1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-31 04:58:13 +00:00
serenity/Kernel/Storage/ATA/AHCI/Port.cpp
Liav A 1f9d3a3523 Kernel/PCI: Hold a reference to DeviceIdentifier in the Device class
There are now 2 separate classes for almost the same object type:
- EnumerableDeviceIdentifier, which is used in the enumeration code for
  all PCI host controller classes. This is allowed to be moved and
  copied, as it doesn't support ref-counting.
- DeviceIdentifier, which inherits from EnumerableDeviceIdentifier. This
  class uses ref-counting, and is not allowed to be copied. It has a
  spinlock member in its structure to allow safely executing complicated
  IO sequences on a PCI device and its space configuration.
  There's a static method that allows a quick conversion from
  EnumerableDeviceIdentifier to DeviceIdentifier while creating a
  NonnullRefPtr out of it.

The reason for doing this is for the sake of integrity and reliablity of
the system in 2 places:
- Ensure that "complicated" tasks that rely on manipulating PCI device
  registers are done in a safe manner. For example, determining a PCI
  BAR space size requires multiple read and writes to the same register,
  and if another CPU tries to do something else with our selected
  register, then the result will be a catastrophe.
- Allow the PCI API to have a united form around a shared object which
  actually holds much more data than the PCI::Address structure. This is
  fundamental if we want to do certain types of optimizations, and be
  able to support more features of the PCI bus in the foreseeable
  future.

This patch already has several implications:
- All PCI::Device(s) hold a reference to a DeviceIdentifier structure
  being given originally from the PCI::Access singleton. This means that
  all instances of DeviceIdentifier structures are located in one place,
  and all references are pointing to that location. This ensures that
  locking the operation spinlock will take effect in all the appropriate
  places.
- We no longer support adding PCI host controllers and then immediately
  allow for enumerating it with a lambda function. It was found that
  this method is extremely broken and too much complicated to work
  reliably with the new paradigm being introduced in this patch. This
  means that for Volume Management Devices (Intel VMD devices), we
  simply first enumerate the PCI bus for such devices in the storage
  code, and if we find a device, we attach it in the PCI::Access method
  which will scan for devices behind that bridge and will add new
  DeviceIdentifier(s) objects to its internal Vector. Afterwards, we
  just continue as usual with scanning for actual storage controllers,
  so we will find a corresponding NVMe controllers if there were any
  behind that VMD bridge.
2023-01-26 23:04:26 +01:00

888 lines
38 KiB
C++

/*
* Copyright (c) 2021, Liav A. <liavalb@hotmail.co.il>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
// For more information about locking in this code
// please look at Documentation/Kernel/AHCILocking.md
#include <AK/Atomic.h>
#include <Kernel/Arch/Delay.h>
#include <Kernel/Locking/Spinlock.h>
#include <Kernel/Memory/MemoryManager.h>
#include <Kernel/Memory/ScatterGatherList.h>
#include <Kernel/Memory/TypedMapping.h>
#include <Kernel/Storage/ATA/AHCI/Port.h>
#include <Kernel/Storage/ATA/ATADiskDevice.h>
#include <Kernel/Storage/ATA/Definitions.h>
#include <Kernel/Storage/StorageManagement.h>
#include <Kernel/WorkQueue.h>
namespace Kernel {
UNMAP_AFTER_INIT ErrorOr<NonnullLockRefPtr<AHCIPort>> AHCIPort::create(AHCIController const& controller, AHCI::HBADefinedCapabilities hba_capabilities, volatile AHCI::PortRegisters& registers, u32 port_index)
{
auto identify_buffer_page = MUST(MM.allocate_physical_page());
auto port = TRY(adopt_nonnull_lock_ref_or_enomem(new (nothrow) AHCIPort(controller, move(identify_buffer_page), hba_capabilities, registers, port_index)));
TRY(port->allocate_resources_and_initialize_ports());
return port;
}
ErrorOr<void> AHCIPort::allocate_resources_and_initialize_ports()
{
if (is_interface_disabled()) {
m_disabled_by_firmware = true;
return {};
}
m_fis_receive_page = TRY(MM.allocate_physical_page());
for (size_t index = 0; index < 1; index++) {
auto dma_page = TRY(MM.allocate_physical_page());
m_dma_buffers.append(move(dma_page));
}
for (size_t index = 0; index < 1; index++) {
auto command_table_page = TRY(MM.allocate_physical_page());
m_command_table_pages.append(move(command_table_page));
}
m_command_list_region = TRY(MM.allocate_dma_buffer_page("AHCI Port Command List"sv, Memory::Region::Access::ReadWrite, m_command_list_page));
dbgln_if(AHCI_DEBUG, "AHCI Port {}: Command list page at {}", representative_port_index(), m_command_list_page->paddr());
dbgln_if(AHCI_DEBUG, "AHCI Port {}: FIS receive page at {}", representative_port_index(), m_fis_receive_page->paddr());
dbgln_if(AHCI_DEBUG, "AHCI Port {}: Command list region at {}", representative_port_index(), m_command_list_region->vaddr());
return {};
}
UNMAP_AFTER_INIT AHCIPort::AHCIPort(AHCIController const& controller, NonnullRefPtr<Memory::PhysicalPage> identify_buffer_page, AHCI::HBADefinedCapabilities hba_capabilities, volatile AHCI::PortRegisters& registers, u32 port_index)
: m_port_index(port_index)
, m_hba_capabilities(hba_capabilities)
, m_identify_buffer_page(move(identify_buffer_page))
, m_port_registers(registers)
, m_parent_controller(controller)
, m_interrupt_status((u32 volatile&)m_port_registers.is)
, m_interrupt_enable((u32 volatile&)m_port_registers.ie)
{
}
void AHCIPort::clear_sata_error_register() const
{
dbgln_if(AHCI_DEBUG, "AHCI Port {}: Clearing SATA error register.", representative_port_index());
m_port_registers.serr = m_port_registers.serr;
}
