mirror of
				https://github.com/RGBCube/serenity
				synced 2025-10-31 01:12:44 +00:00 
			
		
		
		
	 e8f66f821c
			
		
	
	
		e8f66f821c
		
	
	
	
	
		
			
			Tests against and writes to the depth buffer when GL_DEPTH_TEST is enabled via glEnable(). Currently fragment z is always compared against existing depth with GL_LESS.
		
			
				
	
	
		
			270 lines
		
	
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			270 lines
		
	
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2021, Stephan Unverwerth <s.unverwerth@gmx.de>
 | |
|  *
 | |
|  * SPDX-License-Identifier: BSD-2-Clause
 | |
|  */
 | |
| 
 | |
| #include "SoftwareRasterizer.h"
 | |
| #include <AK/Function.h>
 | |
| #include <LibGfx/Painter.h>
 | |
| 
 | |
| namespace GL {
 | |
| 
 | |
| static constexpr size_t RASTERIZER_BLOCK_SIZE = 16;
 | |
| 
 | |
| struct FloatVector2 {
 | |
|     float x;
 | |
|     float y;
 | |
| };
 | |
| 
 | |
| constexpr static float triangle_area(const FloatVector2& a, const FloatVector2& b, const FloatVector2& c)
 | |
| {
 | |
|     return ((c.x - a.x) * (b.y - a.y) - (c.y - a.y) * (b.x - a.x)) / 2;
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| constexpr static T interpolate(const T& v0, const T& v1, const T& v2, const FloatVector4& barycentric_coords)
 | |
| {
 | |
|     return v0 * barycentric_coords.x() + v1 * barycentric_coords.y() + v2 * barycentric_coords.z();
 | |
| }
 | |
| 
 | |
| static Gfx::RGBA32 to_rgba32(const FloatVector4& v)
 | |
| {
 | |
|     auto clamped = v.clamped(0, 1);
 | |
|     u8 r = clamped.x() * 255;
 | |
|     u8 g = clamped.y() * 255;
 | |
|     u8 b = clamped.z() * 255;
 | |
|     u8 a = clamped.w() * 255;
 | |
|     return a << 24 | b << 16 | g << 8 | r;
 | |
| }
 | |
| 
 | |
| template<typename PS>
 | |
| static void rasterize_triangle(const RasterizerOptions& options, Gfx::Bitmap& render_target, DepthBuffer& depth_buffer, const GLTriangle& triangle, PS pixel_shader)
 | |
| {
 | |
|     // Since the algorithm is based on blocks of uniform size, we need
 | |
|     // to ensure that our render_target size is actually a multiple of the block size
 | |
|     VERIFY((render_target.width() % RASTERIZER_BLOCK_SIZE) == 0);
 | |
|     VERIFY((render_target.height() % RASTERIZER_BLOCK_SIZE) == 0);
 | |
| 
 | |
|     // Calculate area of the triangle for later tests
 | |
|     FloatVector2 v0 = { triangle.vertices[0].x, triangle.vertices[0].y };
 | |
|     FloatVector2 v1 = { triangle.vertices[1].x, triangle.vertices[1].y };
 | |
|     FloatVector2 v2 = { triangle.vertices[2].x, triangle.vertices[2].y };
 | |
| 
 | |
|     float area = triangle_area(v0, v1, v2);
 | |
|     if (area == 0)
 | |
|         return;
 | |
| 
 | |
|     float one_over_area = 1 / area;
 | |
| 
 | |
|     // Obey top-left rule:
 | |
|     // This sets up "zero" for later pixel coverage tests.
 | |
|     // Depending on where on the triangle the edge is located
 | |
|     // it is either tested against 0 or float epsilon, effectively
 | |
|     // turning "< 0" into "<= 0"
 | |
|     float constexpr epsilon = AK::NumericLimits<float>::epsilon();
 | |
|     FloatVector4 zero { epsilon, epsilon, epsilon, 0.0f };
 | |
|     if (v1.y > v0.y || (v1.y == v0.y && v1.x < v0.x))
 | |
|         zero.set_z(0);
 | |
