mirror of
				https://github.com/RGBCube/serenity
				synced 2025-10-31 21:52:45 +00:00 
			
		
		
		
	 6e19ab2bbc
			
		
	
	
		6e19ab2bbc
		
	
	
	
	
		
			
			We have a new, improved string type coming up in AK (OOM aware, no null state), and while it's going to use UTF-8, the name UTF8String is a mouthful - so let's free up the String name by renaming the existing class. Making the old one have an annoying name will hopefully also help with quick adoption :^)
		
			
				
	
	
		
			195 lines
		
	
	
	
		
			4.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			195 lines
		
	
	
	
		
			4.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2020, the SerenityOS developers.
 | |
|  *
 | |
|  * SPDX-License-Identifier: BSD-2-Clause
 | |
|  */
 | |
| 
 | |
| #include "MCTSTree.h"
 | |
| #include <AK/DeprecatedString.h>
 | |
| #include <stdlib.h>
 | |
| 
 | |
| MCTSTree::MCTSTree(Chess::Board const& board, MCTSTree* parent)
 | |
|     : m_parent(parent)
 | |
|     , m_board(make<Chess::Board>(board))
 | |
|     , m_last_move(board.last_move())
 | |
|     , m_turn(board.turn())
 | |
| {
 | |
| }
 | |
| 
 | |
| MCTSTree::MCTSTree(MCTSTree&& other)
 | |
|     : m_children(move(other.m_children))
 | |
|     , m_parent(other.m_parent)
 | |
|     , m_white_points(other.m_white_points)
 | |
|     , m_simulations(other.m_simulations)
 | |
|     , m_board(move(other.m_board))
 | |
|     , m_last_move(move(other.m_last_move))
 | |
|     , m_turn(other.m_turn)
 | |
|     , m_moves_generated(other.m_moves_generated)
 | |
| {
 | |
|     other.m_parent = nullptr;
 | |
| }
 | |
| 
 | |
| MCTSTree& MCTSTree::select_leaf()
 | |
| {
 | |
|     if (!expanded() || m_children.size() == 0)
 | |
|         return *this;
 | |
| 
 | |
|     MCTSTree* node = nullptr;
 | |
|     double max_uct = -double(INFINITY);
 | |
|     for (auto& child : m_children) {
 | |
|         double uct = child.uct(m_turn);
 | |
|         if (uct >= max_uct) {
 | |
|             max_uct = uct;
 | |
|             node = &child;
 | |
|         }
 | |
|     }
 | |
|     VERIFY(node);
 | |
|     return node->select_leaf();
 | |
| }
 | |
| 
 | |
| MCTSTree& MCTSTree::expand()
 | |
| {
 | |
|     VERIFY(!expanded() || m_children.size() == 0);
 | |
| 
 | |
|     if (!m_moves_generated) {
 | |
|         m_board->generate_moves([&](Chess::Move chess_move) {
 | |
|             auto clone = m_board->clone_without_history();
 | |
|             clone.apply_move(chess_move);
 | |
|             m_children.append(make<MCTSTree>(move(clone), this));
 | |
|             return IterationDecision::Continue;
 | |
|         });
 | |
|         m_moves_generated = true;
 | |
|         if (m_children.size() != 0)
 | |
|             m_board = nullptr; // Release the board to save memory.
 | |
|     }
 | |
| 
 | |
|     if (m_children.size() == 0) {
 | |
|         return *this;
 | |
|     }
 | |
| 
 | |
|     for (auto& child : m_children) {
 | |
|         if (child.m_simulations == 0) {
 | |
|             return child;
 | |
|         }
 | |
|     }
 | |
|     VERIFY_NOT_REACHED();
 | |
| }
 | |
| 
 | |
| int MCTSTree::simulate_game() const
 | |
| {
 | |
|     Chess::Board clone = *m_board;
 | |
|     while (!clone.game_finished()) {
 | |
|         clone.apply_move(clone.random_move());
 | |
|     }
 | |
|     return clone.game_score();
 | |
| }
 | |
| 
 | |
| int MCTSTree::heuristic() const
 | |