void AHCIPort::handle_interrupt()
{
dbgln_if(AHCI_DEBUG, "AHCI Port {}: Interrupt handled, PxIS {}", representative_port_index(), m_interrupt_status.raw_value());
if (m_interrupt_status.raw_value() == 0) {
return;
}
if (m_interrupt_status.is_set(AHCI::PortInterruptFlag::PRC) && m_interrupt_status.is_set(AHCI::PortInterruptFlag::PC)) {
clear_sata_error_register();
if ((m_port_registers.ssts & 0xf) != 3 && m_connected_device) {
m_connected_device->prepare_for_unplug();
StorageManagement::the().remove_device(*m_connected_device);
auto work_item_creation_result = g_io_work->try_queue([this]() {
m_connected_device.clear();
});
if (work_item_creation_result.is_error()) {
auto current_request = m_current_request;
m_current_request.clear();
current_request->complete(AsyncDeviceRequest::OutOfMemory);
}
} else {
auto work_item_creation_result = g_io_work->try_queue([this]() {
reset();
});
if (work_item_creation_result.is_error()) {
auto current_request = m_current_request;
m_current_request.clear();
current_request->complete(AsyncDeviceRequest::OutOfMemory);
}
}
return;
}
if (m_interrupt_status.is_set(AHCI::PortInterruptFlag::PRC)) {
clear_sata_error_register();
}
if (m_interrupt_status.is_set(AHCI::PortInterruptFlag::INF)) {
// We need to defer the reset, because we can receive interrupts when
// resetting the device.
auto work_item_creation_result = g_io_work->try_queue([this]() {
reset();
});
if (work_item_creation_result.is_error()) {
auto current_request = m_current_request;
m_current_request.clear();
current_request->complete(AsyncDeviceRequest::OutOfMemory);
}
return;
}
if (m_interrupt_status.is_set(AHCI::PortInterruptFlag::IF) || m_interrupt_status.is_set(AHCI::PortInterruptFlag::TFE) || m_interrupt_status.is_set(AHCI::PortInterruptFlag::HBD) || m_interrupt_status.is_set(AHCI::PortInterruptFlag::HBF)) {
auto work_item_creation_result = g_io_work->try_queue([this]() {
recover_from_fatal_error();
});
if (work_item_creation_result.is_error()) {
auto current_request = m_current_request;
m_current_request.clear();
current_request->complete(AsyncDeviceRequest::OutOfMemory);
}
return;
}
if (m_interrupt_status.is_set(AHCI::PortInterruptFlag::DHR) || m_interrupt_status.is_set(AHCI::PortInterruptFlag::PS)) {
m_wait_for_completion = false;
// Now schedule reading/writing the buffer as soon as we leave the irq handler.
// This is important so that we can safely access the buffers, which could
// trigger page faults
if (!m_current_request) {
dbgln_if(AHCI_DEBUG, "AHCI Port {}: Request handled, probably identify request", representative_port_index());
} else {
auto work_item_creation_result = g_io_work->try_queue([this]() {
dbgln_if(AHCI_DEBUG, "AHCI Port {}: Request handled", representative_port_index());
MutexLocker locker(m_lock);
VERIFY(m_current_request);
VERIFY(m_current_scatter_list);
if (!m_connected_device) {
dbgln_if(AHCI_DEBUG, "AHCI Port {}: Request success", representative_port_index());
complete_current_request(AsyncDeviceRequest::Failure);
return;
}
if (m_current_request->request_type() == AsyncBlockDeviceRequest::Read) {
if (auto result = m_current_request->write_to_buffer(m_current_request->buffer(), m_current_scatter_list->dma_region().as_ptr(), m_connected_device->block_size() * m_current_request->block_count()); result.is_error()) {
dbgln_if(AHCI_DEBUG, "AHCI Port {}: Request failure, memory fault occurred when reading in data.", representative_port_index());
m_current_scatter_list = nullptr;
complete_current_request(AsyncDeviceRequest::MemoryFault);
return;
}
}
m_current_scatter_list = nullptr;
dbgln_if(AHCI_DEBUG, "AHCI Port {}: Request success", representative_port_index());
complete_current_request(AsyncDeviceRequest::Success);
});
if (work_item_creation_result.is_error()) {
auto current_request = m_current_request;
m_current_request.clear();
current_request->complete(AsyncDeviceRequest::OutOfMemory);
}
}
}
m_interrupt_status.clear();
}
bool AHCIPort::is_interrupts_enabled() const
{
return !m_interrupt_enable.is_cleared();
}
void AHCIPort::recover_from_fatal_error()
{
MutexLocker locker(m_lock);
SpinlockLocker lock(m_hard_lock);
LockRefPtr<AHCIController> controller = m_parent_controller.strong_ref();
if (!controller) {
dmesgln("AHCI Port {}: fatal error, controller not available", representative_port_index());
return;
}
dmesgln("{}: AHCI Port {} fatal error, shutting down!", controller->device_identifier().address(), representative_port_index());
dmesgln("{}: AHCI Port {} fatal error, SError {}", controller->device_identifier().address(), representative_port_index(), (u32)m_port_registers.serr);
stop_command_list_processing();
stop_fis_receiving();
m_interrupt_enable.clear();
}
void AHCIPort::eject()
{
// FIXME: This operation (meant to be used on optical drives) doesn't work yet when I tested it on real hardware
TODO();
VERIFY(m_lock.is_locked());
VERIFY(is_atapi_attached());
VERIFY(is_operable());
clear_sata_error_register();
if (!spin_until_ready())
return;
auto unused_command_header = try_to_find_unused_command_header();
VERIFY(unused_command_header.has_value());
auto* command_list_entries = (volatile AHCI::CommandHeader*)m_command_list_region->vaddr().as_ptr();
command_list_entries[unused_command_header.value()].ctba = m_command_table_pages[unused_command_header.value()].paddr().get();
command_list_entries[unused_command_header.value()].ctbau = 0;
command_list_entries[unused_command_header.value()].prdbc = 0;
command_list_entries[unused_command_header.value()].prdtl = 0;
// Note: we must set the correct Dword count in this register. Real hardware
// AHCI controllers do care about this field! QEMU doesn't care if we don't
// set the correct CFL field in this register, real hardware will set an
// handshake error bit in PxSERR register if CFL is incorrect.
