mirror of
https://github.com/RGBCube/serenity
synced 2025-05-21 00:25:06 +00:00

Maximizing the board population still takes priority, but if there are tile generator "moves" that result in equivalent board population after a player move, the one with the lowest score is selected.
293 lines
7.5 KiB
C++
293 lines
7.5 KiB
C++
/*
|
|
* Copyright (c) 2020, the SerenityOS developers.
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include "Game.h"
|
|
#include <AK/Array.h>
|
|
#include <AK/NumericLimits.h>
|
|
#include <AK/String.h>
|
|
#include <stdlib.h>
|
|
|
|
Game::Game(size_t grid_size, size_t target_tile, bool evil_ai)
|
|
: m_grid_size(grid_size)
|
|
, m_evil_ai(evil_ai)
|
|
{
|
|
if (target_tile == 0)
|
|
m_target_tile = 2048;
|
|
else if ((target_tile & (target_tile - 1)) != 0)
|
|
m_target_tile = 1 << max_power_for_board(grid_size);
|
|
else
|
|
m_target_tile = target_tile;
|
|
|
|
m_board.resize(grid_size);
|
|
for (auto& row : m_board) {
|
|
row.ensure_capacity(grid_size);
|
|
for (size_t i = 0; i < grid_size; i++)
|
|
row.append(0);
|
|
}
|
|
|
|
add_tile();
|
|
add_tile();
|
|
}
|
|
|
|
void Game::add_random_tile()
|
|
{
|
|
int row;
|
|
int column;
|
|
do {
|
|
row = rand() % m_grid_size;
|
|
column = rand() % m_grid_size;
|
|
} while (m_board[row][column] != 0);
|
|
|
|
size_t value = rand() < RAND_MAX * 0.9 ? 2 : 4;
|
|
m_board[row][column] = value;
|
|
}
|
|
|
|
static Game::Board transpose(const Game::Board& board)
|
|
{
|
|
Vector<Vector<u32>> new_board;
|
|
auto result_row_count = board[0].size();
|
|
auto result_column_count = board.size();
|
|
|
|
new_board.resize(result_row_count);
|
|
|
|
for (size_t i = 0; i < board.size(); ++i) {
|
|
auto& row = new_board[i];
|
|
row.clear_with_capacity();
|
|
row.ensure_capacity(result_column_count);
|
|
for (auto& entry : board) {
|
|
row.append(entry[i]);
|
|
}
|
|
}
|
|
|
|
return new_board;
|
|
}
|
|
|
|
static Game::Board reverse(const Game::Board& board)
|
|
{
|
|
auto new_board = board;
|
|
for (auto& row : new_board) {
|
|
for (size_t i = 0; i < row.size() / 2; ++i)
|
|
swap(row[i], row[row.size() - i - 1]);
|
|
}
|
|
|
|
return new_board;
|
|
}
|
|
|
|
static Vector<u32> slide_row(const Vector<u32>& row, size_t& successful_merge_score)
|
|
{
|
|
if (row.size() < 2)
|
|
return row;
|
|
|
|
auto x = row[0];
|
|
auto y = row[1];
|
|
|
|
auto result = row;
|
|
result.take_first();
|
|
|
|
if (x == 0) {
|
|
result = slide_row(result, successful_merge_score);
|
|
result.append(0);
|
|
return result;
|
|
}
|
|
|
|
if (y == 0) {
|
|
result[0] = x;
|
|
result = slide_row(result, successful_merge_score);
|
|
result.append(0);
|
|
return result;
|
|
}
|
|
|
|
if (x == y) {
|
|
result.take_first();
|
|
result = slide_row(result, successful_merge_score);
|
|
result.append(0);
|
|
result.prepend(x + x);
|
|
successful_merge_score += x * 2;
|
|
return result;
|
|
}
|
|
|
|
result = slide_row(result, successful_merge_score);
|
|
result.prepend(x);
|
|
return result;
|
|
}
|
|
|
|
static Game::Board slide_left(const Game::Board& board, size_t& successful_merge_score)
|
|
{
|
|
Vector<Vector<u32>> new_board;
|
|
for (auto& row : board)
|
|
new_board.append(slide_row(row, successful_merge_score));
|
|
|
|
return new_board;
|
|
}
|
|
|
|
static bool is_complete(const Game::Board& board, size_t target)
|
|
{
|
|
for (auto& row : board) {
|
|
if (row.contains_slow(target))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool has_no_neighbors(const Span<const u32>& row)
|
|
{
|
|
if (row.size() < 2)
|
|
return true;
|
|
|
|
auto x = row[0];
|
|
auto y = row[1];
|
|
|
|
if (x == y)
|
|
return false;
|
|
|
|
return has_no_neighbors(row.slice(1, row.size() - 1));
|
|
};
|
|
|
|
static bool is_stalled(const Game::Board& board)
|
|
{
|
|
