mirror of
				https://github.com/RGBCube/serenity
				synced 2025-10-31 01:52:43 +00:00 
			
		
		
		
	 3d6b838df3
			
		
	
	
		3d6b838df3
		
	
	
	
	
		
			
			The implemented cloning mechanism should be sound: - If a PartitionTable is passed a File with ShouldCloseFileDescriptor::Yes, then it will keep it alive until the PartitionTable is destroyed. - If a PartitionTable is passed a File with ShouldCloseFileDescriptor::No, then the caller has to ensure that the file descriptor remains alive. If the caller is EBRPartitionTable, the same consideration holds. If the caller is PartitionEditor::PartitionModel, this is satisfied by keeping an OwnPtr<Core::File> around which is the originally opened file. Therefore, we never leak any fds, and never access a Core::File or fd after destroying it.
		
			
				
	
	
		
			123 lines
		
	
	
	
		
			3.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			123 lines
		
	
	
	
		
			3.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2020-2022, Liav A. <liavalb@hotmail.co.il>
 | |
|  *
 | |
|  * SPDX-License-Identifier: BSD-2-Clause
 | |
|  */
 | |
| 
 | |
| #include <AK/Debug.h>
 | |
| #include <LibPartition/GUIDPartitionTable.h>
 | |
| 
 | |
| namespace Partition {
 | |
| 
 | |
| #define GPT_SIGNATURE2 0x54524150
 | |
| #define GPT_SIGNATURE 0x20494645
 | |
| 
 | |
| struct [[gnu::packed]] GPTPartitionEntry {
 | |
|     u8 partition_guid[16];
 | |
|     u8 unique_guid[16];
 | |
| 
 | |
|     u64 first_lba;
 | |
|     u64 last_lba;
 | |
| 
 | |
|     u64 attributes;
 | |
|     char partition_name[72];
 | |
| };
 | |
| 
 | |
| struct [[gnu::packed]] GUIDPartitionHeader {
 | |
|     u32 sig[2];
 | |
|     u32 revision;
 | |
|     u32 header_size;
 | |
|     u32 crc32_header;
 | |
|     u32 reserved;
 | |
|     u64 current_lba;
 | |
|     u64 backup_lba;
 | |
| 
 | |
|     u64 first_usable_lba;
 | |
|     u64 last_usable_lba;
 | |
| 
 | |
|     u64 disk_guid1[2];
 | |
| 
 | |
|     u64 partition_array_start_lba;
 | |
| 
 | |
|     u32 entries_count;
 | |
|     u32 partition_entry_size;
 | |
|     u32 crc32_entries_array;
 | |
| };
 | |
| 
 | |
| ErrorOr<NonnullOwnPtr<GUIDPartitionTable>> GUIDPartitionTable::try_to_initialize(PartitionableDevice device)
 | |
| {
 | |
|     auto table = TRY(adopt_nonnull_own_or_enomem(new (nothrow) GUIDPartitionTable(move(device))));
 | |
|     if (!table->is_valid())
 | |
|         return Error::from_errno(EINVAL);
 | |
|     return table;
 | |
| }
 | |
| 
 | |
| GUIDPartitionTable::GUIDPartitionTable(PartitionableDevice device)
 | |
|     : MBRPartitionTable(move(device))
 | |
| {
 | |
|     // FIXME: Handle OOM failure here.
 | |
|     m_cached_header = ByteBuffer::create_zeroed(block_size()).release_value_but_fixme_should_propagate_errors();
 | |
|     VERIFY(partitions_count() == 0);
 | |
|     if (!initialize())
 | |
|         m_valid = false;
 | |
| }
 | |
| 
 | |
| GUIDPartitionHeader const& GUIDPartitionTable::header() const
 | |
| {
 | |
|     return *(GUIDPartitionHeader const*)m_cached_header.data();
 | |
| }
 | |
| 
 | |
| bool GUIDPartitionTable::initialize()
 | |
| {
 | |
|     VERIFY(m_cached_header.data() != nullptr);
 | |
| 
 | |
|     auto first_gpt_block = (block_size() == 512) ? 1 : 0;
 | |
| 
 | |
|     auto maybe_error = m_device.read_block(first_gpt_block, m_cached_header.bytes());
 | |
|     if (maybe_error.is_error())
 | |
|         return false;
 | |
| 
 | |
|     dbgln_if(GPT_DEBUG, "GUIDPartitionTable: signature - {:#08x} {:#08x}", header().sig[1], header().sig[0]);
 | |
| 
 | |
|     if (header().sig[0] != GPT_SIGNATURE && header().sig[1] != GPT_SIGNATURE2) {
 | |
|         dbgln("GUIDPartitionTable: bad signature {:#08x} {:#08x}", header().sig[1], header().sig[0]);
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     auto entries_buffer_result = ByteBuffer::create_zeroed(block_size());
 | |
|     if (entries_buffer_result.is_error()) {
 | |
|         dbgln("GUIDPartitionTable: not enough memory for entries buffer");
 | |
|         return false;
 | |
|     }
 | |
|     auto entries_buffer = entries_buffer_result.release_value();
 | |
|     size_t raw_byte_index = header().partition_array_start_lba * block_size();
 | |
|     for (size_t entry_index = 0; entry_index < header().entries_count; entry_index++) {
 | |
|         maybe_error = m_device.read_block(raw_byte_index / block_size(), entries_buffer.bytes());
 | |
|         if (maybe_error.is_error())
 | |
|             return false;
 | |
|         auto* entries = (GPTPartitionEntry const*)entries_buffer.data();
 | |
|         auto& entry = entries[entry_index % (block_size() / header().partition_entry_size)];
 | |
|         Array<u8, 16> partition_type {};
 | |
|         partition_type.span().overwrite(0, entry.partition_guid, partition_type.size());
 | |
| 
 | |
|         if (is_unused_entry(partition_type)) {
 | |
|             raw_byte_index += header().partition_entry_size;
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         Array<u8, 16> unique_guid {};
 | |
|         unique_guid.span().overwrite(0, entry.unique_guid, unique_guid.size());
 | |
|         dbgln("Detected GPT partition (entry={}), offset={}, limit={}", entry_index, entry.first_lba, entry.last_lba);
 | |
|         m_partitions.append({ entry.first_lba, entry.last_lba, partition_type, unique_guid, entry.attributes });
 | |
|         raw_byte_index += header().partition_entry_size;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| bool GUIDPartitionTable::is_unused_entry(Array<u8, 16> partition_type) const
 | |
| {
 | |
|     return all_of(partition_type, [](auto const octet) { return octet == 0; });
 | |
| }
 | |
| 
 | |
| }
 |