command_list_entries[unused_command_header.value()].attributes = (size_t)FIS::DwordCount::RegisterHostToDevice | AHCI::CommandHeaderAttributes::P | AHCI::CommandHeaderAttributes::C | AHCI::CommandHeaderAttributes::A;
auto command_table_region = MM.allocate_kernel_region(m_command_table_pages[unused_command_header.value()].paddr().page_base(), Memory::page_round_up(sizeof(AHCI::CommandTable)).value(), "AHCI Command Table"sv, Memory::Region::Access::ReadWrite, Memory::Region::Cacheable::No).release_value();
auto& command_table = *(volatile AHCI::CommandTable*)command_table_region->vaddr().as_ptr();
memset(const_cast<u8*>(command_table.command_fis), 0, 64);
auto& fis = *(volatile FIS::HostToDevice::Register*)command_table.command_fis;
fis.header.fis_type = (u8)FIS::Type::RegisterHostToDevice;
fis.command = ATA_CMD_PACKET;
full_memory_barrier();
memset(const_cast<u8*>(command_table.atapi_command), 0, 32);
full_memory_barrier();
command_table.atapi_command[0] = ATAPI_CMD_EJECT;
command_table.atapi_command[1] = 0;
command_table.atapi_command[2] = 0;
command_table.atapi_command[3] = 0;
command_table.atapi_command[4] = 0b10;
command_table.atapi_command[5] = 0;
command_table.atapi_command[6] = 0;
command_table.atapi_command[7] = 0;
command_table.atapi_command[8] = 0;
command_table.atapi_command[9] = 0;
command_table.atapi_command[10] = 0;
command_table.atapi_command[11] = 0;
fis.device = 0;
fis.header.port_muliplier = fis.header.port_muliplier | (u8)FIS::HeaderAttributes::C;
// The below loop waits until the port is no longer busy before issuing a new command
if (!spin_until_ready())
return;
full_memory_barrier();
mark_command_header_ready_to_process(unused_command_header.value());
full_memory_barrier();
while (1) {
if (m_port_registers.serr != 0) {
dbgln_if(AHCI_DEBUG, "AHCI Port {}: Eject Drive failed, SError {:#08x}", representative_port_index(), (u32)m_port_registers.serr);
try_disambiguate_sata_error();
VERIFY_NOT_REACHED();
}
}
dbgln("AHCI Port {}: Eject Drive", representative_port_index());
return;
}
bool AHCIPort::reset()
{
MutexLocker locker(m_lock);
SpinlockLocker lock(m_hard_lock);
dbgln_if(AHCI_DEBUG, "AHCI Port {}: Resetting", representative_port_index());
if (m_disabled_by_firmware) {
dmesgln("AHCI Port {}: Disabled by firmware ", representative_port_index());
return false;
}
full_memory_barrier();
m_interrupt_enable.clear();
m_interrupt_status.clear();
full_memory_barrier();
start_fis_receiving();
full_memory_barrier();
clear_sata_error_register();
full_memory_barrier();
if (!initiate_sata_reset()) {
return false;
}
return initialize();
}
UNMAP_AFTER_INIT bool AHCIPort::initialize_without_reset()
{
MutexLocker locker(m_lock);
SpinlockLocker lock(m_hard_lock);
dmesgln("AHCI Port {}: {}", representative_port_index(), try_disambiguate_sata_status());
return initialize();
}
bool AHCIPort::initialize()
{
VERIFY(m_lock.is_locked());
dbgln_if(AHCI_DEBUG, "AHCI Port {}: Initialization. Signature = {:#08x}", representative_port_index(), static_cast<u32>(m_port_registers.sig));
if (!is_phy_enabled()) {
// Note: If PHY is not enabled, just clear the interrupt status and enable interrupts, in case
// we are going to hotplug a device later.