static auto stalled = [](auto& row) {
|
|
return !row.contains_slow(0) && has_no_neighbors(row.span());
|
|
};
|
|
|
|
for (auto& row : board)
|
|
if (!stalled(row))
|
|
return false;
|
|
|
|
for (auto& row : transpose(board))
|
|
if (!stalled(row))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static size_t get_number_of_free_cells(const Game::Board& board)
|
|
{
|
|
size_t accumulator = 0;
|
|
for (auto& row : board) {
|
|
for (auto& cell : row)
|
|
accumulator += cell == 0;
|
|
}
|
|
return accumulator;
|
|
}
|
|
|
|
bool Game::slide_tiles(Direction direction)
|
|
{
|
|
size_t successful_merge_score = 0;
|
|
Board new_board;
|
|
|
|
switch (direction) {
|
|
case Direction::Left:
|
|
new_board = slide_left(m_board, successful_merge_score);
|
|
break;
|
|
case Direction::Right:
|
|
new_board = reverse(slide_left(reverse(m_board), successful_merge_score));
|
|
break;
|
|
case Direction::Up:
|
|
new_board = transpose(slide_left(transpose(m_board), successful_merge_score));
|
|
break;
|
|
case Direction::Down:
|
|
new_board = transpose(reverse(slide_left(reverse(transpose(m_board)), successful_merge_score)));
|
|
break;
|
|
}
|
|
|
|
bool moved = new_board != m_board;
|
|
if (moved) {
|
|
m_board = new_board;
|
|
m_score += successful_merge_score;
|
|
}
|
|
|
|
return moved;
|
|
}
|
|
|
|
Game::MoveOutcome Game::attempt_move(Direction direction)
|
|
{
|
|
bool moved = slide_tiles(direction);
|
|
if (moved) {
|
|
m_turns++;
|
|
add_tile();
|
|
}
|
|
|
|
if (is_complete(m_board, m_target_tile))
|
|
return MoveOutcome::Won;
|
|
if (is_stalled(m_board))
|
|
return MoveOutcome::GameOver;
|
|
if (moved)
|
|
return MoveOutcome::OK;
|
|
return MoveOutcome::InvalidMove;
|
|
}
|
|
|
|
void Game::add_evil_tile()
|
|
{
|
|
size_t worst_row = 0;
|
|
size_t worst_column = 0;
|
|
u32 worst_value = 2;
|
|
|
|
size_t most_free_cells = NumericLimits<size_t>::max();
|
|
size_t worst_score = NumericLimits<size_t>::max();
|
|
|
|
for (size_t row = 0; row < m_grid_size; row++) {
|
|
for (size_t column = 0; column < m_grid_size; column++) {
|
|
if (m_board[row][column] != 0)
|
|
continue;
|
|
|
|
for (u32 value : Array { 2, 4 }) {
|
|
Game saved_state = *this;
|
|
saved_state.m_board[row][column] = value;
|
|
|
|
if (is_stalled(saved_state.m_board)) {
|
|
// We can stall the board now, instant game over.
|
|
worst_row = row;
|
|
worst_column = column;
|
|
worst_value = value;
|
|
|
|
goto found_worst_tile;
|
|
}
|
|
|
|
// These are the best outcome and score the player can achieve in one move.
|
|
// We want this to be as low as possible.
|
|
size_t best_outcome = 0;
|
|
size_t best_score = 0;
|
|
for (auto direction : Array { Direction::Down, Direction::Left, Direction::Right, Direction::Up }) {
|
|
Game moved_state = saved_state;
|
|
bool moved = moved_state.slide_tiles(direction);
|
|
if (!moved) // invalid move
|
|
continue;
|
|
best_outcome = max(best_outcome, get_number_of_free_cells(moved_state.board()));
|
|
best_score = max(best_score, moved_state.score());
|
|
}
|
|
|
|
// We already know a worse cell placement; discard.
|
|
if (best_outcome > most_free_cells)
|
|
continue;
|
|
|
|
// This tile is the same as the worst we know in terms of board population,
|
|
// but the player can achieve the same or better score; discard.
|
|
if (best_outcome == most_free_cells && best_score >= worst_score)
|
|
continue;
|
|
|
|
worst_row = row;
|
|
worst_column = column;
|
|
worst_value = value;
|
|
|
|
most_free_cells = best_outcome;
|
|
worst_score = best_score;
|
|
}
|
|
}
|
|
}
|
|
found_worst_tile:
|
|
m_board[worst_row][worst_column] = worst_value;
|
|
}
|
|
|
|
u32 Game::largest_tile() const
|
|
{
|
|
u32 tile = 0;
|
|
for (auto& row : board()) {
|
|
for (auto& cell : row)
|
|
tile = max(tile, cell);
|
|
}
|
|
return tile;
|
|
}
|