1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-19 10:55:07 +00:00
serenity/Kernel/ACPI/Parser.cpp
Liav A 25ea7461a0 Kernel/PCI: Simplify the entire subsystem
A couple of things were changed:
1. Semantic changes - PCI segments are now called PCI domains, to better
match what they are really. It's also the name that Linux gave, and it
seems that Wikipedia also uses this name.
We also remove PCI::ChangeableAddress, because it was used in the past
but now it's no longer being used.
2. There are no WindowedMMIOAccess or MMIOAccess classes anymore, as
they made a bunch of unnecessary complexity. Instead, Windowed access is
removed entirely (this was tested, but never was benchmarked), so we are
left with IO access and memory access options. The memory access option
is essentially mapping the PCI bus (from the chosen PCI domain), to
virtual memory as-is. This means that unless needed, at any time, there
is only one PCI bus being mapped, and this is changed if access to
another PCI bus in the same PCI domain is needed. For now, we don't
support mapping of different PCI buses from different PCI domains at the
same time, because basically it's still a non-issue for most machines
out there.
2. OOM-safety is increased, especially when constructing the Access
object. It means that we pre-allocating any needed resources, and we try
to find PCI domains (if requested to initialize memory access) after we
attempt to construct the Access object, so it's possible to fail at this
point "gracefully".
3. All PCI API functions are now separated into a different header file,
which means only "clients" of the PCI subsystem API will need to include
that header file.
4. Functional changes - we only allow now to enumerate the bus after
a hardware scan. This means that the old method "enumerate_hardware"
is removed, so, when initializing an Access object, the initializing
function must call rescan on it to force it to find devices. This makes
it possible to fail rescan, and also to defer it after construction from
both OOM-safety terms and hotplug capabilities.
2021-09-07 13:47:37 +02:00

460 lines
19 KiB
C++

/*
* Copyright (c) 2020, Liav A. <liavalb@hotmail.co.il>
* Copyright (c) 2020-2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Format.h>
#include <AK/StringView.h>
#include <Kernel/ACPI/Parser.h>
#include <Kernel/Arch/PC/BIOS.h>
#include <Kernel/Arch/x86/InterruptDisabler.h>
#include <Kernel/Bus/PCI/API.h>
#include <Kernel/Debug.h>
#include <Kernel/IO.h>
#include <Kernel/Memory/TypedMapping.h>
#include <Kernel/Sections.h>
#include <Kernel/StdLib.h>
namespace Kernel::ACPI {
static Parser* s_acpi_parser;
Parser* Parser::the()
{
return s_acpi_parser;
}
UNMAP_AFTER_INIT NonnullRefPtr<ACPISysFSComponent> ACPISysFSComponent::create(String name, PhysicalAddress paddr, size_t table_size)
{
return adopt_ref(*new (nothrow) ACPISysFSComponent(name, paddr, table_size));
}
KResultOr<size_t> ACPISysFSComponent::read_bytes(off_t offset, size_t count, UserOrKernelBuffer& buffer, FileDescription*) const
{
auto blob = try_to_generate_buffer();
if (!blob)
return KResult(EFAULT);
if ((size_t)offset >= blob->size())
return KSuccess;
ssize_t nread = min(static_cast<off_t>(blob->size() - offset), static_cast<off_t>(count));
if (!buffer.write(blob->data() + offset, nread))
return KResult(EFAULT);
return nread;
}
OwnPtr<KBuffer> ACPISysFSComponent::try_to_generate_buffer() const
{
auto acpi_blob = Memory::map_typed<u8>((m_paddr), m_length);
return KBuffer::try_create_with_bytes(Span<u8> { acpi_blob.ptr(), m_length });
}
UNMAP_AFTER_INIT ACPISysFSComponent::ACPISysFSComponent(String name, PhysicalAddress paddr, size_t table_size)
: SysFSComponent(name)
, m_paddr(paddr)
, m_length(table_size)
{
}
UNMAP_AFTER_INIT void ACPISysFSDirectory::initialize()
{
