1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-25 22:05:07 +00:00
serenity/Userland/Libraries/LibCrypto/PK/RSA.cpp
2021-01-12 12:17:46 +01:00

329 lines
10 KiB
C++

/*
* Copyright (c) 2020, Ali Mohammad Pur <ali.mpfard@gmail.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/Random.h>
#include <LibCrypto/ASN1/ASN1.h>
#include <LibCrypto/ASN1/DER.h>
#include <LibCrypto/ASN1/PEM.h>
#include <LibCrypto/PK/RSA.h>
namespace Crypto {
namespace PK {
RSA::KeyPairType RSA::parse_rsa_key(ReadonlyBytes in)
{
// we are going to assign to at least one of these
KeyPairType keypair;
// TODO: move ASN parsing logic out
u64 t, x, y, z, tmp_oid[16];
u8 tmp_buf[4096] { 0 };
UnsignedBigInteger n, e, d;
ASN1::List pubkey_hash_oid[2], pubkey[2];
ASN1::set(pubkey_hash_oid[0], ASN1::Kind::ObjectIdentifier, tmp_oid, sizeof(tmp_oid) / sizeof(tmp_oid[0]));
ASN1::set(pubkey_hash_oid[1], ASN1::Kind::Null, nullptr, 0);
// DER is weird in that it stores pubkeys as bitstrings
// we must first extract that crap
ASN1::set(pubkey[0], ASN1::Kind::Sequence, &pubkey_hash_oid, 2);
ASN1::set(pubkey[1], ASN1::Kind::Null, nullptr, 0);
dbgln("we were offered {} bytes of input", in.size());
if (der_decode_sequence(in.data(), in.size(), pubkey, 2)) {
// yay, now we have to reassemble the bitstring to a bytestring
t = 0;
y = 0;
z = 0;
x = 0;
for (; x < pubkey[1].size; ++x) {
y = (y << 1) | tmp_buf[x];
if (++z == 8) {
tmp_buf[t++] = (u8)y;
y = 0;
z = 0;
}
}
// now the buffer is correct (Sequence { Integer, Integer })
if (!der_decode_sequence_many<2>(tmp_buf, t,
ASN1::Kind::Integer, 1, &n,
ASN1::Kind::Integer, 1, &e)) {
// something was fucked up
dbgln("bad pubkey: e={} n={}", e, n);
return keypair;
}
// correct public key
keypair.public_key.set(n, e);
return keypair;
}
// could be a private key
if (!der_decode_sequence_many<1>(in.data(), in.size(),
ASN1::Kind::Integer, 1, &n)) {
// that's no key
// that's a death star
dbgln("that's a death star");
return keypair;
}
if (n == 0) {
// it is a private key
UnsignedBigInteger zero;
if (!der_decode_sequence_many<4>(in.data(), in.size(),
ASN1::Kind::Integer, 1, &zero,
ASN1::Kind::Integer, 1, &n,
ASN1::Kind::Integer, 1, &e,
ASN1::Kind::Integer, 1, &d)) {
dbgln("bad privkey n={} e={} d={}", n, e, d);
return keypair;
}
keypair.private_key.set(n, d, e);
return keypair;
}
if (n == 1) {
// multiprime key, we don't know how to deal with this
dbgln("Unsupported key type");
return keypair;
}
// it's a broken public key
keypair.public_key.set(n, 65537);
return keypair;
}
void RSA::encrypt(ReadonlyBytes in, Bytes& out)
{
#ifdef CRYPTO_DEBUG
dbg() << "in size: " << in.size();
#endif
auto in_integer = UnsignedBigInteger::import_data(in.data(), in.size());
if (!(in_integer < m_public_key.modulus())) {
dbgln("value too large for key");
out = {};
return;
}
auto exp = NumberTheory::ModularPower(in_integer, m_public_key.public_exponent(), m_public_key.modulus());
auto size = exp.export_data(out);
auto outsize = out.size();
if (size != outsize) {
dbgln("POSSIBLE RSA BUG!!! Size mismatch: {} requested but {} bytes generated", outsize, size);
out = out.slice(outsize - size, size);
}
}
void RSA::decrypt(ReadonlyBytes in, Bytes& out)
{
// FIXME: Actually use the private key properly
auto in_integer = UnsignedBigInteger::import_data(in.data(), in.size());
auto exp = NumberTheory::ModularPower(in_integer, m_private_key.private_exponent(), m_private_key.modulus());
auto size = exp.export_data(out);
auto align = m_private_key.length();
auto aligned_size = (size + align - 1) / align * align;
for (auto i = size; i < aligned_size; ++i)
out[out.size() - i - 1] = 0; // zero the non-aligned values
out = out.slice(out.size() - aligned_size, aligned_size);
}
void RSA::sign(ReadonlyBytes in, Bytes& out)
{
auto in_integer = UnsignedBigInteger::import_data(in.data(), in.size());
auto exp = NumberTheory::ModularPower(in_integer, m_private_key.private_exponent(), m_private_key.modulus());
auto size = exp.export_data(out);
out = out.slice(out.size() - size, size);
