1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-19 00:35:06 +00:00
serenity/Kernel/Bus/VirtIO/Device.cpp
Liav A 1f9d3a3523 Kernel/PCI: Hold a reference to DeviceIdentifier in the Device class
There are now 2 separate classes for almost the same object type:
- EnumerableDeviceIdentifier, which is used in the enumeration code for
  all PCI host controller classes. This is allowed to be moved and
  copied, as it doesn't support ref-counting.
- DeviceIdentifier, which inherits from EnumerableDeviceIdentifier. This
  class uses ref-counting, and is not allowed to be copied. It has a
  spinlock member in its structure to allow safely executing complicated
  IO sequences on a PCI device and its space configuration.
  There's a static method that allows a quick conversion from
  EnumerableDeviceIdentifier to DeviceIdentifier while creating a
  NonnullRefPtr out of it.

The reason for doing this is for the sake of integrity and reliablity of
the system in 2 places:
- Ensure that "complicated" tasks that rely on manipulating PCI device
  registers are done in a safe manner. For example, determining a PCI
  BAR space size requires multiple read and writes to the same register,
  and if another CPU tries to do something else with our selected
  register, then the result will be a catastrophe.
- Allow the PCI API to have a united form around a shared object which
  actually holds much more data than the PCI::Address structure. This is
  fundamental if we want to do certain types of optimizations, and be
  able to support more features of the PCI bus in the foreseeable
  future.

This patch already has several implications:
- All PCI::Device(s) hold a reference to a DeviceIdentifier structure
  being given originally from the PCI::Access singleton. This means that
  all instances of DeviceIdentifier structures are located in one place,
  and all references are pointing to that location. This ensures that
  locking the operation spinlock will take effect in all the appropriate
  places.
- We no longer support adding PCI host controllers and then immediately
  allow for enumerating it with a lambda function. It was found that
  this method is extremely broken and too much complicated to work
  reliably with the new paradigm being introduced in this patch. This
  means that for Volume Management Devices (Intel VMD devices), we
  simply first enumerate the PCI bus for such devices in the storage
  code, and if we find a device, we attach it in the PCI::Access method
  which will scan for devices behind that bridge and will add new
  DeviceIdentifier(s) objects to its internal Vector. Afterwards, we
  just continue as usual with scanning for actual storage controllers,
  so we will find a corresponding NVMe controllers if there were any
  behind that VMD bridge.
2023-01-26 23:04:26 +01:00

443 lines
16 KiB
C++

/*
* Copyright (c) 2021, the SerenityOS developers.
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <Kernel/Bus/PCI/API.h>
#include <Kernel/Bus/PCI/IDs.h>
#include <Kernel/Bus/VirtIO/Console.h>
#include <Kernel/Bus/VirtIO/Device.h>
#include <Kernel/Bus/VirtIO/RNG.h>
#include <Kernel/CommandLine.h>
#include <Kernel/Sections.h>
namespace Kernel::VirtIO {
UNMAP_AFTER_INIT void detect()
{
if (kernel_command_line().disable_virtio())
return;
MUST(PCI::enumerate([&](PCI::DeviceIdentifier const& device_identifier) {
if (device_identifier.hardware_id().is_null())
return;
// TODO: We should also be checking that the device_id is in between 0x1000 - 0x107F inclusive
if (device_identifier.hardware_id().vendor_id != PCI::VendorID::VirtIO)
return;
switch (device_identifier.hardware_id().device_id) {
case PCI::DeviceID::VirtIOConsole: {
auto& console = Console::must_create(device_identifier).leak_ref();
console.initialize();
