mirror of
				https://github.com/RGBCube/serenity
				synced 2025-10-31 17:42:43 +00:00 
			
		
		
		
	 e07ec02470
			
		
	
	
		e07ec02470
		
	
	
	
	
		
			
			All the elliptic curve implementations had a long list of private methods which were all stored in a single .cpp file. Now we simply use static methods instead.
		
			
				
	
	
		
			364 lines
		
	
	
	
		
			9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			364 lines
		
	
	
	
		
			9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2022, stelar7 <dudedbz@gmail.com>
 | |
|  *
 | |
|  * SPDX-License-Identifier: BSD-2-Clause
 | |
|  */
 | |
| 
 | |
| #include <AK/ByteReader.h>
 | |
| #include <AK/Endian.h>
 | |
| #include <AK/Random.h>
 | |
| #include <LibCrypto/Curves/X25519.h>
 | |
| 
 | |
| namespace Crypto::Curves {
 | |
| 
 | |
| static constexpr u8 BITS = 255;
 | |
| static constexpr u8 BYTES = 32;
 | |
| static constexpr u8 WORDS = 8;
 | |
| static constexpr u32 A24 = 121666;
 | |
| 
 | |
| static void import_state(u32* state, ReadonlyBytes data)
 | |
| {
 | |
|     for (auto i = 0; i < WORDS; i++) {
 | |
|         u32 value = ByteReader::load32(data.offset_pointer(sizeof(u32) * i));
 | |
|         state[i] = AK::convert_between_host_and_little_endian(value);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static ErrorOr<ByteBuffer> export_state(u32* data)
 | |
| {
 | |
|     auto buffer = TRY(ByteBuffer::create_uninitialized(BYTES));
 | |
| 
 | |
|     for (auto i = 0; i < WORDS; i++) {
 | |
|         u32 value = AK::convert_between_host_and_little_endian(data[i]);
 | |
|         ByteReader::store(buffer.offset_pointer(sizeof(u32) * i), value);
 | |
|     }
 | |
| 
 | |
|     return buffer;
 | |
| }
 | |
| 
 | |
| static void select(u32* state, u32* a, u32* b, u32 condition)
 | |
| {
 | |
|     // If B < (2^255 - 19) then R = B, else R = A
 | |
|     u32 mask = condition - 1;
 | |
| 
 | |
|     for (auto i = 0; i < WORDS; i++) {
 | |
|         state[i] = (a[i] & mask) | (b[i] & ~mask);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void set(u32* state, u32 value)
 | |
| {
 | |
|     state[0] = value;
 | |
| 
 | |
|     for (auto i = 1; i < WORDS; i++) {
 | |
|         state[i] = 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void copy(u32* state, u32* value)
 | |
| {
 | |
|     for (auto i = 0; i < WORDS; i++) {
 | |
|         state[i] = value[i];
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void conditional_swap(u32* first, u32* second, u32 condition)
 | |
| {
 | |
|     u32 mask = ~condition + 1;
 | |
|     for (auto i = 0; i < WORDS; i++) {
 | |
|         u32 temp = mask & (first[i] ^ second[i]);
 | |
|         first[i] ^= temp;
 | |
|         second[i] ^= temp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void modular_reduce(u32* state, u32* data)
 | |
| {
 | |
|     // R = A mod p
 | |
|     u64 temp = 19;
 | |
|     u32 other[WORDS];
 | |
| 
 | |
|     for (auto i = 0; i < WORDS; i++) {
 | |
|         temp += data[i];
 | |
|         other[i] = temp & 0xFFFFFFFF;
 | |
|         temp >>= 32;
 | |
|     }
 | |
| 