m_interrupt_status.clear();
m_interrupt_enable.set_all();
dbgln_if(AHCI_DEBUG, "AHCI Port {}: Bailing initialization, Phy is not enabled.", representative_port_index());
return false;
}
rebase();
power_on();
spin_up();
clear_sata_error_register();
start_fis_receiving();
set_active_state();
m_interrupt_status.clear();
m_interrupt_enable.set_all();
full_memory_barrier();
// This actually enables the port...
start_command_list_processing();
full_memory_barrier();
size_t logical_sector_size = 512;
size_t physical_sector_size = 512;
u64 max_addressable_sector = 0;
if (identify_device()) {
auto identify_block = Memory::map_typed<ATAIdentifyBlock>(m_identify_buffer_page->paddr()).release_value_but_fixme_should_propagate_errors();
// Check if word 106 is valid before using it!
if ((identify_block->physical_sector_size_to_logical_sector_size >> 14) == 1) {
if (identify_block->physical_sector_size_to_logical_sector_size & (1 << 12)) {
VERIFY(identify_block->logical_sector_size != 0);
logical_sector_size = identify_block->logical_sector_size;
}
if (identify_block->physical_sector_size_to_logical_sector_size & (1 << 13)) {
physical_sector_size = logical_sector_size << (identify_block->physical_sector_size_to_logical_sector_size & 0xf);
}
}
// Check if the device supports LBA48 mode
if (identify_block->commands_and_feature_sets_supported[1] & (1 << 10)) {
max_addressable_sector = identify_block->user_addressable_logical_sectors_count;
} else {
max_addressable_sector = identify_block->max_28_bit_addressable_logical_sector;
}
if (is_atapi_attached()) {
m_port_registers.cmd = m_port_registers.cmd | (1 << 24);
}
dmesgln("AHCI Port {}: Device found, Capacity={}, Bytes per logical sector={}, Bytes per physical sector={}", representative_port_index(), max_addressable_sector * logical_sector_size, logical_sector_size, physical_sector_size);
// FIXME: We don't support ATAPI devices yet, so for now we don't "create" them
if (!is_atapi_attached()) {
LockRefPtr<AHCIController> controller = m_parent_controller.strong_ref();
if (!controller) {
dmesgln("AHCI Port {}: Device found, but parent controller is not available, abort.", representative_port_index());
return false;
}
m_connected_device = ATADiskDevice::create(*controller, { m_port_index, 0 }, 0, logical_sector_size, max_addressable_sector);
} else {
dbgln("AHCI Port {}: Ignoring ATAPI devices for now as we don't currently support them.", representative_port_index());
}
}
return true;
}
char const* AHCIPort::try_disambiguate_sata_status()
{
switch (m_port_registers.ssts & 0xf) {
case 0:
return "Device not detected, Phy not enabled";
case 1:
return "Device detected, Phy disabled";
case 3:
return "Device detected, Phy enabled";
case 4:
return "interface disabled";
}
VERIFY_NOT_REACHED();
}
void AHCIPort::try_disambiguate_sata_error()
{
dmesgln("AHCI Port {}: SErr breakdown:", representative_port_index());
dmesgln("AHCI Port {}: Diagnostics:", representative_port_index());
constexpr u32 diagnostics_bitfield = 0xFFFF0000;
if ((m_port_registers.serr & diagnostics_bitfield) > 0) {
if (m_port_registers.serr & AHCI::SErr::DIAG_X)
dmesgln("AHCI Port {}: - Exchanged", representative_port_index());
if (m_port_registers.serr & AHCI::SErr::DIAG_F)
dmesgln("AHCI Port {}: - Unknown FIS Type", representative_port_index());
if (m_port_registers.serr & AHCI::SErr::DIAG_T)
dmesgln("AHCI Port {}: - Transport state transition error", representative_port_index());
if (m_port_registers.serr & AHCI::SErr::DIAG_S)
dmesgln("AHCI Port {}: - Link sequence error", representative_port_index());
if (m_port_registers.serr & AHCI::SErr::DIAG_H)
dmesgln("AHCI Port {}: - Handshake error", representative_port_index());
if (m_port_registers.serr & AHCI::SErr::DIAG_C)
dmesgln("AHCI Port {}: - CRC error", representative_port_index());
if (m_port_registers.serr & AHCI::SErr::DIAG_D)
dmesgln("AHCI Port {}: - Disparity error", representative_port_index());
if (m_port_registers.serr & AHCI::SErr::DIAG_B)
dmesgln("AHCI Port {}: - 10B to 8B decode error", representative_port_index());
if (m_port_registers.serr & AHCI::SErr::DIAG_W)
dmesgln("AHCI Port {}: - Comm Wake", representative_port_index());
if (m_port_registers.serr & AHCI::SErr::DIAG_I)
dmesgln("AHCI Port {}: - Phy Internal Error", representative_port_index());
if (m_port_registers.serr & AHCI::SErr::DIAG_N)
dmesgln("AHCI Port {}: - PhyRdy Change", representative_port_index());
} else {
dmesgln("AHCI Port {}: - No diagnostic information provided.", representative_port_index());