break;
}
case PCI::DeviceID::VirtIOEntropy: {
auto& rng = RNG::must_create(device_identifier).leak_ref();
rng.initialize();
break;
}
case PCI::DeviceID::VirtIOGPU: {
// This should have been initialized by the graphics subsystem
break;
}
default:
dbgln_if(VIRTIO_DEBUG, "VirtIO: Unknown VirtIO device with ID: {}", device_identifier.hardware_id().device_id);
break;
}
}));
}
static StringView determine_device_class(PCI::DeviceIdentifier const& device_identifier)
{
if (device_identifier.revision_id().value() == 0) {
// Note: If the device is a legacy (or transitional) device, therefore,
// probe the subsystem ID in the PCI header and figure out the
auto subsystem_device_id = device_identifier.subsystem_id().value();
switch (subsystem_device_id) {
case 1:
return "VirtIONetAdapter"sv;
case 2:
return "VirtIOBlockDevice"sv;
case 3:
return "VirtIOConsole"sv;
case 4:
return "VirtIORNG"sv;
default:
dbgln("VirtIO: Unknown subsystem_device_id {}", subsystem_device_id);
VERIFY_NOT_REACHED();
}
}
auto id = device_identifier.hardware_id();
VERIFY(id.vendor_id == PCI::VendorID::VirtIO);
switch (id.device_id) {
case PCI::DeviceID::VirtIONetAdapter:
return "VirtIONetAdapter"sv;
case PCI::DeviceID::VirtIOBlockDevice:
return "VirtIOBlockDevice"sv;
case PCI::DeviceID::VirtIOConsole:
return "VirtIOConsole"sv;
case PCI::DeviceID::VirtIOEntropy:
return "VirtIORNG"sv;
case PCI::DeviceID::VirtIOGPU:
return "VirtIOGPU"sv;
default:
dbgln("VirtIO: Unknown device_id {}", id.vendor_id);
VERIFY_NOT_REACHED();
}
}
UNMAP_AFTER_INIT void Device::initialize()
{
enable_bus_mastering(device_identifier());
auto capabilities = device_identifier().capabilities();
for (auto& capability : capabilities) {
if (capability.id().value() == PCI::Capabilities::ID::VendorSpecific) {
// We have a virtio_pci_cap
Configuration config {};
auto raw_config_type = capability.read8(0x3);
if (raw_config_type < static_cast<u8>(ConfigurationType::Common) || raw_config_type > static_cast<u8>(ConfigurationType::PCI)) {
dbgln("{}: Unknown capability configuration type: {}", m_class_name, raw_config_type);
return;
}
config.cfg_type = static_cast<ConfigurationType>(raw_config_type);
auto cap_length = capability.read8(0x2);
if (cap_length < 0x10) {
dbgln("{}: Unexpected capability size: {}", m_class_name, cap_length);
break;
}
config.bar = capability.read8(0x4);
if (config.bar > 0x5) {
dbgln("{}: Unexpected capability bar value: {}", m_class_name, config.bar);
break;
}
config.offset = capability.read32(0x8);
config.length = capability.read32(0xc);
dbgln_if(VIRTIO_DEBUG, "{}: Found configuration {}, bar: {}, offset: {}, length: {}", m_class_name, (u32)config.cfg_type, config.bar, config.offset, config.length);
if (config.cfg_type == ConfigurationType::Common)
m_use_mmio = true;
else if (config.cfg_type == ConfigurationType::Notify)
m_notify_multiplier = capability.read32(0x10);
m_configs.append(config);
}
}
if (m_use_mmio) {
for (auto& cfg : m_configs) {
auto mapping_io_window = IOWindow::create_for_pci_device_bar(device_identifier(), static_cast<PCI::HeaderType0BaseRegister>(cfg.bar)).release_value_but_fixme_should_propagate_errors();
m_register_bases[cfg.bar] = move(mapping_io_window);
}
m_common_cfg = get_config(ConfigurationType::Common, 0);
m_notify_cfg = get_config(ConfigurationType::Notify, 0);
m_isr_cfg = get_config(ConfigurationType::ISR, 0);
} else {
auto mapping_io_window = IOWindow::create_for_pci_device_bar(device_identifier(), PCI::HeaderType0BaseRegister::BAR0).release_value_but_fixme_should_propagate_errors();
m_register_bases[0] = move(mapping_io_window);
}
// Note: We enable interrupts at least after the m_register_bases[0] ptr is
// assigned with an IOWindow, to ensure that in case of getting an interrupt
// we can access registers from that IO window range.
