mirror of
				https://github.com/RGBCube/serenity
				synced 2025-10-31 06:52:45 +00:00 
			
		
		
		
	 aee4786d8e
			
		
	
	
		aee4786d8e
		
	
	
	
	
		
			
			This singleton simplifies many aspects that we struggled with before: 1. There's no need to make derived classes of Device expose the constructor as public anymore. The singleton is a friend of them, so he can call the constructor. This solves the issue with try_create_device helper neatly, hopefully for good. 2. Getting a reference of the NullDevice is now being done from this singleton, which means that NullDevice no longer needs to use its own singleton, and we can apply the try_create_device helper on it too :) 3. We can now defer registration completely after the Device constructor which means the Device constructor is merely assigning the major and minor numbers of the Device, and the try_create_device helper ensures it calls the after_inserting method immediately after construction. This creates a great opportunity to make registration more OOM-safe.
		
			
				
	
	
		
			912 lines
		
	
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			912 lines
		
	
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
 | |
|  *
 | |
|  * SPDX-License-Identifier: BSD-2-Clause
 | |
|  */
 | |
| 
 | |
| #include <AK/Singleton.h>
 | |
| #include <AK/StdLibExtras.h>
 | |
| #include <AK/StringBuilder.h>
 | |
| #include <AK/Time.h>
 | |
| #include <AK/Types.h>
 | |
| #include <Kernel/API/Syscall.h>
 | |
| #include <Kernel/Arch/x86/InterruptDisabler.h>
 | |
| #include <Kernel/Coredump.h>
 | |
| #include <Kernel/Debug.h>
 | |
| #include <Kernel/Devices/DeviceManagement.h>
 | |
| #ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
 | |
| #    include <Kernel/Devices/KCOVDevice.h>
 | |
| #endif
 | |
| #include <Kernel/Devices/NullDevice.h>
 | |
| #include <Kernel/FileSystem/Custody.h>
 | |
| #include <Kernel/FileSystem/OpenFileDescription.h>
 | |
| #include <Kernel/FileSystem/VirtualFileSystem.h>
 | |
| #include <Kernel/KBufferBuilder.h>
 | |
| #include <Kernel/KSyms.h>
 | |
| #include <Kernel/Memory/AnonymousVMObject.h>
 | |
| #include <Kernel/Memory/PageDirectory.h>
 | |
| #include <Kernel/Memory/SharedInodeVMObject.h>
 | |
| #include <Kernel/PerformanceEventBuffer.h>
 | |
| #include <Kernel/PerformanceManager.h>
 | |
| #include <Kernel/Process.h>
 | |
| #include <Kernel/ProcessExposed.h>
 | |
| #include <Kernel/Sections.h>
 | |
| #include <Kernel/StdLib.h>
 | |
| #include <Kernel/TTY/TTY.h>
 | |
| #include <Kernel/Thread.h>
 | |
| #include <Kernel/ThreadTracer.h>
 | |
| #include <LibC/errno_numbers.h>
 | |
| #include <LibC/limits.h>
 | |
| 
 | |
| namespace Kernel {
 | |
| 
 | |
| static void create_signal_trampoline();
 | |
| 
 | |
| RecursiveSpinlock g_profiling_lock;
 | |
| static Atomic<pid_t> next_pid;
 | |
| static Singleton<SpinlockProtected<Process::List>> s_processes;
 | |
| READONLY_AFTER_INIT Memory::Region* g_signal_trampoline_region;
 | |
| 
 | |
| static Singleton<MutexProtected<String>> s_hostname;
 | |
| 
 | |
| MutexProtected<String>& hostname()
 | |
| {
 | |
|     return *s_hostname;
 | |
| }
 | |
| 
 | |
| SpinlockProtected<Process::List>& processes()
 | |
| {
 | |
|     return *s_processes;
 | |
| }
 | |
| 
 | |
| ProcessID Process::allocate_pid()
 | |
| {
 | |
|     // Overflow is UB, and negative PIDs wreck havoc.
 | |
|     // TODO: Handle PID overflow
 | |
|     // For example: Use an Atomic<u32>, mask the most significant bit,
 | |
|     // retry if PID is already taken as a PID, taken as a TID,
 | |
|     // takes as a PGID, taken as a SID, or zero.
 | |
|     return next_pid.fetch_add(1, AK::MemoryOrder::memory_order_acq_rel);
 | |
| }
 | |
| 
 | |
| UNMAP_AFTER_INIT void Process::initialize()
 | |
| {
 | |
|     next_pid.store(0, AK::MemoryOrder::memory_order_release);
 | |
| 
 | |
|     // Note: This is called before scheduling is initialized, and before APs are booted.
