimevalType>
 | |
| inline void timeval_sub(TimevalType const& a, TimevalType const& b, TimevalType& result)
 | |
| {
 | |
|     result.tv_sec = a.tv_sec - b.tv_sec;
 | |
|     result.tv_usec = a.tv_usec - b.tv_usec;
 | |
|     if (result.tv_usec < 0) {
 | |
|         --result.tv_sec;
 | |
|         result.tv_usec += 1'000'000;
 | |
|     }
 | |
| }
 | |
| 
 | |
| template<typename TimevalType>
 | |
| inline void timeval_add(TimevalType const& a, TimevalType const& b, TimevalType& result)
 | |
| {
 | |
|     result.tv_sec = a.tv_sec + b.tv_sec;
 | |
|     result.tv_usec = a.tv_usec + b.tv_usec;
 | |
|     if (result.tv_usec >= 1'000'000) {
 | |
|         ++result.tv_sec;
 | |
|         result.tv_usec -= 1'000'000;
 | |
|     }
 | |
| }
 | |
| 
 | |
| template<typename TimespecType>
 | |
| inline void timespec_sub(TimespecType const& a, TimespecType const& b, TimespecType& result)
 | |
| {
 | |
|     result.tv_sec = a.tv_sec - b.tv_sec;
 | |
|     result.tv_nsec = a.tv_nsec - b.tv_nsec;
 | |
|     if (result.tv_nsec < 0) {
 | |
|         --result.tv_sec;
 | |
|         result.tv_nsec += 1'000'000'000;
 | |
|     }
 | |
| }
 | |
| 
 | |
| template<typename TimespecType>
 | |
| inline void timespec_add(TimespecType const& a, TimespecType const& b, TimespecType& result)
 | |
| {
 | |
|     result.tv_sec = a.tv_sec + b.tv_sec;
 | |
|     result.tv_nsec = a.tv_nsec + b.tv_nsec;
 | |
|     if (result.tv_nsec >= 1000'000'000) {
 | |
|         ++result.tv_sec;
 | |
|         result.tv_nsec -= 1000'000'000;
 | |
|     }
 | |
| }
 | |
| 
 | |
| template<typename TimespecType, typename TimevalType>
 | |
| inline void timespec_add_timeval(TimespecType const& a, TimevalType const& b, TimespecType& result)
 | |
| {
 | |
|     result.tv_sec = a.tv_sec + b.tv_sec;
 | |
|     result.tv_nsec = a.tv_nsec + b.tv_usec * 1000;
 | |
|     if (result.tv_nsec >= 1000'000'000) {
 | |
|         ++result.tv_sec;
 | |
|         result.tv_nsec -= 1000'000'000;
 | |
|     }
 | |
| }
 | |
| 
 | |
| template<typename TimevalType, typename TimespecType>
 | |
| inline void timeval_to_timespec(TimevalType const& tv, TimespecType& ts)
 | |
| {
 | |
|     ts.tv_sec = tv.tv_sec;
 | |
|     ts.tv_nsec = tv.tv_usec * 1000;
 | |
| }
 | |
| 
 | |
| template<typename TimespecType, typename TimevalType>
 | |
| inline void timespec_to_timeval(TimespecType const& ts, TimevalType& tv)
 | |
| {
 | |
|     tv.tv_sec = ts.tv_sec;
 | |
|     tv.tv_usec = ts.tv_nsec / 1000;
 | |
| }
 | |
| 
 | |
| // To use these, add a ``using namespace AK::TimeLiterals`` at block or file scope
 | |
| namespace TimeLiterals {
 | |
| 
 | |
| constexpr Duration operator""_ns(unsigned long long nanoseconds) { return Duration::from_nanoseconds(static_cast<i64>(nanoseconds)); }
 | |
| constexpr Duration operator""_us(unsigned long long microseconds) { return Duration::from_microseconds(static_cast<i64>(microseconds)); }
 | |
| constexpr Duration operator""_ms(unsigned long long milliseconds) { return Duration::from_milliseconds(static_cast<i64>(milliseconds)); }
 | |
| constexpr Duration operator""_sec(unsigned long long seconds) { return Duration::from_seconds(static_cast<i64>(seconds)); }
 | |
| 
 | |
| }
 | |
| 
 | |
| }
 | |
| 
 | |
| #if USING_AK_GLOBALLY
 | |
| using AK::day_of_week;
 | |
| using AK::day_of_year;
 | |
| using AK::days_in_month;
 | |
| using AK::days_in_year;
 | |
| using AK::days_since_epoch;
 | |
| using AK::Duration;
 | |
| using AK::is_leap_year;
 | |
| using AK::MonotonicTime;
 | |
| using AK::seconds_since_epoch_to_year;
 | |
| using AK::timespec_add;
 | |
| using AK::timespec_add_timeval;
 | |
| using AK::timespec_sub;
 | |
| using AK::timespec_to_timeval;
 | |
| using AK::timeval_add;
 | |
| using AK::timeval_sub;
 | |
| using AK::timeval_to_timespec;
 | |
| using AK::UnixDateTime;
 | |
| using AK::years_to_days_since_epoch;
 | |
| #endif
 | 