 | |
|     // Compute B = A - (2^255 - 19)
 | |
|     other[7] -= 0x80000000;
 | |
| 
 | |
|     u32 mask = (other[7] & 0x80000000) >> 31;
 | |
|     select(state, other, data, mask);
 | |
| }
 | |
| 
 | |
| static void modular_multiply_single(u32* state, u32* first, u32 second)
 | |
| {
 | |
|     // Compute R = (A * B) mod p
 | |
|     u64 temp = 0;
 | |
|     u32 output[WORDS];
 | |
| 
 | |
|     for (auto i = 0; i < WORDS; i++) {
 | |
|         temp += (u64)first[i] * second;
 | |
|         output[i] = temp & 0xFFFFFFFF;
 | |
|         temp >>= 32;
 | |
|     }
 | |
| 
 | |
|     // Reduce bit 256 (2^256 = 38 mod p)
 | |
|     temp *= 38;
 | |
|     // Reduce bit 255 (2^255 = 19 mod p)
 | |
|     temp += (output[7] >> 31) * 19;
 | |
|     // Mask the most significant bit
 | |
|     output[7] &= 0x7FFFFFFF;
 | |
| 
 | |
|     // Fast modular reduction
 | |
|     for (auto i = 0; i < WORDS; i++) {
 | |
|         temp += output[i];
 | |
|         output[i] = temp & 0xFFFFFFFF;
 | |
|         temp >>= 32;
 | |
|     }
 | |
| 
 | |
|     modular_reduce(state, output);
 | |
| }
 | |
| 
 | |
| static void modular_multiply(u32* state, u32* first, u32* second)
 | |
| {
 | |
|     // Compute R = (A * B) mod p
 | |
|     u64 temp = 0;
 | |
|     u64 carry = 0;
 | |
|     u32 output[WORDS * 2];
 | |
| 
 | |
|     // Comba's method
 | |
|     for (auto i = 0; i < 16; i++) {
 | |
|         if (i < WORDS) {
 | |
|             for (auto j = 0; j <= i; j++) {
 | |
|                 temp += (u64)first[j] * second[i - j];
 | |
|                 carry += temp >> 32;
 | |
|                 temp &= 0xFFFFFFFF;
 | |
|             }
 | |
|         } else {
 | |
|             for (auto j = i - 7; j < WORDS; j++) {
 | |
|                 temp += (u64)first[j] * second[i - j];
 | |
|                 carry += temp >> 32;
 | |
|                 temp &= 0xFFFFFFFF;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         output[i] = temp & 0xFFFFFFFF;
 | |
|         temp = carry & 0xFFFFFFFF;
 | |
|         carry >>= 32;
 | |
|     }
 | |
| 
 | |
|     // Reduce bit 255 (2^255 = 19 mod p)
 | |
|     temp = (output[7] >> 31) * 19;
 | |
|     // Mask the most significant bit
 | |
|     output[7] &= 0x7FFFFFFF;
 | |
| 
 | |
|     // Fast modular reduction 1st pass
 | |
|     for (auto i = 0; i < WORDS; i++) {
 | |
|         temp += output[i];
 | |
|         temp += (u64)output[i + 8] * 38;
 | |
|         output[i] = temp & 0xFFFFFFFF;
 | |
|         temp >>= 32;
 | |
|     }
 | |
| 
 | |
|     // Reduce bit 256 (2^256 = 38 mod p)
 | |
|     temp *= 38;
 | |
|     // Reduce bit 255 (2^255 = 19 mod p)
 | |
|     temp += (output[7] >> 31) * 19;
 | |
|     // Mask the most significant bit
 | |
|     output[7] &= 0x7FFFFFFF;
 | |
| 
 | |
|     // Fast modular reduction 2nd pass
 | |
|     for (auto i = 0; i < WORDS; i++) {
 | |
|         temp += output[i];
 | |
|         output[i] = temp & 0xFFFFFFFF;
 | |
|         temp >>= 32;
 | |
|     }
 | |
| 
 | |
|     modular_reduce(state, output);
 | |
| }
 | |
| 
 | |
| static void modular_square(u32* state, u32* value)