 | |
|     //       So we can "safely" bypass the lock here.
 | |
|     reinterpret_cast<String&>(hostname()) = "courage";
 | |
| 
 | |
|     create_signal_trampoline();
 | |
| }
 | |
| 
 | |
| NonnullRefPtrVector<Process> Process::all_processes()
 | |
| {
 | |
|     NonnullRefPtrVector<Process> output;
 | |
|     processes().with([&](const auto& list) {
 | |
|         output.ensure_capacity(list.size_slow());
 | |
|         for (const auto& process : list)
 | |
|             output.append(NonnullRefPtr<Process>(process));
 | |
|     });
 | |
|     return output;
 | |
| }
 | |
| 
 | |
| bool Process::in_group(GroupID gid) const
 | |
| {
 | |
|     return this->gid() == gid || extra_gids().contains_slow(gid);
 | |
| }
 | |
| 
 | |
| void Process::kill_threads_except_self()
 | |
| {
 | |
|     InterruptDisabler disabler;
 | |
| 
 | |
|     if (thread_count() <= 1)
 | |
|         return;
 | |
| 
 | |
|     auto current_thread = Thread::current();
 | |
|     for_each_thread([&](Thread& thread) {
 | |
|         if (&thread == current_thread)
 | |
|             return;
 | |
| 
 | |
|         if (auto state = thread.state(); state == Thread::State::Dead
 | |
|             || state == Thread::State::Dying)
 | |
|             return;
 | |
| 
 | |
|         // We need to detach this thread in case it hasn't been joined
 | |
|         thread.detach();
 | |
|         thread.set_should_die();
 | |
|     });
 | |
| 
 | |
|     u32 dropped_lock_count = 0;
 | |
|     if (big_lock().force_unlock_if_locked(dropped_lock_count) != LockMode::Unlocked)
 | |
|         dbgln("Process {} big lock had {} locks", *this, dropped_lock_count);
 | |
| }
 | |
| 
 | |
| void Process::kill_all_threads()
 | |
| {
 | |
|     for_each_thread([&](Thread& thread) {
 | |
|         // We need to detach this thread in case it hasn't been joined
 | |
|         thread.detach();
 | |
|         thread.set_should_die();
 | |
|     });
 | |
| }
 | |
| 
 | |
| void Process::register_new(Process& process)
 | |
| {
 | |
|     // Note: this is essentially the same like process->ref()
 | |
|     RefPtr<Process> new_process = process;
 | |
|     processes().with([&](auto& list) {
 | |
|         list.prepend(process);
 | |
|     });
 | |
| }
 | |
| 
 | |
| KResultOr<NonnullRefPtr<Process>> Process::try_create_user_process(RefPtr<Thread>& first_thread, StringView path, UserID uid, GroupID gid, NonnullOwnPtrVector<KString> arguments, NonnullOwnPtrVector<KString> environment, TTY* tty)
 | |
| {
 | |
|     auto parts = path.split_view('/');
 | |
|     if (arguments.is_empty()) {
 | |
|         auto last_part = TRY(KString::try_create(parts.last()));
 | |
|         if (!arguments.try_append(move(last_part)))
 | |
|             return ENOMEM;
 | |
|     }
 | |
| 
 | |
|     auto path_string = TRY(KString::try_create(path));
 | |
|     auto name = TRY(KString::try_create(parts.last()));
 | |
|     auto process = TRY(Process::try_create(first_thread, move(name), uid, gid, ProcessID(0), false, VirtualFileSystem::the().root_custody(), nullptr, tty));
 | |
| 
 | |
|     if (!process->m_fds.try_resize(process->m_fds.max_open())) {
 | |
|         first_thread = nullptr;
 | |
|         return ENOMEM;
 | |
|     }
 | |
|     auto& device_to_use_as_tty = tty ? (CharacterDevice&)*tty : DeviceManagement::the().null_device();
 | |
|     auto description = TRY(device_to_use_as_tty.open(O_RDWR));
 | |
|     auto setup_description = [&process, &description](int fd) {
 | |
|         process->m_fds.m_fds_metadatas[fd].allocate();
 | |
|         process->m_fds[fd].set(*description);
 | |
|     };
 | |
|     setup_description(0);
 | |
|     setup_description(1);
 | |
|     setup_description(2);
 | |
| 
 | |
|     if (auto result = process->exec(move(path_string), move(arguments), move(environment)); result.is_error()) {
 | |
|         dbgln("Failed to exec {}: {}", path, result);
 | |
|         first_thread = nullptr;
 | |
|         return result;
 | |
|     }
 | |
| 
 | |
|     register_new(*process);
 | |
| 
 | |
|     // NOTE: All user processes have a leaked ref on them. It's balanced by Thread::WaitBlockerSet::finalize().