auto acpi_directory = adopt_ref(*new (nothrow) ACPISysFSDirectory());
SysFSComponentRegistry::the().register_new_component(acpi_directory);
}
UNMAP_AFTER_INIT ACPISysFSDirectory::ACPISysFSDirectory()
: SysFSDirectory("acpi", SysFSComponentRegistry::the().root_directory())
{
NonnullRefPtrVector<SysFSComponent> components;
size_t ssdt_count = 0;
ACPI::Parser::the()->enumerate_static_tables([&](const StringView& signature, PhysicalAddress p_table, size_t length) {
if (signature == "SSDT") {
components.append(ACPISysFSComponent::create(String::formatted("{:4s}{}", signature.characters_without_null_termination(), ssdt_count), p_table, length));
ssdt_count++;
return;
}
components.append(ACPISysFSComponent::create(signature, p_table, length));
});
m_components = components;
auto rsdp = Memory::map_typed<Structures::RSDPDescriptor20>(ACPI::Parser::the()->rsdp());
m_components.append(ACPISysFSComponent::create("RSDP", ACPI::Parser::the()->rsdp(), rsdp->base.revision == 0 ? sizeof(Structures::RSDPDescriptor) : rsdp->length));
auto main_system_description_table = Memory::map_typed<Structures::SDTHeader>(ACPI::Parser::the()->main_system_description_table());
if (ACPI::Parser::the()->is_xsdt_supported()) {
m_components.append(ACPISysFSComponent::create("XSDT", ACPI::Parser::the()->main_system_description_table(), main_system_description_table->length));
} else {
m_components.append(ACPISysFSComponent::create("RSDT", ACPI::Parser::the()->main_system_description_table(), main_system_description_table->length));
}
}
void Parser::enumerate_static_tables(Function<void(const StringView&, PhysicalAddress, size_t)> callback)
{
for (auto& p_table : m_sdt_pointers) {
auto table = Memory::map_typed<Structures::SDTHeader>(p_table);
callback({ table->sig, 4 }, p_table, table->length);
}
}
void Parser::set_the(Parser& parser)
{
VERIFY(!s_acpi_parser);
s_acpi_parser = &parser;
}
static bool match_table_signature(PhysicalAddress table_header, const StringView& signature);
static PhysicalAddress search_table_in_xsdt(PhysicalAddress xsdt, const StringView& signature);
static PhysicalAddress search_table_in_rsdt(PhysicalAddress rsdt, const StringView& signature);
static bool validate_table(const Structures::SDTHeader&, size_t length);
UNMAP_AFTER_INIT void Parser::locate_static_data()
{
locate_main_system_description_table();
initialize_main_system_description_table();
init_fadt();
init_facs();
}
UNMAP_AFTER_INIT PhysicalAddress Parser::find_table(const StringView& signature)
{
dbgln_if(ACPI_DEBUG, "ACPI: Calling Find Table method!");
for (auto p_sdt : m_sdt_pointers) {
auto sdt = Memory::map_typed<Structures::SDTHeader>(p_sdt);
dbgln_if(ACPI_DEBUG, "ACPI: Examining Table @ {}", p_sdt);
if (!strncmp(sdt->sig, signature.characters_without_null_termination(), 4)) {
dbgln_if(ACPI_DEBUG, "ACPI: Found Table @ {}", p_sdt);
return p_sdt;
}
}
return {};
}
UNMAP_AFTER_INIT void Parser::init_facs()
{
m_facs = find_table("FACS");
}
UNMAP_AFTER_INIT void Parser::init_fadt()
{
dmesgln("ACPI: Initializing Fixed ACPI data");
dmesgln("ACPI: Searching for the Fixed ACPI Data Table");
m_fadt = find_table("FACP");
VERIFY(!m_fadt.is_null());
auto sdt = Memory::map_typed<const volatile Structures::FADT>(m_fadt);
dbgln_if(ACPI_DEBUG, "ACPI: FADT @ V{}, {}", &sdt, m_fadt);
auto* header = &sdt.ptr()->h;
dmesgln("ACPI: Fixed ACPI data, Revision {}, length: {} bytes", (size_t)header->revision, (size_t)header->length);
dmesgln("ACPI: DSDT {}", PhysicalAddress(sdt->dsdt_ptr));
m_x86_specific_flags.cmos_rtc_not_present = (sdt->ia_pc_boot_arch_flags & (u8)FADTFlags::IA_PC_Flags::CMOS_RTC_Not_Present);
// FIXME: QEMU doesn't report that we have an i8042 controller in these flags, even if it should (when FADT revision is 3),
// Later on, we need to make sure that we enumerate the ACPI namespace (AML encoded), instead of just using this value.