 | |
| {
 | |
|     // Compute R = (A ^ 2) mod p
 | |
|     modular_multiply(state, value, value);
 | |
| }
 | |
| 
 | |
| static void modular_add(u32* state, u32* first, u32* second)
 | |
| {
 | |
|     // R = (A + B) mod p
 | |
|     u64 temp = 0;
 | |
|     for (auto i = 0; i < WORDS; i++) {
 | |
|         temp += first[i];
 | |
|         temp += second[i];
 | |
|         state[i] = temp & 0xFFFFFFFF;
 | |
|         temp >>= 32;
 | |
|     }
 | |
| 
 | |
|     modular_reduce(state, state);
 | |
| }
 | |
| 
 | |
| static void modular_subtract(u32* state, u32* first, u32* second)
 | |
| {
 | |
|     // R = (A - B) mod p
 | |
|     i64 temp = -19;
 | |
|     for (auto i = 0; i < WORDS; i++) {
 | |
|         temp += first[i];
 | |
|         temp -= second[i];
 | |
|         state[i] = temp & 0xFFFFFFFF;
 | |
|         temp >>= 32;
 | |
|     }
 | |
| 
 | |
|     // Compute R = A + (2^255 - 19) - B
 | |
|     state[7] += 0x80000000;
 | |
| 
 | |
|     modular_reduce(state, state);
 | |
| }
 | |
| 
 | |
| static void to_power_of_2n(u32* state, u32* value, u8 n)
 | |
| {
 | |
|     // compute R = (A ^ (2^n)) mod p
 | |
|     modular_square(state, value);
 | |
|     for (auto i = 1; i < n; i++) {
 | |
|         modular_square(state, state);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void modular_multiply_inverse(u32* state, u32* value)
 | |
| {
 | |
|     // Compute R = A^-1 mod p
 | |
|     u32 u[WORDS];
 | |
|     u32 v[WORDS];
 | |
| 
 | |
|     // Fermat's little theorem
 | |
|     modular_square(u, value);
 | |
|     modular_multiply(u, u, value);
 | |
|     modular_square(u, u);
 | |
|     modular_multiply(v, u, value);
 | |
|     to_power_of_2n(u, v, 3);
 | |
|     modular_multiply(u, u, v);
 | |
|     modular_square(u, u);
 | |
|     modular_multiply(v, u, value);
 | |
|     to_power_of_2n(u, v, 7);
 | |
|     modular_multiply(u, u, v);
 | |
|     modular_square(u, u);
 | |
|     modular_multiply(v, u, value);
 | |
|     to_power_of_2n(u, v, 15);
 | |
|     modular_multiply(u, u, v);
 | |
|     modular_square(u, u);
 | |
|     modular_multiply(v, u, value);
 | |
|     to_power_of_2n(u, v, 31);
 | |
|     modular_multiply(v, u, v);
 | |
|     to_power_of_2n(u, v, 62);
 | |
|     modular_multiply(u, u, v);
 | |
|     modular_square(u, u);
 | |
|     modular_multiply(v, u, value);
 | |
|     to_power_of_2n(u, v, 125);
 | |
|     modular_multiply(u, u, v);
 | |
|     modular_square(u, u);
 | |
|     modular_square(u, u);
 | |
|     modular_multiply(u, u, value);
 | |
|     modular_square(u, u);
 | |
|     modular_square(u, u);
 | |
|     modular_multiply(u, u, value);
 | |
|     modular_square(u, u);
 | |
|     modular_multiply(state, u, value);
 | |
| }
 | |
| 
 | |
| ErrorOr<ByteBuffer> X25519::generate_private_key()
 | |
| {
 | |
|     auto buffer = TRY(ByteBuffer::create_uninitialized(BYTES));
 | |
|     fill_with_random(buffer.data(), buffer.size());
 | |
|     return buffer;
 | |
| }
 | |
| 
 | |
| ErrorOr<ByteBuffer> X25519::generate_public_key(ReadonlyBytes a)
 | |
| {
 | |