 | |
|     process->ref();
 | |
| 
 | |
|     return process;
 | |
| }
 | |
| 
 | |
| RefPtr<Process> Process::create_kernel_process(RefPtr<Thread>& first_thread, NonnullOwnPtr<KString> name, void (*entry)(void*), void* entry_data, u32 affinity, RegisterProcess do_register)
 | |
| {
 | |
|     auto process_or_error = Process::try_create(first_thread, move(name), UserID(0), GroupID(0), ProcessID(0), true);
 | |
|     if (process_or_error.is_error())
 | |
|         return {};
 | |
|     auto process = process_or_error.release_value();
 | |
| 
 | |
|     first_thread->regs().set_ip((FlatPtr)entry);
 | |
| #if ARCH(I386)
 | |
|     first_thread->regs().esp = FlatPtr(entry_data); // entry function argument is expected to be in regs.esp
 | |
| #else
 | |
|     first_thread->regs().rdi = FlatPtr(entry_data); // entry function argument is expected to be in regs.rdi
 | |
| #endif
 | |
| 
 | |
|     if (do_register == RegisterProcess::Yes)
 | |
|         register_new(*process);
 | |
| 
 | |
|     SpinlockLocker lock(g_scheduler_lock);
 | |
|     first_thread->set_affinity(affinity);
 | |
|     first_thread->set_state(Thread::State::Runnable);
 | |
|     return process;
 | |
| }
 | |
| 
 | |
| void Process::protect_data()
 | |
| {
 | |
|     m_protected_data_refs.unref([&]() {
 | |
|         MM.set_page_writable_direct(VirtualAddress { &this->m_protected_values }, false);
 | |
|     });
 | |
| }
 | |
| 
 | |
| void Process::unprotect_data()
 | |
| {
 | |
|     m_protected_data_refs.ref([&]() {
 | |
|         MM.set_page_writable_direct(VirtualAddress { &this->m_protected_values }, true);
 | |
|     });
 | |
| }
 | |
| 
 | |
| KResultOr<NonnullRefPtr<Process>> Process::try_create(RefPtr<Thread>& first_thread, NonnullOwnPtr<KString> name, UserID uid, GroupID gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd, RefPtr<Custody> executable, TTY* tty, Process* fork_parent)
 | |
| {
 | |
|     auto space = TRY(Memory::AddressSpace::try_create(fork_parent ? &fork_parent->address_space() : nullptr));
 | |
|     auto process = TRY(adopt_nonnull_ref_or_enomem(new (nothrow) Process(move(name), uid, gid, ppid, is_kernel_process, move(cwd), move(executable), tty)));
 | |
|     TRY(process->attach_resources(move(space), first_thread, fork_parent));
 | |
|     return process;
 | |
| }
 | |
| 
 | |
| Process::Process(NonnullOwnPtr<KString> name, UserID uid, GroupID gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd, RefPtr<Custody> executable, TTY* tty)
 | |
|     : m_name(move(name))
 | |
|     , m_is_kernel_process(is_kernel_process)
 | |
|     , m_executable(move(executable))
 | |
|     , m_cwd(move(cwd))
 | |
|     , m_tty(tty)
 | |
|     , m_wait_blocker_set(*this)
 | |
| {
 | |
|     // Ensure that we protect the process data when exiting the constructor.
 | |
|     ProtectedDataMutationScope scope { *this };
 | |
| 
 | |
|     m_protected_values.pid = allocate_pid();
 | |
|     m_protected_values.ppid = ppid;
 | |
|     m_protected_values.uid = uid;
 | |
|     m_protected_values.gid = gid;
 | |
|     m_protected_values.euid = uid;
 | |
|     m_protected_values.egid = gid;
 | |
|     m_protected_values.suid = uid;
 | |
|     m_protected_values.sgid = gid;
 | |
| 
 | |
|     dbgln_if(PROCESS_DEBUG, "Created new process {}({})", m_name, this->pid().value());
 | |
| }
 | |
| 
 | |
| KResult Process::attach_resources(NonnullOwnPtr<Memory::AddressSpace>&& preallocated_space, RefPtr<Thread>& first_thread, Process* fork_parent)
 | |
| {
 | |
|     m_space = move(preallocated_space);
 | |
| 
 | |
|     auto create_first_thread = [&] {
 | |
|         if (fork_parent) {
 | |
|             // NOTE: fork() doesn't clone all threads; the thread that called fork() becomes the only thread in the new process.
 | |
|             return Thread::current()->try_clone(*this);
 | |
|         }
 | |
|         // NOTE: This non-forked code path is only taken when the kernel creates a process "manually" (at boot.)