| {
 | |
|     if (m_board->game_finished())
 | |
|         return m_board->game_score();
 | |
| 
 | |
|     double winchance = max(min(double(m_board->material_imbalance()) / 6, 1.0), -1.0);
 | |
| 
 | |
|     double random = double(rand()) / RAND_MAX;
 | |
|     if (winchance >= random)
 | |
|         return 1;
 | |
|     if (winchance <= -random)
 | |
|         return -1;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void MCTSTree::apply_result(int game_score)
 | |
| {
 | |
|     m_simulations++;
 | |
|     m_white_points += game_score;
 | |
| 
 | |
|     if (m_parent)
 | |
|         m_parent->apply_result(game_score);
 | |
| }
 | |
| 
 | |
| void MCTSTree::do_round()
 | |
| {
 | |
| 
 | |
|     // Note: Limit expansion to spare some memory
 | |
|     //       Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search.
 | |
|     //       Rémi Coulom.
 | |
|     auto* node_ptr = &select_leaf();
 | |
|     if (node_ptr->m_simulations > s_number_of_visit_parameter)
 | |
|         node_ptr = &select_leaf().expand();
 | |
| 
 | |
|     auto& node = *node_ptr;
 | |
| 
 | |
|     int result;
 | |
|     if constexpr (s_eval_method == EvalMethod::Simulation) {
 | |
|         result = node.simulate_game();
 | |
|     } else {
 | |
|         result = node.heuristic();
 | |
|     }
 | |
|     node.apply_result(result);
 | |
| }
 | |
| 
 | |
| Optional<MCTSTree&> MCTSTree::child_with_move(Chess::Move chess_move)
 | |
| {
 | |
|     for (auto& node : m_children) {
 | |
|         if (node.last_move() == chess_move)
 | |
|             return node;
 | |
|     }
 | |
|     return {};
 | |
| }
 | |
| 
 | |
| MCTSTree& MCTSTree::best_node()
 | |
| {
 | |
|     int score_multiplier = (m_turn == Chess::Color::White) ? 1 : -1;
 | |
| 
 | |
|     MCTSTree* best_node_ptr = nullptr;
 | |
|     double best_score = -double(INFINITY);
 | |
|     VERIFY(m_children.size());
 | |
|     for (auto& node : m_children) {
 | |
|         double node_score = node.expected_value() * score_multiplier;
 | |
|         if (node_score >= best_score) {
 | |
|             best_node_ptr = &node;
 | |
|             best_score = node_score;
 | |
|         }
 | |
|     }
 | |
|     VERIFY(best_node_ptr);
 | |
| 
 | |
|     return *best_node_ptr;
 | |
| }
 | |
| 
 | |
| Chess::Move MCTSTree::last_move() const
 | |
| {
 | |
|     return m_last_move.value();
 | |
| }
 | |
| 
 | |
| double MCTSTree::expected_value() const
 | |
| {
 | |
|     if (m_simulations == 0)
 | |
|         return 0;
 | |
| 
 | |
|     return double(m_white_points) / m_simulations;
 | |
| }
 | |
| 
 | |
| double MCTSTree::uct(Chess::Color color) const
 | |
| {
 | |
|     // UCT: Upper Confidence Bound Applied to Trees.
 | |
|     //      Kocsis, Levente; Szepesvári, Csaba (2006). "Bandit based Monte-Carlo Planning"
 | |
| 
 | |
|     // Fun fact: Szepesvári was my data structures professor.
 | |
|     double expected = expected_value() * ((color == Chess::Color::White) ? 1 : -1);
 | |
|     return expected + s_exploration_parameter * sqrt(log(m_parent->m_simulations) / m_simulations);
 | |
| }
 | |
| 
 | |
| bool MCTSTree::expanded() const
 | |
| {
 | |
|     if (!m_moves_generated)
 | |
|         return false;
 | |
| 
 | |
|     for (auto& child : m_children) {
 | |
|         if (child.m_simulations == 0)
 | |
|             return false;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 |