PCI::enable_interrupt_line(device_identifier());
enable_irq();
reset_device();
set_status_bit(DEVICE_STATUS_ACKNOWLEDGE);
set_status_bit(DEVICE_STATUS_DRIVER);
}
UNMAP_AFTER_INIT VirtIO::Device::Device(PCI::DeviceIdentifier const& device_identifier)
: PCI::Device(const_cast<PCI::DeviceIdentifier&>(device_identifier))
, IRQHandler(device_identifier.interrupt_line().value())
, m_class_name(VirtIO::determine_device_class(device_identifier))
{
dbgln("{}: Found @ {}", m_class_name, device_identifier.address());
}
void Device::notify_queue(u16 queue_index)
{
dbgln_if(VIRTIO_DEBUG, "{}: notifying about queue change at idx: {}", m_class_name, queue_index);
if (!m_notify_cfg)
base_io_window().write16(REG_QUEUE_NOTIFY, queue_index);
else
config_write16(*m_notify_cfg, get_queue(queue_index).notify_offset() * m_notify_multiplier, queue_index);
}
auto Device::mapping_for_bar(u8 bar) -> IOWindow&
{
VERIFY(m_use_mmio);
VERIFY(m_register_bases[bar]);
return *m_register_bases[bar];
}
u8 Device::config_read8(Configuration const& config, u32 offset)
{
return mapping_for_bar(config.bar).read8(config.offset + offset);
}
u16 Device::config_read16(Configuration const& config, u32 offset)
{
return mapping_for_bar(config.bar).read16(config.offset + offset);
}
u32 Device::config_read32(Configuration const& config, u32 offset)
{
return mapping_for_bar(config.bar).read32(config.offset + offset);
}
void Device::config_write8(Configuration const& config, u32 offset, u8 value)
{
mapping_for_bar(config.bar).write8(config.offset + offset, value);
}
void Device::config_write16(Configuration const& config, u32 offset, u16 value)
{
mapping_for_bar(config.bar).write16(config.offset + offset, value);
}
void Device::config_write32(Configuration const& config, u32 offset, u32 value)
{
mapping_for_bar(config.bar).write32(config.offset + offset, value);
}
void Device::config_write64(Configuration const& config, u32 offset, u64 value)
{
mapping_for_bar(config.bar).write32(config.offset + offset, (u32)(value & 0xFFFFFFFF));
mapping_for_bar(config.bar).write32(config.offset + offset + 4, (u32)(value >> 32));
}
u8 Device::read_status_bits()
{
if (!m_common_cfg)
return base_io_window().read8(REG_DEVICE_STATUS);
return config_read8(*m_common_cfg, COMMON_CFG_DEVICE_STATUS);
}
void Device::mask_status_bits(u8 status_mask)
{
m_status &= status_mask;
if (!m_common_cfg)
base_io_window().write8(REG_DEVICE_STATUS, m_status);
else
config_write8(*m_common_cfg, COMMON_CFG_DEVICE_STATUS, m_status);
}
void Device::set_status_bit(u8 status_bit)
{
m_status |= status_bit;
if (!m_common_cfg)
base_io_window().write8(REG_DEVICE_STATUS, m_status);
else