m_x86_specific_flags.keyboard_8042 = (sdt->h.revision <= 3) || (sdt->ia_pc_boot_arch_flags & (u8)FADTFlags::IA_PC_Flags::PS2_8042);
m_x86_specific_flags.legacy_devices = (sdt->ia_pc_boot_arch_flags & (u8)FADTFlags::IA_PC_Flags::Legacy_Devices);
m_x86_specific_flags.msi_not_supported = (sdt->ia_pc_boot_arch_flags & (u8)FADTFlags::IA_PC_Flags::MSI_Not_Supported);
m_x86_specific_flags.vga_not_present = (sdt->ia_pc_boot_arch_flags & (u8)FADTFlags::IA_PC_Flags::VGA_Not_Present);
m_hardware_flags.cpu_software_sleep = (sdt->flags & (u32)FADTFlags::FeatureFlags::CPU_SW_SLP);
m_hardware_flags.docking_capability = (sdt->flags & (u32)FADTFlags::FeatureFlags::DCK_CAP);
m_hardware_flags.fix_rtc = (sdt->flags & (u32)FADTFlags::FeatureFlags::FIX_RTC);
m_hardware_flags.force_apic_cluster_model = (sdt->flags & (u32)FADTFlags::FeatureFlags::FORCE_APIC_CLUSTER_MODEL);
m_hardware_flags.force_apic_physical_destination_mode = (sdt->flags & (u32)FADTFlags::FeatureFlags::FORCE_APIC_PHYSICAL_DESTINATION_MODE);
m_hardware_flags.hardware_reduced_acpi = (sdt->flags & (u32)FADTFlags::FeatureFlags::HW_REDUCED_ACPI);
m_hardware_flags.headless = (sdt->flags & (u32)FADTFlags::FeatureFlags::HEADLESS);
m_hardware_flags.low_power_s0_idle_capable = (sdt->flags & (u32)FADTFlags::FeatureFlags::LOW_POWER_S0_IDLE_CAPABLE);
m_hardware_flags.multiprocessor_c2 = (sdt->flags & (u32)FADTFlags::FeatureFlags::P_LVL2_UP);
m_hardware_flags.pci_express_wake = (sdt->flags & (u32)FADTFlags::FeatureFlags::PCI_EXP_WAK);
m_hardware_flags.power_button = (sdt->flags & (u32)FADTFlags::FeatureFlags::PWR_BUTTON);
m_hardware_flags.processor_c1 = (sdt->flags & (u32)FADTFlags::FeatureFlags::PROC_C1);
m_hardware_flags.remote_power_on_capable = (sdt->flags & (u32)FADTFlags::FeatureFlags::REMOTE_POWER_ON_CAPABLE);
m_hardware_flags.reset_register_supported = (sdt->flags & (u32)FADTFlags::FeatureFlags::RESET_REG_SUPPORTED);
m_hardware_flags.rtc_s4 = (sdt->flags & (u32)FADTFlags::FeatureFlags::RTC_s4);
m_hardware_flags.s4_rtc_status_valid = (sdt->flags & (u32)FADTFlags::FeatureFlags::S4_RTC_STS_VALID);
m_hardware_flags.sealed_case = (sdt->flags & (u32)FADTFlags::FeatureFlags::SEALED_CASE);
m_hardware_flags.sleep_button = (sdt->flags & (u32)FADTFlags::FeatureFlags::SLP_BUTTON);
m_hardware_flags.timer_value_extension = (sdt->flags & (u32)FADTFlags::FeatureFlags::TMR_VAL_EXT);
m_hardware_flags.use_platform_clock = (sdt->flags & (u32)FADTFlags::FeatureFlags::USE_PLATFORM_CLOCK);
m_hardware_flags.wbinvd = (sdt->flags & (u32)FADTFlags::FeatureFlags::WBINVD);
m_hardware_flags.wbinvd_flush = (sdt->flags & (u32)FADTFlags::FeatureFlags::WBINVD_FLUSH);
}
bool Parser::can_reboot()
{
auto fadt = Memory::map_typed<Structures::FADT>(m_fadt);
if (fadt->h.revision < 2)
return false;
return m_hardware_flags.reset_register_supported;
}
