1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-20 13:35:07 +00:00
serenity/Kernel/VM/MemoryManager.h
Brian Gianforcaro 27e1120dff Kernel: Move syscall precondition validates to MM
Move these to MM to simplify the flow of the syscall handler.

While here, also make sure we hold the process space lock for
the duration of the validation to avoid potential issues where
another thread attempts to modify the process space during the
validation. This will allow us to move the validation out of the
big process lock scope in a future change.

Additionally utilize the new no_lock variants of functions to avoid
unnecessary recursive process space spinlock acquisitions.
2021-07-20 03:21:14 +02:00

310 lines
9.3 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Concepts.h>
#include <AK/HashTable.h>
#include <AK/NonnullOwnPtrVector.h>
#include <AK/NonnullRefPtrVector.h>
#include <AK/String.h>
#include <Kernel/Arch/x86/PageFault.h>
#include <Kernel/Arch/x86/TrapFrame.h>
#include <Kernel/Forward.h>
#include <Kernel/SpinLock.h>
#include <Kernel/VM/AllocationStrategy.h>
#include <Kernel/VM/PhysicalPage.h>
#include <Kernel/VM/PhysicalRegion.h>
#include <Kernel/VM/Region.h>
#include <Kernel/VM/VMObject.h>
namespace Kernel {
constexpr bool page_round_up_would_wrap(FlatPtr x)
{
return x > (explode_byte(0xFF) & ~0xFFF);
}
constexpr FlatPtr page_round_up(FlatPtr x)
{
FlatPtr rounded = (((FlatPtr)(x)) + PAGE_SIZE - 1) & (~(PAGE_SIZE - 1));
// Rounding up >0xfffff000 wraps back to 0. That's never what we want.
VERIFY(x == 0 || rounded != 0);
return rounded;
}
constexpr FlatPtr page_round_down(FlatPtr x)
{
return ((FlatPtr)(x)) & ~(PAGE_SIZE - 1);
}
inline FlatPtr low_physical_to_virtual(FlatPtr physical)
{
return physical + kernel_base;
}
inline FlatPtr virtual_to_low_physical(FlatPtr virtual_)
{
return virtual_ - kernel_base;
}
enum class UsedMemoryRangeType {
LowMemory = 0,
Prekernel,
Kernel,
BootModule,
PhysicalPages,
};
static constexpr StringView UserMemoryRangeTypeNames[] {
"Low memory",
"Prekernel",
"Kernel",
"Boot module",
"Physical Pages"
};
struct UsedMemoryRange {
UsedMemoryRangeType type {};
PhysicalAddress start;
PhysicalAddress end;
};
struct ContiguousReservedMemoryRange {
PhysicalAddress start;
PhysicalSize length {};
};
enum class PhysicalMemoryRangeType {
Usable = 0,
Reserved,
ACPI_Reclaimable,
ACPI_NVS,
BadMemory,
Unknown,
};
struct PhysicalMemoryRange {
PhysicalMemoryRangeType type { PhysicalMemoryRangeType::Unknown };
PhysicalAddress start;
PhysicalSize length {};
};
#define MM Kernel::MemoryManager::the()
struct MemoryManagerData {
SpinLock<u8> m_quickmap_in_use;
u32 m_quickmap_prev_flags;
PhysicalAddress m_last_quickmap_pd;
PhysicalAddress m_last_quickmap_pt;
};
extern RecursiveSpinLock s_mm_lock;
class MemoryManager {
AK_MAKE_ETERNAL
friend class PageDirectory;
friend class AnonymousVMObject;
friend class Region;
friend class VMObject;
public:
static MemoryManager& the();
static bool is_initialized();
static void initialize(u32 cpu);
static inline MemoryManagerData& get_data()
{
return Processor::current().get_mm_data();
}
PageFaultResponse handle_page_fault(PageFault const&);
void set_page_writable_direct(VirtualAddress, bool);
void protect_readonly_after_init_memory();
void unmap_text_after_init();
void unmap_ksyms_after_init();
static void enter_process_paging_scope(Process&);
static void enter_space(Space&);
bool validate_user_stack_no_lock(Space&, VirtualAddress) const;
bool validate_user_stack(Space&, VirtualAddress) const;
enum class ShouldZeroFill {
No,
Yes
};
bool commit_user_physical_pages(size_t);
void uncommit_user_physical_pages(size_t);
NonnullRefPtr<PhysicalPage> allocate_committed_user_physical_page(ShouldZeroFill = ShouldZeroFill::Yes);
RefPtr<PhysicalPage> allocate_user_physical_page(ShouldZeroFill = ShouldZeroFill::Yes, bool* did_purge = nullptr);
RefPtr<PhysicalPage> allocate_supervisor_physical_page();
NonnullRefPtrVector<PhysicalPage> allocate_contiguous_supervisor_physical_pages(size_t size);
void deallocate_physical_page(PhysicalAddress);
OwnPtr<Region> allocate_contiguous_kernel_region(size_t, StringView name, Region::Access access, Region::Cacheable = Region::Cacheable::Yes);
OwnPtr<Region> allocate_kernel_region(size_t, StringView name, Region::Access access, AllocationStrategy strategy = AllocationStrategy::Reserve, Region::Cacheable = Region::Cacheable::Yes);
OwnPtr<Region> allocate_kernel_region(PhysicalAddress, size_t, StringView name, Region::Access access, Region::Cacheable = Region::Cacheable::Yes);
OwnPtr<Region> allocate_kernel_region_identity(PhysicalAddress, size_t, StringView name, Region::Access access, Region::Cacheable = Region::Cacheable::Yes);