|     if (v2.y > v1.y || (v2.y == v1.y && v2.x < v1.x))
 | |
|         zero.set_x(0);
 | |
|     if (v0.y > v2.y || (v0.y == v2.y && v0.x < v2.x))
 | |
|         zero.set_y(0);
 | |
| 
 | |
|     // This function calculates the barycentric coordinates for the pixel relative to the triangle.
 | |
|     auto barycentric_coordinates = [v0, v1, v2, one_over_area](float x, float y) -> FloatVector4 {
 | |
|         FloatVector2 p { x, y };
 | |
|         return {
 | |
|             triangle_area(v1, v2, p) * one_over_area,
 | |
|             triangle_area(v2, v0, p) * one_over_area,
 | |
|             triangle_area(v0, v1, p) * one_over_area,
 | |
|             0.0f
 | |
|         };
 | |
|     };
 | |
| 
 | |
|     // This function tests whether a point lies within the triangle
 | |
|     auto test_point = [zero](const FloatVector4& point) -> bool {
 | |
|         return point.x() >= zero.x()
 | |
|             && point.y() >= zero.y()
 | |
|             && point.z() >= zero.z();
 | |
|     };
 | |
| 
 | |
|     // Calculate bounds
 | |
|     FloatVector2 min { AK::min(v0.x, AK::min(v1.x, v2.x)), AK::min(v0.y, AK::min(v1.y, v2.y)) };
 | |
|     FloatVector2 max { AK::max(v0.x, AK::max(v1.x, v2.x)), AK::max(v0.y, AK::max(v1.y, v2.y)) };
 | |
| 
 | |
|     // Calculate block-based bounds
 | |
|     int iminx = floorf(min.x);
 | |
|     int iminy = floorf(min.y);
 | |
|     int imaxx = ceilf(max.x);
 | |
|     int imaxy = ceilf(max.y);
 | |
| 
 | |
|     iminx = clamp(iminx, 0, render_target.width() - 1);
 | |
|     imaxx = clamp(imaxx, 0, render_target.width() - 1);
 | |
|     iminy = clamp(iminy, 0, render_target.height() - 1);
 | |
|     imaxy = clamp(imaxy, 0, render_target.height() - 1);
 | |
| 
 | |
|     int bx0 = iminx / RASTERIZER_BLOCK_SIZE;
 | |
|     int bx1 = imaxx / RASTERIZER_BLOCK_SIZE + 1;
 | |
|     int by0 = iminy / RASTERIZER_BLOCK_SIZE;
 | |
|     int by1 = imaxy / RASTERIZER_BLOCK_SIZE + 1;
 | |
| 
 | |
|     // Iterate over all blocks within the bounds of the triangle
 | |
|     for (int by = by0; by < by1; by++) {
 | |
|         for (int bx = bx0; bx < bx1; bx++) {
 | |
| 
 | |
|             // The 4 block corners
 | |
|             int x0 = bx * RASTERIZER_BLOCK_SIZE;
 | |
|             int y0 = by * RASTERIZER_BLOCK_SIZE;
 | |
|             int x1 = bx * RASTERIZER_BLOCK_SIZE + RASTERIZER_BLOCK_SIZE;
 | |
|             int y1 = by * RASTERIZER_BLOCK_SIZE + RASTERIZER_BLOCK_SIZE;
 | |
| 
 | |
|             // Barycentric coordinates of the 4 block corners
 | |
|             auto a = barycentric_coordinates(x0, y0);
 | |
|             auto b = barycentric_coordinates(x1, y0);
 | |
|             auto c = barycentric_coordinates(x0, y1);
 | |
|             auto d = barycentric_coordinates(x1, y1);
 | |
| 
 | |
|             // If the whole block is outside any of the triangle edges we can discard it completely
 | |
|             if ((a.x() < zero.x() && b.x() < zero.x() && c.x() < zero.x() && d.x() < zero.x())
 | |
|                 || (a.y() < zero.y() && b.y() < zero.y() && c.y() < zero.y() && d.y() < zero.y())
 | |
|                 || (a.z() < zero.z() && b.z() < zero.z() && c.z() < zero.z() && d.z() < zero.z()))
 | |
|                 continue;
 | |
| 
 | |
|             // barycentric coordinate derivatives