void Parser::access_generic_address(const Structures::GenericAddressStructure& structure, u32 value)
{
switch ((GenericAddressStructure::AddressSpace)structure.address_space) {
case GenericAddressStructure::AddressSpace::SystemIO: {
IOAddress address(structure.address);
dbgln("ACPI: Sending value {:x} to {}", value, address);
switch (structure.access_size) {
case (u8)GenericAddressStructure::AccessSize::QWord: {
dbgln("Trying to send QWord to IO port");
VERIFY_NOT_REACHED();
break;
}
case (u8)GenericAddressStructure::AccessSize::Undefined: {
dbgln("ACPI Warning: Unknown access size {}", structure.access_size);
VERIFY(structure.bit_width != (u8)GenericAddressStructure::BitWidth::QWord);
VERIFY(structure.bit_width != (u8)GenericAddressStructure::BitWidth::Undefined);
dbgln("ACPI: Bit Width - {} bits", structure.bit_width);
address.out(value, structure.bit_width);
break;
}
default:
address.out(value, (8 << (structure.access_size - 1)));
break;
}
return;
}
case GenericAddressStructure::AddressSpace::SystemMemory: {
dbgln("ACPI: Sending value {:x} to {}", value, PhysicalAddress(structure.address));
switch ((GenericAddressStructure::AccessSize)structure.access_size) {
case GenericAddressStructure::AccessSize::Byte:
*Memory::map_typed<u8>(PhysicalAddress(structure.address)) = value;
break;
case GenericAddressStructure::AccessSize::Word:
*Memory::map_typed<u16>(PhysicalAddress(structure.address)) = value;
break;
case GenericAddressStructure::AccessSize::DWord:
*Memory::map_typed<u32>(PhysicalAddress(structure.address)) = value;
break;
case GenericAddressStructure::AccessSize::QWord: {
*Memory::map_typed<u64>(PhysicalAddress(structure.address)) = value;
break;
}
default:
VERIFY_NOT_REACHED();
}
return;
}
case GenericAddressStructure::AddressSpace::PCIConfigurationSpace: {
// According to https://uefi.org/specs/ACPI/6.4/05_ACPI_Software_Programming_Model/ACPI_Software_Programming_Model.html#address-space-format,
// PCI addresses must be confined to devices on Segment group 0, bus 0.
auto pci_address = PCI::Address(0, 0, ((structure.address >> 24) & 0xFF), ((structure.address >> 16) & 0xFF));
dbgln("ACPI: Sending value {:x} to {}", value, pci_address);
u32 offset_in_pci_address = structure.address & 0xFFFF;
if (structure.access_size == (u8)GenericAddressStructure::AccessSize::QWord) {
dbgln("Trying to send QWord to PCI configuration space");
VERIFY_NOT_REACHED();
}
VERIFY(structure.access_size != (u8)GenericAddressStructure::AccessSize::Undefined);
PCI::raw_access(pci_address, offset_in_pci_address, (1 << (structure.access_size - 1)), value);
return;
}
default:
VERIFY_NOT_REACHED();
}
VERIFY_NOT_REACHED();
}
bool Parser::validate_reset_register()
{
// According to https://uefi.org/specs/ACPI/6.4/04_ACPI_Hardware_Specification/ACPI_Hardware_Specification.html#reset-register,
// the reset register can only be located in I/O bus, PCI bus or memory-mapped.