}
dmesgln("AHCI Port {}: Error(s):", representative_port_index());
constexpr u32 error_bitfield = 0xFFFF;
if ((m_port_registers.serr & error_bitfield) > 0) {
if (m_port_registers.serr & AHCI::SErr::ERR_E)
dmesgln("AHCI Port {}: - Internal error", representative_port_index());
if (m_port_registers.serr & AHCI::SErr::ERR_P)
dmesgln("AHCI Port {}: - Protocol error", representative_port_index());
if (m_port_registers.serr & AHCI::SErr::ERR_C)
dmesgln("AHCI Port {}: - Persistent communication or data integrity error", representative_port_index());
if (m_port_registers.serr & AHCI::SErr::ERR_T)
dmesgln("AHCI Port {}: - Transient data integrity error", representative_port_index());
if (m_port_registers.serr & AHCI::SErr::ERR_M)
dmesgln("AHCI Port {}: - Recovered communications error", representative_port_index());
if (m_port_registers.serr & AHCI::SErr::ERR_I)
dmesgln("AHCI Port {}: - Recovered data integrity error", representative_port_index());
} else {
dmesgln("AHCI Port {}: - No error information provided.", representative_port_index());
}
}
void AHCIPort::rebase()
{
VERIFY(m_lock.is_locked());
VERIFY(m_hard_lock.is_locked());
VERIFY(!m_command_list_page.is_null() && !m_fis_receive_page.is_null());
dbgln_if(AHCI_DEBUG, "AHCI Port {}: Rebasing.", representative_port_index());
full_memory_barrier();
stop_command_list_processing();
stop_fis_receiving();
full_memory_barrier();
// Try to wait 1 second for HBA to clear Command List Running and FIS Receive Running
wait_until_condition_met_or_timeout(1000, 1000, [this]() -> bool {
return !(m_port_registers.cmd & (1 << 15)) && !(m_port_registers.cmd & (1 << 14));
});
full_memory_barrier();
m_port_registers.clbu = 0;
m_port_registers.clb = m_command_list_page->paddr().get();
m_port_registers.fbu = 0;
m_port_registers.fb = m_fis_receive_page->paddr().get();
}
bool AHCIPort::is_operable() const
{
// Note: The definition of "operable" is somewhat ambiguous, but we determine it
// by 3 parameters as shown below.
return (!m_command_list_page.is_null())
&& (!m_fis_receive_page.is_null())
&& ((m_port_registers.cmd & (1 << 14)) != 0);
}
void AHCIPort::set_active_state() const
{
VERIFY(m_lock.is_locked());
VERIFY(m_hard_lock.is_locked());
dbgln_if(AHCI_DEBUG, "AHCI Port {}: Switching to active state.", representative_port_index());
m_port_registers.cmd = (m_port_registers.cmd & 0x0ffffff) | (1 << 28);
}
void AHCIPort::set_sleep_state() const
{
VERIFY(m_lock.is_locked());
VERIFY(m_hard_lock.is_locked());
m_port_registers.cmd = (m_port_registers.cmd & 0x0ffffff) | (0b1000 << 28);
}
size_t AHCIPort::calculate_descriptors_count(size_t block_count) const
{
VERIFY(m_connected_device);
size_t needed_dma_regions_count = Memory::page_round_up((block_count * m_connected_device->block_size())).value() / PAGE_SIZE;
VERIFY(needed_dma_regions_count <= m_dma_buffers.size());
return needed_dma_regions_count;
}
Optional<AsyncDeviceRequest::RequestResult> AHCIPort::prepare_and_set_scatter_list(AsyncBlockDeviceRequest& request)
{
VERIFY(m_lock.is_locked());
VERIFY(request.block_count() > 0);
NonnullRefPtrVector<Memory::PhysicalPage> allocated_dma_regions;
for (size_t index = 0; index < calculate_descriptors_count(request.block_count()); index++) {
allocated_dma_regions.append(m_dma_buffers.at(index));
}
m_current_scatter_list = Memory::ScatterGatherList::try_create(request, allocated_dma_regions.span(), m_connected_device->block_size());
if (!m_current_scatter_list)
return AsyncDeviceRequest::Failure;
if (request.request_type() == AsyncBlockDeviceRequest::Write) {
if (auto result = request.read_from_buffer(request.buffer(), m_current_scatter_list->dma_region().as_ptr(), m_connected_device->block_size() * request.block_count()); result.is_error()) {
return AsyncDeviceRequest::MemoryFault;
}
}
return {};
}
void AHCIPort::start_request(AsyncBlockDeviceRequest& request)
{
MutexLocker locker(m_lock);
dbgln_if(AHCI_DEBUG, "AHCI Port {}: Request start", representative_port_index());
VERIFY(!m_current_request);
VERIFY(!m_current_scatter_list);
m_current_request = request;
auto result = prepare_and_set_scatter_list(request);
if (result.has_value()) {
dbgln_if(AHCI_DEBUG, "AHCI Port {}: Request failure.", representative_port_index());
locker.unlock();
complete_current_request(result.value());
return;
}
auto success = access_device(request.request_type(), request.block_index(), request.block_count());
if (!success) {
dbgln_if(AHCI_DEBUG, "AHCI Port {}: Request failure.", representative_port_index());