config_write8(*m_common_cfg, COMMON_CFG_DEVICE_STATUS, m_status);
}
u64 Device::get_device_features()
{
if (!m_common_cfg)
return base_io_window().read32(REG_DEVICE_FEATURES);
config_write32(*m_common_cfg, COMMON_CFG_DEVICE_FEATURE_SELECT, 0);
auto lower_bits = config_read32(*m_common_cfg, COMMON_CFG_DEVICE_FEATURE);
config_write32(*m_common_cfg, COMMON_CFG_DEVICE_FEATURE_SELECT, 1);
u64 upper_bits = (u64)config_read32(*m_common_cfg, COMMON_CFG_DEVICE_FEATURE) << 32;
return upper_bits | lower_bits;
}
IOWindow& Device::base_io_window()
{
VERIFY(m_register_bases[0]);
return *m_register_bases[0];
}
bool Device::accept_device_features(u64 device_features, u64 accepted_features)
{
VERIFY(!m_did_accept_features);
m_did_accept_features = true;
if (is_feature_set(device_features, VIRTIO_F_VERSION_1)) {
accepted_features |= VIRTIO_F_VERSION_1; // let the device know were not a legacy driver
}
if (is_feature_set(device_features, VIRTIO_F_RING_PACKED)) {
dbgln_if(VIRTIO_DEBUG, "{}: packed queues not yet supported", m_class_name);
accepted_features &= ~(VIRTIO_F_RING_PACKED);
}
// TODO: implement indirect descriptors to allow queue_size buffers instead of buffers totalling (PAGE_SIZE * queue_size) bytes
if (is_feature_set(device_features, VIRTIO_F_INDIRECT_DESC)) {
// accepted_features |= VIRTIO_F_INDIRECT_DESC;
}
if (is_feature_set(device_features, VIRTIO_F_IN_ORDER)) {
accepted_features |= VIRTIO_F_IN_ORDER;
}
dbgln_if(VIRTIO_DEBUG, "{}: Device features: {}", m_class_name, device_features);
dbgln_if(VIRTIO_DEBUG, "{}: Accepted features: {}", m_class_name, accepted_features);
if (!m_common_cfg) {
base_io_window().write32(REG_GUEST_FEATURES, accepted_features);
} else {
config_write32(*m_common_cfg, COMMON_CFG_DRIVER_FEATURE_SELECT, 0);
config_write32(*m_common_cfg, COMMON_CFG_DRIVER_FEATURE, accepted_features);
config_write32(*m_common_cfg, COMMON_CFG_DRIVER_FEATURE_SELECT, 1);
config_write32(*m_common_cfg, COMMON_CFG_DRIVER_FEATURE, accepted_features >> 32);
}
set_status_bit(DEVICE_STATUS_FEATURES_OK);
m_status = read_status_bits();
if (!(m_status & DEVICE_STATUS_FEATURES_OK)) {
set_status_bit(DEVICE_STATUS_FAILED);
dbgln("{}: Features not accepted by host!", m_class_name);
return false;
}
m_accepted_features = accepted_features;
dbgln_if(VIRTIO_DEBUG, "{}: Features accepted by host", m_class_name);
return true;
}
void Device::reset_device()
{
dbgln_if(VIRTIO_DEBUG, "{}: Reset device", m_class_name);
if (!m_common_cfg) {
mask_status_bits(0);
while (read_status_bits() != 0) {
// TODO: delay a bit?
}
return;
}
config_write8(*m_common_cfg, COMMON_CFG_DEVICE_STATUS, 0);
while (config_read8(*m_common_cfg, COMMON_CFG_DEVICE_STATUS) != 0) {
// TODO: delay a bit?