 | |
|         return Thread::try_create(*this);
 | |
|     };
 | |
| 
 | |
|     first_thread = TRY(create_first_thread());
 | |
| 
 | |
|     if (!fork_parent) {
 | |
|         // FIXME: Figure out if this is really necessary.
 | |
|         first_thread->detach();
 | |
|     }
 | |
| 
 | |
|     m_procfs_traits = TRY(ProcessProcFSTraits::try_create({}, *this));
 | |
|     return KSuccess;
 | |
| }
 | |
| 
 | |
| Process::~Process()
 | |
| {
 | |
|     unprotect_data();
 | |
| 
 | |
|     VERIFY(thread_count() == 0); // all threads should have been finalized
 | |
|     VERIFY(!m_alarm_timer);
 | |
| 
 | |
|     PerformanceManager::add_process_exit_event(*this);
 | |
| }
 | |
| 
 | |
| bool Process::unref() const
 | |
| {
 | |
|     // NOTE: We need to obtain the process list lock before doing anything,
 | |
|     //       because otherwise someone might get in between us lowering the
 | |
|     //       refcount and acquiring the lock.
 | |
|     auto did_hit_zero = processes().with([&](auto& list) {
 | |
|         auto new_ref_count = deref_base();
 | |
|         if (new_ref_count > 0)
 | |
|             return false;
 | |
| 
 | |
|         if (m_list_node.is_in_list())
 | |
|             list.remove(*const_cast<Process*>(this));
 | |
|         return true;
 | |
|     });
 | |
| 
 | |
|     if (did_hit_zero)
 | |
|         delete this;
 | |
|     return did_hit_zero;
 | |
| }
 | |
| 
 | |
| // Make sure the compiler doesn't "optimize away" this function:
 | |
| extern void signal_trampoline_dummy() __attribute__((used));
 | |
| void signal_trampoline_dummy()
 | |
| {
 | |
| #if ARCH(I386)
 | |
|     // The trampoline preserves the current eax, pushes the signal code and
 | |
|     // then calls the signal handler. We do this because, when interrupting a
 | |
|     // blocking syscall, that syscall may return some special error code in eax;
 | |
|     // This error code would likely be overwritten by the signal handler, so it's
 | |
|     // necessary to preserve it here.
 | |
|     asm(
 | |
|         ".intel_syntax noprefix\n"
 | |
|         ".globl asm_signal_trampoline\n"
 | |
|         "asm_signal_trampoline:\n"
 | |
|         "push ebp\n"
 | |
|         "mov ebp, esp\n"
 | |
|         "push eax\n"          // we have to store eax 'cause it might be the return value from a syscall
 | |
|         "sub esp, 4\n"        // align the stack to 16 bytes
 | |
|         "mov eax, [ebp+12]\n" // push the signal code
 | |
|         "push eax\n"
 | |
|         "call [ebp+8]\n" // call the signal handler
 | |
|         "add esp, 8\n"
 | |
|         "mov eax, %P0\n"
 | |
|         "int 0x82\n" // sigreturn syscall
 | |
|         ".globl asm_signal_trampoline_end\n"
 | |
|         "asm_signal_trampoline_end:\n"
 | |
|         ".att_syntax" ::"i"(Syscall::SC_sigreturn));
 | |
| #elif ARCH(X86_64)
 | |
|     // The trampoline preserves the current rax, pushes the signal code and
 | |
|     // then calls the signal handler. We do this because, when interrupting a
 | |
|     // blocking syscall, that syscall may return some special error code in eax;
 | |
|     // This error code would likely be overwritten by the signal handler, so it's
 | |
|     // necessary to preserve it here.
 | |
|     asm(
 | |
|         ".intel_syntax noprefix\n"
 | |
|         ".globl asm_signal_trampoline\n"
 | |
|         "asm_signal_trampoline:\n"
 | |
|         "push rbp\n"
 | |
|         "mov rbp, rsp\n"
 | |
|         "push rax\n"          // we have to store rax 'cause it might be the return value from a syscall
 | |
|         "sub rsp, 8\n"        // align the stack to 16 bytes
 | |
|         "mov rdi, [rbp+24]\n" // push the signal code
 | |
|         "call [rbp+16]\n"     // call the signal handler
 | |
|         "add rsp, 8\n"
 | |
|         "mov rax, %P0\n"
 | |
|         "int 0x82\n" // sigreturn syscall
 | |
|         ".globl asm_signal_trampoline_end\n"
 | |
|         "asm_signal_trampoline_end:\n"
 | |
|         ".att_syntax" ::"i"(Syscall::SC_sigreturn));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| extern "C" char const asm_signal_trampoline[];
 | |
| extern "C" char const asm_signal_trampoline_end[];
 | |
| 
 | |
| void create_signal_trampoline()
 | |
| {
 | |
|     // NOTE: We leak this region.