 | |
|             auto dcdx = (b - a) / RASTERIZER_BLOCK_SIZE;
 | |
|             auto dcdy = (c - a) / RASTERIZER_BLOCK_SIZE;
 | |
| 
 | |
|             if (test_point(a) && test_point(b) && test_point(c) && test_point(d)) {
 | |
|                 // The block is fully contained within the triangle
 | |
|                 // Fill the block without further coverage tests
 | |
|                 for (int y = y0; y < y1; y++) {
 | |
|                     auto coords = a;
 | |
|                     auto* pixel = &render_target.scanline(y)[x0];
 | |
|                     auto* depth = &depth_buffer.scanline(y)[x0];
 | |
|                     for (int x = x0; x < x1; x++) {
 | |
|                         if (options.enable_depth_test) {
 | |
|                             float z = interpolate(triangle.vertices[0].z, triangle.vertices[1].z, triangle.vertices[2].z, coords);
 | |
|                             if (z < *depth) {
 | |
|                                 *pixel = to_rgba32(pixel_shader(coords, triangle));
 | |
|                                 *depth = z;
 | |
|                             }
 | |
|                         } else {
 | |
|                             *pixel = to_rgba32(pixel_shader(coords, triangle));
 | |
|                         }
 | |
|                         pixel++;
 | |
|                         depth++;
 | |
|                         coords = coords + dcdx;
 | |
|                     }
 | |
|                     a = a + dcdy;
 | |
|                 }
 | |
|             } else {
 | |
|                 // The block overlaps at least one triangle edge
 | |
|                 // We need to test coverage of every pixel within the block
 | |
|                 for (int y = y0; y < y1; y++) {
 | |
|                     auto coords = a;
 | |
|                     auto* pixel = &render_target.scanline(y)[x0];
 | |
|                     auto* depth = &depth_buffer.scanline(y)[x0];
 | |
|                     for (int x = x0; x < x1; x++) {
 | |
|                         if (test_point(coords)) {
 | |
|                             if (options.enable_depth_test) {
 | |
|                                 float z = interpolate(triangle.vertices[0].z, triangle.vertices[1].z, triangle.vertices[2].z, coords);
 | |
|                                 if (z < *depth) {
 | |
|                                     *pixel = to_rgba32(pixel_shader(coords, triangle));
 | |
|                                     *depth = z;
 | |
|                                 }
 | |
|                             } else {
 | |
|                                 *pixel = to_rgba32(pixel_shader(coords, triangle));
 | |
|                             }
 | |
|                         }
 | |
|                         pixel++;
 | |
|                         depth++;
 | |
|                         coords = coords + dcdx;
 | |
|                     }
 | |
|                     a = a + dcdy;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static Gfx::IntSize closest_multiple(const Gfx::IntSize& min_size, size_t step)
 | |
| {
 | |
|     int width = ((min_size.width() + step - 1) / step) * step;
 | |
|     int height = ((min_size.height() + step - 1) / step) * step;
 | |
|     return { width, height };
 | |
| }
 | |
