mirror of
https://github.com/RGBCube/serenity
synced 2025-05-31 08:58:11 +00:00

By having a separate list of constructors for the kernel heap code, we can properly use constructors without re-running them after the heap was already initialized. This solves some problems where values were wiped out because they were overwritten by running their constructors later in the initialization process.
169 lines
5.5 KiB
C++
169 lines
5.5 KiB
C++
/*
|
|
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <AK/Assertions.h>
|
|
#include <AK/Memory.h>
|
|
#include <Kernel/Heap/SlabAllocator.h>
|
|
#include <Kernel/Heap/kmalloc.h>
|
|
#include <Kernel/SpinLock.h>
|
|
#include <Kernel/VM/Region.h>
|
|
|
|
#define SANITIZE_SLABS
|
|
|
|
namespace Kernel {
|
|
|
|
template<size_t templated_slab_size>
|
|
class SlabAllocator {
|
|
public:
|
|
SlabAllocator() {}
|
|
|
|
void init(size_t size)
|
|
{
|
|
m_base = kmalloc_eternal(size);
|
|
m_end = (u8*)m_base + size;
|
|
FreeSlab* slabs = (FreeSlab*)m_base;
|
|
size_t slab_count = size / templated_slab_size;
|
|
for (size_t i = 1; i < slab_count; ++i) {
|
|
slabs[i].next = &slabs[i - 1];
|
|
}
|
|
slabs[0].next = nullptr;
|
|
m_freelist = &slabs[slab_count - 1];
|
|
m_num_allocated.store(0, AK::MemoryOrder::memory_order_release);
|
|
m_num_free.store(slab_count, AK::MemoryOrder::memory_order_release);
|
|
}
|
|
|
|
constexpr size_t slab_size() const { return templated_slab_size; }
|
|
|
|
void* alloc()
|
|
{
|
|
ScopedSpinLock lock(m_lock);
|
|
if (!m_freelist)
|
|
return kmalloc(slab_size());
|
|
ASSERT(m_freelist);
|
|
void* ptr = m_freelist;
|
|
m_freelist = m_freelist->next;
|
|
m_num_allocated.fetch_add(1, AK::MemoryOrder::memory_order_acq_rel);
|
|
m_num_free.fetch_sub(1, AK::MemoryOrder::memory_order_acq_rel);
|
|
#ifdef SANITIZE_SLABS
|
|
memset(ptr, SLAB_ALLOC_SCRUB_BYTE, slab_size());
|
|
#endif
|
|
return ptr;
|
|
}
|
|
|
|
void dealloc(void* ptr)
|
|
{
|
|
ScopedSpinLock lock(m_lock);
|
|
ASSERT(ptr);
|
|
if (ptr < m_base || ptr >= m_end) {
|
|
kfree(ptr);
|
|
return;
|
|
}
|
|
((FreeSlab*)ptr)->next = m_freelist;
|
|
#ifdef SANITIZE_SLABS
|
|
if (slab_size() > sizeof(FreeSlab*))
|
|
memset(((FreeSlab*)ptr)->padding, SLAB_DEALLOC_SCRUB_BYTE, sizeof(FreeSlab::padding));
|
|
#endif
|
|
m_freelist = (FreeSlab*)ptr;
|
|
m_num_allocated.fetch_sub(1, AK::MemoryOrder::memory_order_acq_rel);
|
|
m_num_free.fetch_add(1, AK::MemoryOrder::memory_order_acq_rel);
|
|
}
|
|
|
|
size_t num_allocated() const { return m_num_allocated.load(AK::MemoryOrder::memory_order_consume); }
|
|
size_t num_free() const { return m_num_free.load(AK::MemoryOrder::memory_order_consume); }
|
|
|
|
private:
|
|
struct FreeSlab {
|
|
FreeSlab* next { nullptr };
|
|
char padding[templated_slab_size - sizeof(FreeSlab*)];
|
|
};
|
|
|
|
FreeSlab* m_freelist { nullptr };
|
|
Atomic<size_t> m_num_allocated;
|
|
Atomic<size_t> m_num_free;
|
|
void* m_base { nullptr };
|
|
void* m_end { nullptr };
|
|
SpinLock<u32> m_lock;
|
|
|
|
static_assert(sizeof(FreeSlab) == templated_slab_size);
|
|
};
|
|
|
|
static SlabAllocator<16> s_slab_allocator_16;
|
|
static SlabAllocator<32> s_slab_allocator_32;
|
|
static SlabAllocator<64> s_slab_allocator_64;
|
|
static SlabAllocator<128> s_slab_allocator_128;
|
|
|
|
static_assert(sizeof(Region) <= s_slab_allocator_64.slab_size());
|
|
|
|
template<typename Callback>
|
|
void for_each_allocator(Callback callback)
|
|
{
|
|
callback(s_slab_allocator_16);
|
|
callback(s_slab_allocator_32);
|
|
callback(s_slab_allocator_64);
|
|
}
|
|
|
|
void slab_alloc_init()
|
|
{
|
|
s_slab_allocator_16.init(128 * KB);
|
|
s_slab_allocator_32.init(128 * KB);
|
|
s_slab_allocator_64.init(512 * KB);
|
|
s_slab_allocator_128.init(512 * KB);
|
|
}
|
|
|
|
void* slab_alloc(size_t slab_size)
|
|
{
|
|
if (slab_size <= 16)
|
|
return s_slab_allocator_16.alloc();
|
|
if (slab_size <= 32)
|
|
return s_slab_allocator_32.alloc();
|
|
if (slab_size <= 64)
|
|
return s_slab_allocator_64.alloc();
|
|
if (slab_size <= 128)
|
|
return s_slab_allocator_128.alloc();
|
|
ASSERT_NOT_REACHED();
|
|
}
|
|
|
|
void slab_dealloc(void* ptr, size_t slab_size)
|
|
{
|
|
if (slab_size <= 16)
|
|
return s_slab_allocator_16.dealloc(ptr);
|
|
if (slab_size <= 32)
|
|
return s_slab_allocator_32.dealloc(ptr);
|
|
if (slab_size <= 64)
|
|
return s_slab_allocator_64.dealloc(ptr);
|
|
if (slab_size <= 128)
|
|
return s_slab_allocator_128.dealloc(ptr);
|
|
ASSERT_NOT_REACHED();
|
|
}
|
|
|
|
void slab_alloc_stats(Function<void(size_t slab_size, size_t allocated, size_t free)> callback)
|
|
{
|
|
for_each_allocator([&](auto& allocator) {
|
|
callback(allocator.slab_size(), allocator.num_allocated(), allocator.num_free());
|
|
});
|
|
}
|
|
|
|
}
|