}
}
bool Device::setup_queue(u16 queue_index)
{
if (!m_common_cfg)
return false;
config_write16(*m_common_cfg, COMMON_CFG_QUEUE_SELECT, queue_index);
u16 queue_size = config_read16(*m_common_cfg, COMMON_CFG_QUEUE_SIZE);
if (queue_size == 0) {
dbgln_if(VIRTIO_DEBUG, "{}: Queue[{}] is unavailable!", m_class_name, queue_index);
return true;
}
u16 queue_notify_offset = config_read16(*m_common_cfg, COMMON_CFG_QUEUE_NOTIFY_OFF);
auto queue_or_error = Queue::try_create(queue_size, queue_notify_offset);
if (queue_or_error.is_error())
return false;
auto queue = queue_or_error.release_value();
config_write64(*m_common_cfg, COMMON_CFG_QUEUE_DESC, queue->descriptor_area().get());
config_write64(*m_common_cfg, COMMON_CFG_QUEUE_DRIVER, queue->driver_area().get());
config_write64(*m_common_cfg, COMMON_CFG_QUEUE_DEVICE, queue->device_area().get());
dbgln_if(VIRTIO_DEBUG, "{}: Queue[{}] configured with size: {}", m_class_name, queue_index, queue_size);
m_queues.append(move(queue));
return true;
}
bool Device::activate_queue(u16 queue_index)
{
if (!m_common_cfg)
return false;
config_write16(*m_common_cfg, COMMON_CFG_QUEUE_SELECT, queue_index);
config_write16(*m_common_cfg, COMMON_CFG_QUEUE_ENABLE, true);
dbgln_if(VIRTIO_DEBUG, "{}: Queue[{}] activated", m_class_name, queue_index);
return true;
}
bool Device::setup_queues(u16 requested_queue_count)
{
VERIFY(!m_did_setup_queues);
m_did_setup_queues = true;
if (m_common_cfg) {
auto maximum_queue_count = config_read16(*m_common_cfg, COMMON_CFG_NUM_QUEUES);
if (requested_queue_count == 0) {
m_queue_count = maximum_queue_count;
} else if (requested_queue_count > maximum_queue_count) {
dbgln("{}: {} queues requested but only {} available!", m_class_name, m_queue_count, maximum_queue_count);
return false;
} else {
m_queue_count = requested_queue_count;
}
} else {
m_queue_count = requested_queue_count;
dbgln("{}: device's available queue count could not be determined!", m_class_name);
}
dbgln_if(VIRTIO_DEBUG, "{}: Setting up {} queues", m_class_name, m_queue_count);
for (u16 i = 0; i < m_queue_count; i++) {
if (!setup_queue(i))
return false;
}
for (u16 i = 0; i < m_queue_count; i++) { // Queues can only be activated *after* all others queues were also configured
if (!activate_queue(i))
return false;
}
return true;
}
void Device::finish_init()
{
VERIFY(m_did_accept_features); // ensure features were negotiated
VERIFY(m_did_setup_queues); // ensure queues were set-up
VERIFY(!(m_status & DEVICE_STATUS_DRIVER_OK)); // ensure we didn't already finish the initialization
set_status_bit(DEVICE_STATUS_DRIVER_OK);
dbgln_if(VIRTIO_DEBUG, "{}: Finished initialization", m_class_name);
}
u8 Device::isr_status()
{
if (!m_isr_cfg)
return base_io_window().read8(REG_ISR_STATUS);
return config_read8(*m_isr_cfg, 0);
}
bool Device::handle_irq(RegisterState const&)
{
u8 isr_type = isr_status();
if ((isr_type & (QUEUE_INTERRUPT | DEVICE_CONFIG_INTERRUPT)) == 0) {
dbgln_if(VIRTIO_DEBUG, "{}: Handling interrupt with unknown type: {}", class_name(), isr_type);
return false;
}
if (isr_type & DEVICE_CONFIG_INTERRUPT) {
dbgln_if(VIRTIO_DEBUG, "{}: VirtIO Device config interrupt!", class_name());
if (!handle_device_config_change()) {
set_status_bit(DEVICE_STATUS_FAILED);
dbgln("{}: Failed to handle device config change!", class_name());
}
}
if (isr_type & QUEUE_INTERRUPT) {
dbgln_if(VIRTIO_DEBUG, "{}: VirtIO Queue interrupt!", class_name());
for (size_t i = 0; i < m_queues.size(); i++) {
if (get_queue(i).new_data_available()) {
handle_queue_update(i);
return true;
}
}
dbgln_if(VIRTIO_DEBUG, "{}: Got queue interrupt but all queues are up to date!", class_name());
}
return true;
}
void Device::supply_chain_and_notify(u16 queue_index, QueueChain& chain)
{
auto& queue = get_queue(queue_index);
VERIFY(&chain.queue() == &queue);
VERIFY(queue.lock().is_locked());
chain.submit_to_queue();
if (queue.should_notify())
notify_queue(queue_index);
}
}