locker.unlock();
complete_current_request(AsyncDeviceRequest::Failure);
return;
}
}
void AHCIPort::complete_current_request(AsyncDeviceRequest::RequestResult result)
{
VERIFY(m_current_request);
auto current_request = m_current_request;
m_current_request.clear();
current_request->complete(result);
}
bool AHCIPort::spin_until_ready() const
{
VERIFY(m_lock.is_locked());
size_t spin = 0;
dbgln_if(AHCI_DEBUG, "AHCI Port {}: Spinning until ready.", representative_port_index());
while ((m_port_registers.tfd & (ATA_SR_BSY | ATA_SR_DRQ)) && spin <= 100) {
microseconds_delay(1000);
spin++;
}
if (spin == 100) {
dbgln_if(AHCI_DEBUG, "AHCI Port {}: SPIN exceeded 100 milliseconds threshold", representative_port_index());
return false;
}
return true;
}
bool AHCIPort::access_device(AsyncBlockDeviceRequest::RequestType direction, u64 lba, u8 block_count)
{
VERIFY(m_connected_device);
VERIFY(is_operable());
VERIFY(m_lock.is_locked());
VERIFY(m_current_scatter_list);
SpinlockLocker lock(m_hard_lock);
dbgln_if(AHCI_DEBUG, "AHCI Port {}: Do a {}, lba {}, block count {}", representative_port_index(), direction == AsyncBlockDeviceRequest::RequestType::Write ? "write" : "read", lba, block_count);
if (!spin_until_ready())
return false;
auto unused_command_header = try_to_find_unused_command_header();
VERIFY(unused_command_header.has_value());
auto* command_list_entries = (volatile AHCI::CommandHeader*)m_command_list_region->vaddr().as_ptr();
command_list_entries[unused_command_header.value()].ctba = m_command_table_pages[unused_command_header.value()].paddr().get();
command_list_entries[unused_command_header.value()].ctbau = 0;
command_list_entries[unused_command_header.value()].prdbc = 0;
command_list_entries[unused_command_header.value()].prdtl = m_current_scatter_list->scatters_count();
// Note: we must set the correct Dword count in this register. Real hardware
// AHCI controllers do care about this field! QEMU doesn't care if we don't
// set the correct CFL field in this register, real hardware will set an
// handshake error bit in PxSERR register if CFL is incorrect.
command_list_entries[unused_command_header.value()].attributes = (size_t)FIS::DwordCount::RegisterHostToDevice | AHCI::CommandHeaderAttributes::P | (is_atapi_attached() ? AHCI::CommandHeaderAttributes::A : 0) | (direction == AsyncBlockDeviceRequest::RequestType::Write ? AHCI::CommandHeaderAttributes::W : 0);
dbgln_if(AHCI_DEBUG, "AHCI Port {}: CLE: ctba={:#08x}, ctbau={:#08x}, prdbc={:#08x}, prdtl={:#04x}, attributes={:#04x}", representative_port_index(), (u32)command_list_entries[unused_command_header.value()].ctba, (u32)command_list_entries[unused_command_header.value()].ctbau, (u32)command_list_entries[unused_command_header.value()].prdbc, (u16)command_list_entries[unused_command_header.value()].prdtl, (u16)command_list_entries[unused_command_header.value()].attributes);
auto command_table_region = MM.allocate_kernel_region(m_command_table_pages[unused_command_header.value()].paddr().page_base(), Memory::page_round_up(sizeof(AHCI::CommandTable)).value(), "AHCI Command Table"sv, Memory::Region::Access::ReadWrite, Memory::Region::Cacheable::No).release_value();
auto& command_table = *(volatile AHCI::CommandTable*)command_table_region->vaddr().as_ptr();
dbgln_if(AHCI_DEBUG, "AHCI Port {}: Allocated command table at {}", representative_port_index(), command_table_region->vaddr());
memset(const_cast<u8*>(command_table.command_fis), 0, 64);
size_t scatter_entry_index = 0;
size_t data_transfer_count = (block_count * m_connected_device->block_size());
for (auto scatter_page : m_current_scatter_list->vmobject().physical_pages()) {
VERIFY(data_transfer_count != 0);
VERIFY(scatter_page);
dbgln_if(AHCI_DEBUG, "AHCI Port {}: Add a transfer scatter entry @ {}", representative_port_index(), scatter_page->paddr());
command_table.descriptors[scatter_entry_index].base_high = 0;
command_table.descriptors[scatter_entry_index].base_low = scatter_page->paddr().get();
if (data_transfer_count <= PAGE_SIZE) {
command_table.descriptors[scatter_entry_index].byte_count = data_transfer_count - 1;
data_transfer_count = 0;
} else {
command_table.descriptors[scatter_entry_index].byte_count = PAGE_SIZE - 1;
data_transfer_count -= PAGE_SIZE;
}
scatter_entry_index++;
}
command_table.descriptors[scatter_entry_index].byte_count = (PAGE_SIZE - 1) | (1 << 31);
memset(const_cast<u8*>(command_table.atapi_command), 0, 32);
auto& fis = *(volatile FIS::HostToDevice::Register*)command_table.command_fis;