| 
 | |
| SoftwareRasterizer::SoftwareRasterizer(const Gfx::IntSize& min_size)
 | |
|     : m_render_target { Gfx::Bitmap::create(Gfx::BitmapFormat::BGRA8888, closest_multiple(min_size, RASTERIZER_BLOCK_SIZE)) }
 | |
|     , m_depth_buffer { adopt_own(*new DepthBuffer(closest_multiple(min_size, RASTERIZER_BLOCK_SIZE))) }
 | |
| {
 | |
| }
 | |
| 
 | |
| void SoftwareRasterizer::submit_triangle(const GLTriangle& triangle)
 | |
| {
 | |
|     if (m_options.shade_smooth) {
 | |
|         rasterize_triangle(m_options, *m_render_target, *m_depth_buffer, triangle, [](const FloatVector4& v, const GLTriangle& t) -> FloatVector4 {
 | |
|             const float r = t.vertices[0].r * v.x() + t.vertices[1].r * v.y() + t.vertices[2].r * v.z();
 | |
|             const float g = t.vertices[0].g * v.x() + t.vertices[1].g * v.y() + t.vertices[2].g * v.z();
 | |
|             const float b = t.vertices[0].b * v.x() + t.vertices[1].b * v.y() + t.vertices[2].b * v.z();
 | |
|             const float a = t.vertices[0].a * v.x() + t.vertices[1].a * v.y() + t.vertices[2].a * v.z();
 | |
|             return { r, g, b, a };
 | |
|         });
 | |
|     } else {
 | |
|         rasterize_triangle(m_options, *m_render_target, *m_depth_buffer, triangle, [](const FloatVector4&, const GLTriangle& t) -> FloatVector4 {
 | |
|             return { t.vertices[0].r, t.vertices[0].g, t.vertices[0].b, t.vertices[0].a };
 | |
|         });
 | |
|     }
 | |
| }
 | |
| 
 | |
| void SoftwareRasterizer::resize(const Gfx::IntSize& min_size)
 | |
| {
 | |
|     wait_for_all_threads();
 | |
| 
 | |
|     m_render_target = Gfx::Bitmap::create(Gfx::BitmapFormat::BGRA8888, closest_multiple(min_size, RASTERIZER_BLOCK_SIZE));
 | |
|     m_depth_buffer = adopt_own(*new DepthBuffer(m_render_target->size()));
 | |
| }
 | |
| 
 | |
| void SoftwareRasterizer::clear_color(const FloatVector4& color)
 | |
| {
 | |
|     wait_for_all_threads();
 | |
| 
 | |
|     uint8_t r = static_cast<uint8_t>(clamp(color.x(), 0.0f, 1.0f) * 255);
 | |
|     uint8_t g = static_cast<uint8_t>(clamp(color.y(), 0.0f, 1.0f) * 255);
 | |
|     uint8_t b = static_cast<uint8_t>(clamp(color.z(), 0.0f, 1.0f) * 255);
 | |
|     uint8_t a = static_cast<uint8_t>(clamp(color.w(), 0.0f, 1.0f) * 255);
 | |
| 
 | |
|     m_render_target->fill(Gfx::Color(r, g, b, a));
 | |
| }
 | |
| 
 | |
| void SoftwareRasterizer::clear_depth(float depth)
 | |
| {
 | |
|     wait_for_all_threads();
 | |
| 
 | |
|     m_depth_buffer->clear(depth);
 | |
| }
 | |
| 
 | |
| void SoftwareRasterizer::blit_to(Gfx::Bitmap& target)
 | |
| {
 | |
|     wait_for_all_threads();
 | |
| 
 | |
|     Gfx::Painter painter { target };
 | |
|     painter.blit({ 0, 0 }, *m_render_target, m_render_target->rect(), 1.0f, false);
 | |
| }
 | |
| 
 | |
| void SoftwareRasterizer::wait_for_all_threads() const
 | |
| {
 | |
|     // FIXME: Wait for all render threads to finish when multithreading is being implemented
 | |
| }
 | |
| 
 | |
| void SoftwareRasterizer::set_options(const RasterizerOptions& options)
 | |
| {
 | |
|     wait_for_all_threads();
 | |
| 
 | |
|     m_options = options;
 | |
| 
 | |
|     // FIXME: Recreate or reinitialize render threads here when multithreading is being implemented
 | |
| }
 | |
| 
 | |
| }
 |