 | |
|     g_signal_trampoline_region = MM.allocate_kernel_region(PAGE_SIZE, "Signal trampolines", Memory::Region::Access::ReadWrite).release_value().leak_ptr();
 | |
|     g_signal_trampoline_region->set_syscall_region(true);
 | |
| 
 | |
|     size_t trampoline_size = asm_signal_trampoline_end - asm_signal_trampoline;
 | |
| 
 | |
|     u8* code_ptr = (u8*)g_signal_trampoline_region->vaddr().as_ptr();
 | |
|     memcpy(code_ptr, asm_signal_trampoline, trampoline_size);
 | |
| 
 | |
|     g_signal_trampoline_region->set_writable(false);
 | |
|     g_signal_trampoline_region->remap();
 | |
| }
 | |
| 
 | |
| void Process::crash(int signal, FlatPtr ip, bool out_of_memory)
 | |
| {
 | |
|     VERIFY(!is_dead());
 | |
|     VERIFY(&Process::current() == this);
 | |
| 
 | |
|     if (out_of_memory) {
 | |
|         dbgln("\033[31;1mOut of memory\033[m, killing: {}", *this);
 | |
|     } else {
 | |
|         if (ip >= kernel_load_base && g_kernel_symbols_available) {
 | |
|             auto* symbol = symbolicate_kernel_address(ip);
 | |
|             dbgln("\033[31;1m{:p}  {} +{}\033[0m\n", ip, (symbol ? symbol->name : "(k?)"), (symbol ? ip - symbol->address : 0));
 | |
|         } else {
 | |
|             dbgln("\033[31;1m{:p}  (?)\033[0m\n", ip);
 | |
|         }
 | |
|         dump_backtrace();
 | |
|     }
 | |
|     {
 | |
|         ProtectedDataMutationScope scope { *this };
 | |
|         m_protected_values.termination_signal = signal;
 | |
|     }
 | |
|     set_should_generate_coredump(!out_of_memory);
 | |
|     address_space().dump_regions();
 | |
|     VERIFY(is_user_process());
 | |
|     die();
 | |
|     // We can not return from here, as there is nowhere
 | |
|     // to unwind to, so die right away.
 | |
|     Thread::current()->die_if_needed();
 | |
|     VERIFY_NOT_REACHED();
 | |
| }
 | |
| 
 | |
| RefPtr<Process> Process::from_pid(ProcessID pid)
 | |
| {
 | |
|     return processes().with([&](const auto& list) -> RefPtr<Process> {
 | |
|         for (auto& process : list) {
 | |
|             if (process.pid() == pid)
 | |
|                 return &process;
 | |
|         }
 | |
|         return {};
 | |
|     });
 | |
| }
 | |
| 
 | |
| const Process::OpenFileDescriptionAndFlags* Process::OpenFileDescriptions::get_if_valid(size_t i) const
 | |
| {
 | |
|     SpinlockLocker lock(m_fds_lock);
 | |
|     if (m_fds_metadatas.size() <= i)
 | |
|         return nullptr;
 | |
| 
 | |
|     if (auto& metadata = m_fds_metadatas[i]; metadata.is_valid())
 | |
|         return &metadata;
 | |
| 
 | |
|     return nullptr;
 | |
| }
 | |
| Process::OpenFileDescriptionAndFlags* Process::OpenFileDescriptions::get_if_valid(size_t i)
 | |
| {
 | |
|     SpinlockLocker lock(m_fds_lock);
 | |
|     if (m_fds_metadatas.size() <= i)
 | |
|         return nullptr;
 | |
| 
 | |
|     if (auto& metadata = m_fds_metadatas[i]; metadata.is_valid())
 | |
|         return &metadata;
 | |
| 
 | |
|     return nullptr;
 | |
| }
 | |
| 
 | |
| const Process::OpenFileDescriptionAndFlags& Process::OpenFileDescriptions::at(size_t i) const
 | |
| {
 | |
|     SpinlockLocker lock(m_fds_lock);
 | |
|     VERIFY(m_fds_metadatas[i].is_allocated());
 | |
|     return m_fds_metadatas[i];
 | |
| }
 | |
| Process::OpenFileDescriptionAndFlags& Process::OpenFileDescriptions::at(size_t i)
 | |
| {
 | |
|     SpinlockLocker lock(m_fds_lock);
 | |
|     VERIFY(m_fds_metadatas[i].is_allocated());
 | |
|     return m_fds_metadatas[i];
 | |
| }
 | |
| 
 | |
| KResultOr<NonnullRefPtr<OpenFileDescription>> Process::OpenFileDescriptions::open_file_description(int fd) const
 | |
| {
 | |
|     SpinlockLocker lock(m_fds_lock);
 | |
|     if (fd < 0)
 | |
|         return EBADF;
 | |
|     if (static_cast<size_t>(fd) >= m_fds_metadatas.size())
 | |
|         return EBADF;
 | |
|     RefPtr description = m_fds_metadatas[fd].description();
 | |
|     if (!description)
 | |
|         return EBADF;