|     u8 generator[BYTES] { 9 };
 | |
|     return compute_coordinate(a, { generator, BYTES });
 | |
| }
 | |
| 
 | |
| // https://datatracker.ietf.org/doc/html/rfc7748#section-5
 | |
| ErrorOr<ByteBuffer> X25519::compute_coordinate(ReadonlyBytes input_k, ReadonlyBytes input_u)
 | |
| {
 | |
|     u32 k[WORDS] {};
 | |
|     u32 u[WORDS] {};
 | |
|     u32 x1[WORDS] {};
 | |
|     u32 x2[WORDS] {};
 | |
|     u32 z1[WORDS] {};
 | |
|     u32 z2[WORDS] {};
 | |
|     u32 t1[WORDS] {};
 | |
|     u32 t2[WORDS] {};
 | |
| 
 | |
|     // Copy input to internal state
 | |
|     import_state(k, input_k);
 | |
| 
 | |
|     // Set the three least significant bits of the first byte and the most significant bit of the last to zero,
 | |
|     // set the second most significant bit of the last byte to 1
 | |
|     k[0] &= 0xFFFFFFF8;
 | |
|     k[7] &= 0x7FFFFFFF;
 | |
|     k[7] |= 0x40000000;
 | |
| 
 | |
|     // Copy coordinate to internal state
 | |
|     import_state(u, input_u);
 | |
|     // mask the most significant bit in the final byte.
 | |
|     u[7] &= 0x7FFFFFFF;
 | |
| 
 | |
|     // Implementations MUST accept non-canonical values and process them as
 | |
|     // if they had been reduced modulo the field prime.
 | |
|     modular_reduce(u, u);
 | |
| 
 | |
|     set(x1, 1);
 | |
|     set(z1, 0);
 | |
|     copy(x2, u);
 | |
|     set(z2, 1);
 | |
| 
 | |
|     // Montgomery ladder
 | |
|     u32 swap = 0;
 | |
|     for (auto i = BITS - 1; i >= 0; i--) {
 | |
|         u32 b = (k[i / BYTES] >> (i % BYTES)) & 1;
 | |
| 
 | |
|         conditional_swap(x1, x2, swap ^ b);
 | |
|         conditional_swap(z1, z2, swap ^ b);
 | |
| 
 | |
|         swap = b;
 | |
| 
 | |
|         modular_add(t1, x2, z2);
 | |
|         modular_subtract(x2, x2, z2);
 | |
|         modular_add(z2, x1, z1);
 | |
|         modular_subtract(x1, x1, z1);
 | |
|         modular_multiply(t1, t1, x1);
 | |
|         modular_multiply(x2, x2, z2);
 | |
|         modular_square(z2, z2);
 | |
|         modular_square(x1, x1);
 | |
|         modular_subtract(t2, z2, x1);
 | |
|         modular_multiply_single(z1, t2, A24);
 | |
|         modular_add(z1, z1, x1);
 | |
|         modular_multiply(z1, z1, t2);
 | |
|         modular_multiply(x1, x1, z2);
 | |
|         modular_subtract(z2, t1, x2);
 | |
|         modular_square(z2, z2);
 | |
|         modular_multiply(z2, z2, u);
 | |
|         modular_add(x2, x2, t1);
 | |
|         modular_square(x2, x2);
 | |
|     }
 | |
| 
 | |
|     conditional_swap(x1, x2, swap);
 | |
|     conditional_swap(z1, z2, swap);
 | |
| 
 | |
|     // Retrieve affine representation
 | |
|     modular_multiply_inverse(u, z1);
 | |
|     modular_multiply(u, u, x1);
 | |
| 
 | |
|     // Encode state for export
 | |
|     return export_state(u);
 | |
| }
 | |
| 
 | |
| ErrorOr<ByteBuffer> X25519::derive_premaster_key(ReadonlyBytes shared_point)
 | |
| {
 | |
|     VERIFY(shared_point.size() == BYTES);
 | |
|     ByteBuffer premaster_key = TRY(ByteBuffer::copy(shared_point));
 | |
|     return premaster_key;
 | |
| }
 | |
| 
 | |
| }
 |