1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-21 00:25:06 +00:00
serenity/Userland/Games/2048/Game.cpp
Dmitrii Ubskii 94569e52f5 2048: Minimize player score when selecting worst tile
Maximizing the board population still takes priority, but if there are
tile generator "moves" that result in equivalent board population after
a player move, the one with the lowest score is selected.
2021-05-18 08:51:56 +01:00

293 lines
7.5 KiB
C++

/*
* Copyright (c) 2020, the SerenityOS developers.
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include "Game.h"
#include <AK/Array.h>
#include <AK/NumericLimits.h>
#include <AK/String.h>
#include <stdlib.h>
Game::Game(size_t grid_size, size_t target_tile, bool evil_ai)
: m_grid_size(grid_size)
, m_evil_ai(evil_ai)
{
if (target_tile == 0)
m_target_tile = 2048;
else if ((target_tile & (target_tile - 1)) != 0)
m_target_tile = 1 << max_power_for_board(grid_size);
else
m_target_tile = target_tile;
m_board.resize(grid_size);
for (auto& row : m_board) {
row.ensure_capacity(grid_size);
for (size_t i = 0; i < grid_size; i++)
row.append(0);
}
add_tile();
add_tile();
}
void Game::add_random_tile()
{
int row;
int column;
do {
row = rand() % m_grid_size;
column = rand() % m_grid_size;
} while (m_board[row][column] != 0);
size_t value = rand() < RAND_MAX * 0.9 ? 2 : 4;
m_board[row][column] = value;
}
static Game::Board transpose(const Game::Board& board)
{
Vector<Vector<u32>> new_board;
auto result_row_count = board[0].size();
auto result_column_count = board.size();
new_board.resize(result_row_count);
for (size_t i = 0; i < board.size(); ++i) {
auto& row = new_board[i];
row.clear_with_capacity();
row.ensure_capacity(result_column_count);
for (auto& entry : board) {
row.append(entry[i]);
}
}
return new_board;
}
static Game::Board reverse(const Game::Board& board)
{
auto new_board = board;
for (auto& row : new_board) {
for (size_t i = 0; i < row.size() / 2; ++i)
swap(row[i], row[row.size() - i - 1]);
}
return new_board;
}
static Vector<u32> slide_row(const Vector<u32>& row, size_t& successful_merge_score)
{
if (row.size() < 2)
return row;
auto x = row[0];
auto y = row[1];
auto result = row;
result.take_first();
if (x == 0) {
result = slide_row(result, successful_merge_score);
result.append(0);
return result;
}
if (y == 0) {
result[0] = x;
result = slide_row(result, successful_merge_score);
result.append(0);
return result;
}
if (x == y) {
result.take_first();
result = slide_row(result, successful_merge_score);
result.append(0);
result.prepend(x + x);
successful_merge_score += x * 2;
return result;
}
result = slide_row(result, successful_merge_score);
result.prepend(x);
return result;
}
static Game::Board slide_left(const Game::Board& board, size_t& successful_merge_score)
{
Vector<Vector<u32>> new_board;
for (auto& row : board)
new_board.append(slide_row(row, successful_merge_score));
return new_board;
}
static bool is_complete(const Game::Board& board, size_t target)
{
for (auto& row : board) {
if (row.contains_slow(target))
return true;
}
return false;
}
static bool has_no_neighbors(const Span<const u32>& row)
{
if (row.size() < 2)
return true;
auto x = row[0];
auto y = row[1];
if (x == y)
return false;
return has_no_neighbors(row.slice(1, row.size() - 1));
};
static bool is_stalled(const Game::Board& board)
{
static auto stalled = [](auto& row) {
return !row.contains_slow(0) && has_no_neighbors(row.span());
};
for (auto& row : board)
if (!stalled(row))
return false;
for (auto& row : transpose(board))
if (!stalled(row))
return false;
return true;
}
static size_t get_number_of_free_cells(const Game::Board& board)
{
size_t accumulator = 0;
for (auto& row : board) {
for (auto& cell : row)
accumulator += cell == 0;
}
return accumulator;
}
bool Game::slide_tiles(Direction direction)
{
size_t successful_merge_score = 0;
Board new_board;
switch (direction) {
case Direction::Left:
new_board = slide_left(m_board, successful_merge_score);
break;
case Direction::Right:
new_board = reverse(slide_left(reverse(m_board), successful_merge_score));
break;
case Direction::Up:
new_board = transpose(slide_left(transpose(m_board), successful_merge_score));
break;
case Direction::Down:
new_board = transpose(reverse(slide_left(reverse(transpose(m_board)), successful_merge_score)));
break;
}
bool moved = new_board != m_board;
if (moved) {
m_board = new_board;
m_score += successful_merge_score;
}
return moved;
}
Game::MoveOutcome Game::attempt_move(Direction direction)
{
bool moved = slide_tiles(direction);
if (moved) {
m_turns++;
add_tile();
}
if (is_complete(m_board, m_target_tile))
return MoveOutcome::Won;
if (is_stalled(m_board))
return MoveOutcome::GameOver;
if (moved)
return MoveOutcome::OK;
return MoveOutcome::InvalidMove;
}
void Game::add_evil_tile()
{
size_t worst_row = 0;
size_t worst_column = 0;
u32 worst_value = 2;
size_t most_free_cells = NumericLimits<size_t>::max();
size_t worst_score = NumericLimits<size_t>::max();
for (size_t row = 0; row < m_grid_size; row++) {
for (size_t column = 0; column < m_grid_size; column++) {
if (m_board[row][column] != 0)
continue;
for (u32 value : Array { 2, 4 }) {
Game saved_state = *this;
saved_state.m_board[row][column] = value;
if (is_stalled(saved_state.m_board)) {
// We can stall the board now, instant game over.
worst_row = row;
worst_column = column;
worst_value = value;
goto found_worst_tile;
}
// These are the best outcome and score the player can achieve in one move.
// We want this to be as low as possible.
size_t best_outcome = 0;
size_t best_score = 0;
for (auto direction : Array { Direction::Down, Direction::Left, Direction::Right, Direction::Up }) {
Game moved_state = saved_state;
bool moved = moved_state.slide_tiles(direction);
if (!moved) // invalid move
continue;
best_outcome = max(best_outcome, get_number_of_free_cells(moved_state.board()));
best_score = max(best_score, moved_state.score());
}
// We already know a worse cell placement; discard.
if (best_outcome > most_free_cells)
continue;
// This tile is the same as the worst we know in terms of board population,
// but the player can achieve the same or better score; discard.
if (best_outcome == most_free_cells && best_score >= worst_score)
continue;
worst_row = row;
worst_column = column;
worst_value = value;
most_free_cells = best_outcome;
worst_score = best_score;
}
}
}
found_worst_tile:
m_board[worst_row][worst_column] = worst_value;
}
u32 Game::largest_tile() const
{
u32 tile = 0;
for (auto& row : board()) {
for (auto& cell : row)
tile = max(tile, cell);
}
return tile;
}