OwnPtr<Region> allocate_kernel_region_with_vmobject(VMObject&, size_t, StringView name, Region::Access access, Region::Cacheable = Region::Cacheable::Yes);
OwnPtr<Region> allocate_kernel_region_with_vmobject(Range const&, VMObject&, StringView name, Region::Access access, Region::Cacheable = Region::Cacheable::Yes);
struct SystemMemoryInfo {
PhysicalSize user_physical_pages { 0 };
PhysicalSize user_physical_pages_used { 0 };
PhysicalSize user_physical_pages_committed { 0 };
PhysicalSize user_physical_pages_uncommitted { 0 };
PhysicalSize super_physical_pages { 0 };
PhysicalSize super_physical_pages_used { 0 };
};
SystemMemoryInfo get_system_memory_info()
{
ScopedSpinLock lock(s_mm_lock);
return m_system_memory_info;
}
template<IteratorFunction<VMObject&> Callback>
static void for_each_vmobject(Callback callback)
{
for (auto& vmobject : MM.m_vmobjects) {
if (callback(vmobject) == IterationDecision::Break)
break;
}
}
template<VoidFunction<VMObject&> Callback>
static void for_each_vmobject(Callback callback)
{
for (auto& vmobject : MM.m_vmobjects)
callback(vmobject);
}
static Region* find_user_region_from_vaddr(Space&, VirtualAddress);
static Region* find_user_region_from_vaddr_no_lock(Space&, VirtualAddress);
static void validate_syscall_preconditions(Space&, RegisterState&);
void dump_kernel_regions();
PhysicalPage& shared_zero_page() { return *m_shared_zero_page; }
PhysicalPage& lazy_committed_page() { return *m_lazy_committed_page; }
PageDirectory& kernel_page_directory() { return *m_kernel_page_directory; }
Vector<UsedMemoryRange> const& used_memory_ranges() { return m_used_memory_ranges; }
bool is_allowed_to_mmap_to_userspace(PhysicalAddress, Range const&) const;
PhysicalPageEntry& get_physical_page_entry(PhysicalAddress);
PhysicalAddress get_physical_address(PhysicalPage const&);
private:
MemoryManager();
~MemoryManager();
void initialize_physical_pages();
void register_reserved_ranges();
void register_vmobject(VMObject&);
void unregister_vmobject(VMObject&);
void register_region(Region&);
void unregister_region(Region&);
void protect_kernel_image();
void parse_memory_map();
static void flush_tlb_local(VirtualAddress, size_t page_count = 1);
static void flush_tlb(PageDirectory const*, VirtualAddress, size_t page_count = 1);
static Region* kernel_region_from_vaddr(VirtualAddress);
static Region* find_region_from_vaddr(VirtualAddress);
RefPtr<PhysicalPage> find_free_user_physical_page(bool);
ALWAYS_INLINE u8* quickmap_page(PhysicalPage& page)
{
return quickmap_page(page.paddr());
}
u8* quickmap_page(PhysicalAddress const&);
void unquickmap_page();
PageDirectoryEntry* quickmap_pd(PageDirectory&, size_t pdpt_index);
PageTableEntry* quickmap_pt(PhysicalAddress);
PageTableEntry* pte(PageDirectory&, VirtualAddress);
PageTableEntry* ensure_pte(PageDirectory&, VirtualAddress);
void release_pte(PageDirectory&, VirtualAddress, bool);
RefPtr<PageDirectory> m_kernel_page_directory;
RefPtr<PhysicalPage> m_shared_zero_page;
RefPtr<PhysicalPage> m_lazy_committed_page;
SystemMemoryInfo m_system_memory_info;
NonnullOwnPtrVector<PhysicalRegion> m_user_physical_regions;
NonnullOwnPtrVector<PhysicalRegion> m_super_physical_regions;
OwnPtr<PhysicalRegion> m_physical_pages_region;
PhysicalPageEntry* m_physical_page_entries { nullptr };
size_t m_physical_page_entries_count { 0 };
Region::List m_user_regions;
Region::List m_kernel_regions;
Vector<UsedMemoryRange> m_used_memory_ranges;
Vector<PhysicalMemoryRange> m_physical_memory_ranges;
Vector<ContiguousReservedMemoryRange> m_reserved_memory_ranges;
VMObject::List m_vmobjects;
};
template<typename Callback>
void VMObject::for_each_region(Callback callback)
{
ScopedSpinLock lock(s_mm_lock);
// FIXME: Figure out a better data structure so we don't have to walk every single region every time an inode changes.
// Perhaps VMObject could have a Vector<Region*> with all of his mappers?
for (auto& region : MM.m_user_regions) {
if (&region.vmobject() == this)
callback(region);
}
for (auto& region : MM.m_kernel_regions) {
if (&region.vmobject() == this)
callback(region);
}
}
inline bool is_user_address(VirtualAddress vaddr)
{
return vaddr.get() < USER_RANGE_CEILING;
}
inline bool is_user_range(VirtualAddress vaddr, size_t size)
{
if (vaddr.offset(size) < vaddr)
return false;
return is_user_address(vaddr) && is_user_address(vaddr.offset(size));
}
inline bool is_user_range(Range const& range)
{
return is_user_range(range.base(), range.size());
}
inline bool PhysicalPage::is_shared_zero_page() const
{
return this == &MM.shared_zero_page();
}
inline bool PhysicalPage::is_lazy_committed_page() const
{
return this == &MM.lazy_committed_page();
}
}