}
void RSA::verify(ReadonlyBytes in, Bytes& out)
{
auto in_integer = UnsignedBigInteger::import_data(in.data(), in.size());
auto exp = NumberTheory::ModularPower(in_integer, m_public_key.public_exponent(), m_public_key.modulus());
auto size = exp.export_data(out);
out = out.slice(out.size() - size, size);
}
void RSA::import_private_key(ReadonlyBytes bytes, bool pem)
{
ByteBuffer buffer;
if (pem) {
buffer = decode_pem(bytes);
bytes = buffer;
}
auto key = parse_rsa_key(bytes);
if (!key.private_key.length()) {
dbgln("We expected to see a private key, but we found none");
ASSERT_NOT_REACHED();
}
m_private_key = key.private_key;
}
void RSA::import_public_key(ReadonlyBytes bytes, bool pem)
{
ByteBuffer buffer;
if (pem) {
buffer = decode_pem(bytes);
bytes = buffer;
}
auto key = parse_rsa_key(bytes);
if (!key.public_key.length()) {
dbgln("We expected to see a public key, but we found none");
ASSERT_NOT_REACHED();
}
m_public_key = key.public_key;
}
template<typename HashFunction>
void RSA_EMSA_PSS<HashFunction>::sign(ReadonlyBytes in, Bytes& out)
{
// -- encode via EMSA_PSS
auto mod_bits = m_rsa.private_key().modulus().trimmed_length() * sizeof(u32) * 8;
u8 EM[mod_bits];
auto EM_buf = Bytes { EM, mod_bits };
m_emsa_pss.encode(in, EM_buf, mod_bits - 1);
// -- sign via RSA
m_rsa.sign(EM_buf, out);
}
template<typename HashFunction>
VerificationConsistency RSA_EMSA_PSS<HashFunction>::verify(ReadonlyBytes in)
{
auto mod_bytes = m_rsa.public_key().modulus().trimmed_length() * sizeof(u32);
if (in.size() != mod_bytes)
return VerificationConsistency::Inconsistent;
u8 EM[mod_bytes];
auto EM_buf = Bytes { EM, mod_bytes };
// -- verify via RSA
m_rsa.verify(in, EM_buf);
// -- verify via EMSA_PSS
return m_emsa_pss.verify(in, EM, mod_bytes * 8 - 1);
}
void RSA_PKCS1_EME::encrypt(ReadonlyBytes in, Bytes& out)
{
auto mod_len = (m_public_key.modulus().trimmed_length() * sizeof(u32) * 8 + 7) / 8;
#ifdef CRYPTO_DEBUG
dbg() << "key size: " << mod_len;
#endif
if (in.size() > mod_len - 11) {
dbgln("message too long :(");
out = out.trim(0);
return;
}
if (out.size() < mod_len) {
dbgln("output buffer too small");
return;
}
auto ps_length = mod_len - in.size() - 3;
u8 ps[ps_length];
// FIXME: Without this assertion, GCC refuses to compile due to a memcpy overflow(!?)
ASSERT(ps_length < 16384);
AK::fill_with_random(ps, ps_length);
// since arc4random can create zeros (shocking!)
// we have to go through and un-zero the zeros
for (size_t i = 0; i < ps_length; ++i)
while (!ps[i])
AK::fill_with_random(ps + i, 1);
u8 paddings[] { 0x00, 0x02 };
out.overwrite(0, paddings, 2);
out.overwrite(2, ps, ps_length);
out.overwrite(2 + ps_length, paddings, 1);
out.overwrite(3 + ps_length, in.data(), in.size());
out = out.trim(3 + ps_length + in.size()); // should be a single block
#ifdef CRYPTO_DEBUG
dbg() << "padded output size: " << 3 + ps_length + in.size() << " buffer size: " << out.size();
#endif
RSA::encrypt(out, out);
}
void RSA_PKCS1_EME::decrypt(ReadonlyBytes in, Bytes& out)
{
auto mod_len = (m_public_key.modulus().trimmed_length() * sizeof(u32) * 8 + 7) / 8;
if (in.size() != mod_len) {
dbgln("decryption error: wrong amount of data: {}", in.size());
out = out.trim(0);
return;
}
RSA::decrypt(in, out);
if (out.size() < RSA::output_size()) {
dbgln("decryption error: not enough data after decryption: {}", out.size());
out = out.trim(0);
return;
}
if (out[0] != 0x00) {
dbgln("invalid padding byte 0 : {}", out[0]);
return;
}
if (out[1] != 0x02) {
dbgln("invalid padding byte 1 : {}", out[1]);
return;
}
size_t offset = 2;
while (offset < out.size() && out[offset])
++offset;
if (offset == out.size()) {
dbgln("garbage data, no zero to split padding");
return;
}
++offset;
if (offset - 3 < 8) {
dbgln("PS too small");
return;
}
out = out.slice(offset, out.size() - offset);
}
void RSA_PKCS1_EME::sign(ReadonlyBytes, Bytes&)
{
dbgln("FIXME: RSA_PKCS_EME::sign");
}
void RSA_PKCS1_EME::verify(ReadonlyBytes, Bytes&)
{
dbgln("FIXME: RSA_PKCS_EME::verify");
}
}
}