 | |
|     return description.release_nonnull();
 | |
| }
 | |
| 
 | |
| void Process::OpenFileDescriptions::enumerate(Function<void(const OpenFileDescriptionAndFlags&)> callback) const
 | |
| {
 | |
|     SpinlockLocker lock(m_fds_lock);
 | |
|     for (auto& file_description_metadata : m_fds_metadatas) {
 | |
|         callback(file_description_metadata);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Process::OpenFileDescriptions::change_each(Function<void(OpenFileDescriptionAndFlags&)> callback)
 | |
| {
 | |
|     SpinlockLocker lock(m_fds_lock);
 | |
|     for (auto& file_description_metadata : m_fds_metadatas) {
 | |
|         callback(file_description_metadata);
 | |
|     }
 | |
| }
 | |
| 
 | |
| size_t Process::OpenFileDescriptions::open_count() const
 | |
| {
 | |
|     size_t count = 0;
 | |
|     enumerate([&](auto& file_description_metadata) {
 | |
|         if (file_description_metadata.is_valid())
 | |
|             ++count;
 | |
|     });
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| KResultOr<Process::ScopedDescriptionAllocation> Process::OpenFileDescriptions::allocate(int first_candidate_fd)
 | |
| {
 | |
|     SpinlockLocker lock(m_fds_lock);
 | |
|     for (size_t i = first_candidate_fd; i < max_open(); ++i) {
 | |
|         if (!m_fds_metadatas[i].is_allocated()) {
 | |
|             m_fds_metadatas[i].allocate();
 | |
|             return Process::ScopedDescriptionAllocation { static_cast<int>(i), &m_fds_metadatas[i] };
 | |
|         }
 | |
|     }
 | |
|     return EMFILE;
 | |
| }
 | |
| 
 | |
| Time kgettimeofday()
 | |
| {
 | |
|     return TimeManagement::now();
 | |
| }
 | |
| 
 | |
| siginfo_t Process::wait_info()
 | |
| {
 | |
|     siginfo_t siginfo {};
 | |
|     siginfo.si_signo = SIGCHLD;
 | |
|     siginfo.si_pid = pid().value();
 | |
|     siginfo.si_uid = uid().value();
 | |
| 
 | |
|     if (m_protected_values.termination_signal) {
 | |
|         siginfo.si_status = m_protected_values.termination_signal;
 | |
|         siginfo.si_code = CLD_KILLED;
 | |
|     } else {
 | |
|         siginfo.si_status = m_protected_values.termination_status;
 | |
|         siginfo.si_code = CLD_EXITED;
 | |
|     }
 | |
|     return siginfo;
 | |
| }
 | |
| 
 | |
| Custody& Process::current_directory()
 | |
| {
 | |
|     if (!m_cwd)
 | |
|         m_cwd = VirtualFileSystem::the().root_custody();
 | |
|     return *m_cwd;
 | |
| }
 | |
| 
 | |
| KResultOr<NonnullOwnPtr<KString>> Process::get_syscall_path_argument(Userspace<char const*> user_path, size_t path_length) const
 | |
| {
 | |
|     if (path_length == 0)
 | |
|         return EINVAL;
 | |
|     if (path_length > PATH_MAX)
 | |
|         return ENAMETOOLONG;
 | |
|     return try_copy_kstring_from_user(user_path, path_length);
 | |
| }
 | |
| 
 | |
| KResultOr<NonnullOwnPtr<KString>> Process::get_syscall_path_argument(Syscall::StringArgument const& path) const
 | |
| {
 | |
|     Userspace<char const*> path_characters((FlatPtr)path.characters);
 | |
|     return get_syscall_path_argument(path_characters, path.length);
 | |
| }
 | |
| 
 | |
| bool Process::dump_core()
 | |
| {
 | |
|     VERIFY(is_dumpable());
 | |
|     VERIFY(should_generate_coredump());
 | |
|     dbgln("Generating coredump for pid: {}", pid().value());
 | |
|     auto coredump_path = String::formatted("/tmp/coredump/{}_{}_{}", name(), pid().value(), kgettimeofday().to_truncated_seconds());
 | |
|     auto coredump_or_error = Coredump::try_create(*this, coredump_path);
 | |
|     if (coredump_or_error.is_error())
 | |
|         return false;
 | |
|     return !coredump_or_error.value()->write().is_error();
 | |
| }
 | |
| 
 | |
| bool Process::dump_perfcore()
 | |
| {
 | |
|     VERIFY(is_dumpable());
 | |
|     VERIFY(m_perf_event_buffer);
 | |
|     dbgln("Generating perfcore for pid: {}", pid().value());
 | |
| 
 | |
|     // Try to generate a filename which isn't already used.