fis.header.fis_type = (u8)FIS::Type::RegisterHostToDevice;
if (is_atapi_attached()) {
fis.command = ATA_CMD_PACKET;
TODO();
} else {
if (direction == AsyncBlockDeviceRequest::RequestType::Write)
fis.command = ATA_CMD_WRITE_DMA_EXT;
else
fis.command = ATA_CMD_READ_DMA_EXT;
}
full_memory_barrier();
fis.device = ATA_USE_LBA_ADDRESSING;
fis.header.port_muliplier = (u8)FIS::HeaderAttributes::C;
fis.lba_high[0] = (lba >> 24) & 0xff;
fis.lba_high[1] = (lba >> 32) & 0xff;
fis.lba_high[2] = (lba >> 40) & 0xff;
fis.lba_low[0] = lba & 0xff;
fis.lba_low[1] = (lba >> 8) & 0xff;
fis.lba_low[2] = (lba >> 16) & 0xff;
fis.count = (block_count);
// The below loop waits until the port is no longer busy before issuing a new command
if (!spin_until_ready())
return false;
full_memory_barrier();
mark_command_header_ready_to_process(unused_command_header.value());
full_memory_barrier();
dbgln_if(AHCI_DEBUG, "AHCI Port {}: Do a {}, lba {}, block count {} @ {}, ended", representative_port_index(), direction == AsyncBlockDeviceRequest::RequestType::Write ? "write" : "read", lba, block_count, m_dma_buffers[0].paddr());
return true;
}
bool AHCIPort::identify_device()
{
VERIFY(m_lock.is_locked());
VERIFY(is_operable());
if (!spin_until_ready())
return false;
LockRefPtr<AHCIController> controller = m_parent_controller.strong_ref();
if (!controller)
return false;
auto unused_command_header = try_to_find_unused_command_header();
VERIFY(unused_command_header.has_value());
auto* command_list_entries = (volatile AHCI::CommandHeader*)m_command_list_region->vaddr().as_ptr();
command_list_entries[unused_command_header.value()].ctba = m_command_table_pages[unused_command_header.value()].paddr().get();
command_list_entries[unused_command_header.value()].ctbau = 0;
command_list_entries[unused_command_header.value()].prdbc = 512;
command_list_entries[unused_command_header.value()].prdtl = 1;
// Note: we must set the correct Dword count in this register. Real hardware AHCI controllers do care about this field!
// QEMU doesn't care if we don't set the correct CFL field in this register, real hardware will set an handshake error bit in PxSERR register.
command_list_entries[unused_command_header.value()].attributes = (size_t)FIS::DwordCount::RegisterHostToDevice | AHCI::CommandHeaderAttributes::P;
auto command_table_region = MM.allocate_kernel_region(m_command_table_pages[unused_command_header.value()].paddr().page_base(), Memory::page_round_up(sizeof(AHCI::CommandTable)).value(), "AHCI Command Table"sv, Memory::Region::Access::ReadWrite).release_value();
auto& command_table = *(volatile AHCI::CommandTable*)command_table_region->vaddr().as_ptr();
memset(const_cast<u8*>(command_table.command_fis), 0, 64);
command_table.descriptors[0].base_high = 0;
command_table.descriptors[0].base_low = m_identify_buffer_page->paddr().get();
command_table.descriptors[0].byte_count = 512 - 1;
auto& fis = *(volatile FIS::HostToDevice::Register*)command_table.command_fis;
fis.header.fis_type = (u8)FIS::Type::RegisterHostToDevice;
fis.command = m_port_registers.sig == ATA::DeviceSignature::ATAPI ? ATA_CMD_IDENTIFY_PACKET : ATA_CMD_IDENTIFY;
fis.device = 0;
fis.header.port_muliplier = fis.header.port_muliplier | (u8)FIS::HeaderAttributes::C;
// The below loop waits until the port is no longer busy before issuing a new command
if (!spin_until_ready())
return false;
// Just in case we have a pending interrupt.
m_interrupt_enable.clear();
m_interrupt_status.clear();
full_memory_barrier();
dbgln_if(AHCI_DEBUG, "AHCI Port {}: Marking command header at index {} as ready to identify device", representative_port_index(), unused_command_header.value());
m_port_registers.ci = 1 << unused_command_header.value();
full_memory_barrier();
size_t time_elapsed = 0;
bool success = false;
while (1) {
// Note: We allow it to spin for 256 milliseconds, which should be enough for a device to respond.
if (time_elapsed >= 256) {
break;
}
if (m_port_registers.serr != 0) {
dbgln("AHCI Port {}: Identify failed, SError {:#08x}", representative_port_index(), (u32)m_port_registers.serr);
try_disambiguate_sata_error();
break;
}
if (!(m_port_registers.ci & (1 << unused_command_header.value()))) {
success = true;
break;
}
microseconds_delay(1000); // delay with 1 milliseconds
time_elapsed++;
}
// Note: We probably ended up triggering an interrupt but we don't really want to handle it,
// so just get rid of it.
// FIXME: Do that in a better way so we don't need to actually remember this every time
// we need to do this.