auto fadt = Memory::map_typed<Structures::FADT>(m_fadt);
return (fadt->reset_reg.address_space == (u8)GenericAddressStructure::AddressSpace::PCIConfigurationSpace || fadt->reset_reg.address_space == (u8)GenericAddressStructure::AddressSpace::SystemMemory || fadt->reset_reg.address_space == (u8)GenericAddressStructure::AddressSpace::SystemIO);
}
void Parser::try_acpi_reboot()
{
InterruptDisabler disabler;
if (!can_reboot()) {
dmesgln("ACPI: Reboot not supported!");
return;
}
dbgln_if(ACPI_DEBUG, "ACPI: Rebooting, probing FADT ({})", m_fadt);
auto fadt = Memory::map_typed<Structures::FADT>(m_fadt);
VERIFY(validate_reset_register());
access_generic_address(fadt->reset_reg, fadt->reset_value);
Processor::halt();
}
void Parser::try_acpi_shutdown()
{
dmesgln("ACPI: Shutdown is not supported with the current configuration, aborting!");
}
size_t Parser::get_table_size(PhysicalAddress table_header)
{
InterruptDisabler disabler;
dbgln_if(ACPI_DEBUG, "ACPI: Checking SDT Length");
return Memory::map_typed<Structures::SDTHeader>(table_header)->length;
}
u8 Parser::get_table_revision(PhysicalAddress table_header)
{
InterruptDisabler disabler;
dbgln_if(ACPI_DEBUG, "ACPI: Checking SDT Revision");
return Memory::map_typed<Structures::SDTHeader>(table_header)->revision;
}
UNMAP_AFTER_INIT void Parser::initialize_main_system_description_table()
{
dbgln_if(ACPI_DEBUG, "ACPI: Checking Main SDT Length to choose the correct mapping size");
VERIFY(!m_main_system_description_table.is_null());
auto length = get_table_size(m_main_system_description_table);
auto revision = get_table_revision(m_main_system_description_table);
auto sdt = Memory::map_typed<Structures::SDTHeader>(m_main_system_description_table, length);
dmesgln("ACPI: Main Description Table valid? {}", validate_table(*sdt, length));
if (m_xsdt_supported) {
auto& xsdt = (const Structures::XSDT&)*sdt;
dmesgln("ACPI: Using XSDT, enumerating tables @ {}", m_main_system_description_table);
dmesgln("ACPI: XSDT revision {}, total length: {}", revision, length);
dbgln_if(ACPI_DEBUG, "ACPI: XSDT pointer @ {}", VirtualAddress { &xsdt });
for (u32 i = 0; i < ((length - sizeof(Structures::SDTHeader)) / sizeof(u64)); i++) {
dbgln_if(ACPI_DEBUG, "ACPI: Found new table [{0}], @ V{1:p} - P{1:p}", i, &xsdt.table_ptrs[i]);
m_sdt_pointers.append(PhysicalAddress(xsdt.table_ptrs[i]));
}
} else {
auto& rsdt = (const Structures::RSDT&)*sdt;
dmesgln("ACPI: Using RSDT, enumerating tables @ {}", m_main_system_description_table);
dmesgln("ACPI: RSDT revision {}, total length: {}", revision, length);
dbgln_if(ACPI_DEBUG, "ACPI: RSDT pointer @ V{}", &rsdt);
for (u32 i = 0; i < ((length - sizeof(Structures::SDTHeader)) / sizeof(u32)); i++) {
dbgln_if(ACPI_DEBUG, "ACPI: Found new table [{0}], @ V{1:p} - P{1:p}", i, &rsdt.table_ptrs[i]);
m_sdt_pointers.append(PhysicalAddress(rsdt.table_ptrs[i]));
}
}
}
UNMAP_AFTER_INIT void Parser::locate_main_system_description_table()
{
auto rsdp = Memory::map_typed<Structures::RSDPDescriptor20>(m_rsdp);
if (rsdp->base.revision == 0) {
m_xsdt_supported = false;
} else if (rsdp->base.revision >= 2) {
if (rsdp->xsdt_ptr != (u64) nullptr) {
m_xsdt_supported = true;
} else {
m_xsdt_supported = false;
}
}
if (!m_xsdt_supported) {
m_main_system_description_table = PhysicalAddress(rsdp->base.rsdt_ptr);
} else {