 | |
|     auto base_filename = String::formatted("{}_{}", name(), pid().value());
 | |
|     auto description_or_error = VirtualFileSystem::the().open(String::formatted("{}.profile", base_filename), O_CREAT | O_EXCL, 0400, current_directory(), UidAndGid { uid(), gid() });
 | |
|     for (size_t attempt = 1; attempt < 10 && description_or_error.is_error(); ++attempt)
 | |
|         description_or_error = VirtualFileSystem::the().open(String::formatted("{}.{}.profile", base_filename, attempt), O_CREAT | O_EXCL, 0400, current_directory(), UidAndGid { uid(), gid() });
 | |
|     if (description_or_error.is_error()) {
 | |
|         dbgln("Failed to generate perfcore for pid {}: Could not generate filename for the perfcore file.", pid().value());
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     auto& description = *description_or_error.value();
 | |
|     auto builder_or_error = KBufferBuilder::try_create();
 | |
|     if (builder_or_error.is_error()) {
 | |
|         dbgln("Failed to generate perfcore for pid {}: Could not allocate KBufferBuilder.", pid());
 | |
|         return false;
 | |
|     }
 | |
|     auto builder = builder_or_error.release_value();
 | |
|     if (m_perf_event_buffer->to_json(builder).is_error()) {
 | |
|         dbgln("Failed to generate perfcore for pid {}: Could not serialize performance events to JSON.", pid().value());
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     auto json = builder.build();
 | |
|     if (!json) {
 | |
|         dbgln("Failed to generate perfcore for pid {}: Could not allocate buffer.", pid().value());
 | |
|         return false;
 | |
|     }
 | |
|     auto json_buffer = UserOrKernelBuffer::for_kernel_buffer(json->data());
 | |
|     if (description.write(json_buffer, json->size()).is_error()) {
 | |
|         return false;
 | |
|         dbgln("Failed to generate perfcore for pid {}: Cound not write to perfcore file.", pid().value());
 | |
|     }
 | |
| 
 | |
|     dbgln("Wrote perfcore for pid {} to {}", pid().value(), description.absolute_path());
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| void Process::finalize()
 | |
| {
 | |
|     VERIFY(Thread::current() == g_finalizer);
 | |
| 
 | |
|     dbgln_if(PROCESS_DEBUG, "Finalizing process {}", *this);
 | |
| 
 | |
|     if (is_dumpable()) {
 | |
|         if (m_should_generate_coredump)
 | |
|             dump_core();
 | |
|         if (m_perf_event_buffer) {
 | |
|             dump_perfcore();
 | |
|             TimeManagement::the().disable_profile_timer();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     m_threads_for_coredump.clear();
 | |
| 
 | |
|     if (m_alarm_timer)
 | |
|         TimerQueue::the().cancel_timer(m_alarm_timer.release_nonnull());
 | |
|     m_fds.clear();
 | |
|     m_tty = nullptr;
 | |
|     m_executable = nullptr;
 | |
|     m_cwd = nullptr;
 | |
|     m_arguments.clear();
 | |
|     m_environment.clear();
 | |
| 
 | |
|     m_state.store(State::Dead, AK::MemoryOrder::memory_order_release);
 | |
| 
 | |
|     {
 | |
|         // FIXME: PID/TID BUG
 | |
|         if (auto parent_thread = Thread::from_tid(ppid().value())) {
 | |
|             if (!(parent_thread->m_signal_action_data[SIGCHLD].flags & SA_NOCLDWAIT))
 | |
|                 parent_thread->send_signal(SIGCHLD, this);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!!ppid()) {
 | |
|         if (auto parent = Process::from_pid(ppid())) {
 | |
|             parent->m_ticks_in_user_for_dead_children += m_ticks_in_user + m_ticks_in_user_for_dead_children;
 | |
|             parent->m_ticks_in_kernel_for_dead_children += m_ticks_in_kernel + m_ticks_in_kernel_for_dead_children;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     unblock_waiters(Thread::WaitBlocker::UnblockFlags::Terminated);
 | |
| 
 | |
|     m_space->remove_all_regions({});
 | |
| 
 | |
|     VERIFY(ref_count() > 0);
 | |
|     // WaitBlockerSet::finalize will be in charge of dropping the last
 | |
|     // reference if there are still waiters around, or whenever the last
 | |
|     // waitable states are consumed. Unless there is no parent around
 | |
|     // anymore, in which case we'll just drop it right away.