m_interrupt_status.clear();
m_interrupt_enable.set_all();
return success;
}
void AHCIPort::wait_until_condition_met_or_timeout(size_t delay_in_microseconds, size_t retries, Function<bool(void)> condition_being_met) const
{
size_t retry = 0;
while (retry < retries) {
if (condition_being_met())
break;
microseconds_delay(delay_in_microseconds);
retry++;
}
}
bool AHCIPort::shutdown()
{
MutexLocker locker(m_lock);
SpinlockLocker lock(m_hard_lock);
rebase();
set_interface_state(AHCI::DeviceDetectionInitialization::DisableInterface);
return true;
}
Optional<u8> AHCIPort::try_to_find_unused_command_header()
{
VERIFY(m_lock.is_locked());
u32 commands_issued = m_port_registers.ci;
for (size_t index = 0; index < 32; index++) {
if (!(commands_issued & 1)) {
dbgln_if(AHCI_DEBUG, "AHCI Port {}: unused command header at index {}", representative_port_index(), index);
return index;
}
commands_issued >>= 1;
}
return {};
}
void AHCIPort::start_command_list_processing() const
{
VERIFY(m_lock.is_locked());
VERIFY(m_hard_lock.is_locked());
VERIFY(is_operable());
dbgln_if(AHCI_DEBUG, "AHCI Port {}: Starting command list processing.", representative_port_index());
m_port_registers.cmd = m_port_registers.cmd | 1;
}
void AHCIPort::mark_command_header_ready_to_process(u8 command_header_index) const
{
VERIFY(m_lock.is_locked());
VERIFY(m_hard_lock.is_locked());
VERIFY(is_operable());
VERIFY(!m_wait_for_completion);
m_wait_for_completion = true;
dbgln_if(AHCI_DEBUG, "AHCI Port {}: Marking command header at index {} as ready to process.", representative_port_index(), command_header_index);
m_port_registers.ci = 1 << command_header_index;
}
void AHCIPort::stop_command_list_processing() const
{
VERIFY(m_lock.is_locked());
VERIFY(m_hard_lock.is_locked());
dbgln_if(AHCI_DEBUG, "AHCI Port {}: Stopping command list processing.", representative_port_index());
m_port_registers.cmd = m_port_registers.cmd & 0xfffffffe;
}
void AHCIPort::start_fis_receiving() const
{
VERIFY(m_lock.is_locked());
VERIFY(m_hard_lock.is_locked());
dbgln_if(AHCI_DEBUG, "AHCI Port {}: Starting FIS receiving.", representative_port_index());
m_port_registers.cmd = m_port_registers.cmd | (1 << 4);
}
void AHCIPort::power_on() const
{
VERIFY(m_lock.is_locked());
VERIFY(m_hard_lock.is_locked());
dbgln_if(AHCI_DEBUG, "AHCI Port {}: Power on. Cold presence detection? {}", representative_port_index(), (bool)(m_port_registers.cmd & (1 << 20)));
if (!(m_port_registers.cmd & (1 << 20)))
return;
dbgln_if(AHCI_DEBUG, "AHCI Port {}: Powering on device.", representative_port_index());
m_port_registers.cmd = m_port_registers.cmd | (1 << 2);
}
void AHCIPort::spin_up() const
{
VERIFY(m_lock.is_locked());
VERIFY(m_hard_lock.is_locked());
dbgln_if(AHCI_DEBUG, "AHCI Port {}: Spin up. Staggered spin up? {}", representative_port_index(), m_hba_capabilities.staggered_spin_up_supported);
if (!m_hba_capabilities.staggered_spin_up_supported)
return;
dbgln_if(AHCI_DEBUG, "AHCI Port {}: Spinning up device.", representative_port_index());
m_port_registers.cmd = m_port_registers.cmd | (1 << 1);
}
void AHCIPort::stop_fis_receiving() const
{
VERIFY(m_lock.is_locked());
VERIFY(m_hard_lock.is_locked());
dbgln_if(AHCI_DEBUG, "AHCI Port {}: Stopping FIS receiving.", representative_port_index());
m_port_registers.cmd = m_port_registers.cmd & 0xFFFFFFEF;
}
bool AHCIPort::initiate_sata_reset()
{
VERIFY(m_lock.is_locked());
VERIFY(m_hard_lock.is_locked());
dbgln_if(AHCI_DEBUG, "AHCI Port {}: Initiate SATA reset", representative_port_index());
stop_command_list_processing();
full_memory_barrier();
// Note: The AHCI specification says to wait now a 500 milliseconds
// Try to wait 1 second for HBA to clear Command List Running
wait_until_condition_met_or_timeout(100, 5000, [this]() -> bool {
return !(m_port_registers.cmd & (1 << 15));
});
full_memory_barrier();
spin_up();
full_memory_barrier();
set_interface_state(AHCI::DeviceDetectionInitialization::PerformInterfaceInitializationSequence);
// The AHCI specification says to wait now a 1 millisecond
microseconds_delay(1000);
full_memory_barrier();
set_interface_state(AHCI::DeviceDetectionInitialization::NoActionRequested);
full_memory_barrier();
wait_until_condition_met_or_timeout(10, 1000, [this]() -> bool {
return is_phy_enabled();
});
dmesgln("AHCI Port {}: {}", representative_port_index(), try_disambiguate_sata_status());
full_memory_barrier();
clear_sata_error_register();
return (m_port_registers.ssts & 0xf) == 3;
}
void AHCIPort::set_interface_state(AHCI::DeviceDetectionInitialization requested_action)
{
switch (requested_action) {
case AHCI::DeviceDetectionInitialization::NoActionRequested:
m_port_registers.sctl = (m_port_registers.sctl & 0xfffffff0);
return;
case AHCI::DeviceDetectionInitialization::PerformInterfaceInitializationSequence:
m_port_registers.sctl = (m_port_registers.sctl & 0xfffffff0) | 1;
return;
case AHCI::DeviceDetectionInitialization::DisableInterface:
m_port_registers.sctl = (m_port_registers.sctl & 0xfffffff0) | 4;
return;
}
VERIFY_NOT_REACHED();
}
}