m_main_system_description_table = PhysicalAddress(rsdp->xsdt_ptr);
}
}
UNMAP_AFTER_INIT Parser::Parser(PhysicalAddress rsdp)
: m_rsdp(rsdp)
{
dmesgln("ACPI: Using RSDP @ {}", rsdp);
locate_static_data();
}
static bool validate_table(const Structures::SDTHeader& v_header, size_t length)
{
u8 checksum = 0;
auto* sdt = (const u8*)&v_header;
for (size_t i = 0; i < length; i++)
checksum += sdt[i];
if (checksum == 0)
return true;
return false;
}
// https://uefi.org/specs/ACPI/6.4/05_ACPI_Software_Programming_Model/ACPI_Software_Programming_Model.html#finding-the-rsdp-on-ia-pc-systems
UNMAP_AFTER_INIT Optional<PhysicalAddress> StaticParsing::find_rsdp()
{
StringView signature("RSD PTR ");
auto rsdp = map_ebda().find_chunk_starting_with(signature, 16);
if (rsdp.has_value())
return rsdp;
return map_bios().find_chunk_starting_with(signature, 16);
}
UNMAP_AFTER_INIT PhysicalAddress StaticParsing::find_table(PhysicalAddress rsdp_address, const StringView& signature)
{
// FIXME: There's no validation of ACPI tables here. Use the checksum to validate the tables.
VERIFY(signature.length() == 4);
auto rsdp = Memory::map_typed<Structures::RSDPDescriptor20>(rsdp_address);
if (rsdp->base.revision == 0)
return search_table_in_rsdt(PhysicalAddress(rsdp->base.rsdt_ptr), signature);
if (rsdp->base.revision >= 2) {
if (rsdp->xsdt_ptr)
return search_table_in_xsdt(PhysicalAddress(rsdp->xsdt_ptr), signature);
return search_table_in_rsdt(PhysicalAddress(rsdp->base.rsdt_ptr), signature);
}
VERIFY_NOT_REACHED();
}
UNMAP_AFTER_INIT static PhysicalAddress search_table_in_xsdt(PhysicalAddress xsdt_address, const StringView& signature)
{
// FIXME: There's no validation of ACPI tables here. Use the checksum to validate the tables.
VERIFY(signature.length() == 4);
auto xsdt = Memory::map_typed<Structures::XSDT>(xsdt_address);
for (size_t i = 0; i < ((xsdt->h.length - sizeof(Structures::SDTHeader)) / sizeof(u64)); ++i) {
if (match_table_signature(PhysicalAddress((PhysicalPtr)xsdt->table_ptrs[i]), signature))
return PhysicalAddress((PhysicalPtr)xsdt->table_ptrs[i]);
}
return {};
}
static bool match_table_signature(PhysicalAddress table_header, const StringView& signature)
{
// FIXME: There's no validation of ACPI tables here. Use the checksum to validate the tables.
VERIFY(signature.length() == 4);
auto table = Memory::map_typed<Structures::RSDT>(table_header);
return !strncmp(table->h.sig, signature.characters_without_null_termination(), 4);
}
UNMAP_AFTER_INIT static PhysicalAddress search_table_in_rsdt(PhysicalAddress rsdt_address, const StringView& signature)
{
// FIXME: There's no validation of ACPI tables here. Use the checksum to validate the tables.
VERIFY(signature.length() == 4);
auto rsdt = Memory::map_typed<Structures::RSDT>(rsdt_address);
for (u32 i = 0; i < ((rsdt->h.length - sizeof(Structures::SDTHeader)) / sizeof(u32)); i++) {
if (match_table_signature(PhysicalAddress((PhysicalPtr)rsdt->table_ptrs[i]), signature))
return PhysicalAddress((PhysicalPtr)rsdt->table_ptrs[i]);
}
return {};
}
void Parser::enable_aml_interpretation()
{
VERIFY_NOT_REACHED();
}
void Parser::enable_aml_interpretation(File&)
{
VERIFY_NOT_REACHED();
}
void Parser::enable_aml_interpretation(u8*, u32)
{
VERIFY_NOT_REACHED();
}
void Parser::disable_aml_interpretation()
{
VERIFY_NOT_REACHED();
}
}