 | |
|     m_wait_blocker_set.finalize();
 | |
| }
 | |
| 
 | |
| void Process::disowned_by_waiter(Process& process)
 | |
| {
 | |
|     m_wait_blocker_set.disowned_by_waiter(process);
 | |
| }
 | |
| 
 | |
| void Process::unblock_waiters(Thread::WaitBlocker::UnblockFlags flags, u8 signal)
 | |
| {
 | |
|     RefPtr<Process> waiter_process;
 | |
|     if (auto* my_tracer = tracer())
 | |
|         waiter_process = Process::from_pid(my_tracer->tracer_pid());
 | |
|     else
 | |
|         waiter_process = Process::from_pid(ppid());
 | |
| 
 | |
|     if (waiter_process)
 | |
|         waiter_process->m_wait_blocker_set.unblock(*this, flags, signal);
 | |
| }
 | |
| 
 | |
| void Process::die()
 | |
| {
 | |
|     auto expected = State::Running;
 | |
|     if (!m_state.compare_exchange_strong(expected, State::Dying, AK::memory_order_acquire)) {
 | |
|         // It's possible that another thread calls this at almost the same time
 | |
|         // as we can't always instantly kill other threads (they may be blocked)
 | |
|         // So if we already were called then other threads should stop running
 | |
|         // momentarily and we only really need to service the first thread
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // Let go of the TTY, otherwise a slave PTY may keep the master PTY from
 | |
|     // getting an EOF when the last process using the slave PTY dies.
 | |
|     // If the master PTY owner relies on an EOF to know when to wait() on a
 | |
|     // slave owner, we have to allow the PTY pair to be torn down.
 | |
|     m_tty = nullptr;
 | |
| 
 | |
|     VERIFY(m_threads_for_coredump.is_empty());
 | |
|     for_each_thread([&](auto& thread) {
 | |
|         m_threads_for_coredump.append(thread);
 | |
|     });
 | |
| 
 | |
|     processes().with([&](const auto& list) {
 | |
|         for (auto it = list.begin(); it != list.end();) {
 | |
|             auto& process = *it;
 | |
|             ++it;
 | |
|             if (process.has_tracee_thread(pid())) {
 | |
|                 dbgln_if(PROCESS_DEBUG, "Process {} ({}) is attached by {} ({}) which will exit", process.name(), process.pid(), name(), pid());
 | |
|                 process.stop_tracing();
 | |
|                 auto err = process.send_signal(SIGSTOP, this);
 | |
|                 if (err.is_error())
 | |
|                     dbgln("Failed to send the SIGSTOP signal to {} ({})", process.name(), process.pid());
 | |
|             }
 | |
|         }
 | |
|     });
 | |
| 
 | |
|     kill_all_threads();
 | |
| #ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
 | |
|     KCOVDevice::free_process();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void Process::terminate_due_to_signal(u8 signal)
 | |
| {
 | |
|     VERIFY_INTERRUPTS_DISABLED();
 | |
|     VERIFY(signal < 32);
 | |
|     VERIFY(&Process::current() == this);
 | |
|     dbgln("Terminating {} due to signal {}", *this, signal);
 | |
|     {
 | |
|         ProtectedDataMutationScope scope { *this };
 | |
|         m_protected_values.termination_status = 0;
 | |
|         m_protected_values.termination_signal = signal;
 | |
|     }
 | |
|     die();
 | |
| }
 | |
| 
 | |
| KResult Process::send_signal(u8 signal, Process* sender)
 | |
| {
 | |
|     // Try to send it to the "obvious" main thread:
 | |
|     auto receiver_thread = Thread::from_tid(pid().value());
 | |
|     // If the main thread has died, there may still be other threads:
 | |
|     if (!receiver_thread) {
 | |
|         // The first one should be good enough.
 | |
|         // Neither kill(2) nor kill(3) specify any selection precedure.
 | |
|         for_each_thread([&receiver_thread](Thread& thread) -> IterationDecision {
 | |
|             receiver_thread = &thread;
 | |
|             return IterationDecision::Break;
 | |
|         });
 | |
|     }
 | |
|     if (receiver_thread) {
 | |
|         receiver_thread->send_signal(signal, sender);
 | |
|         return KSuccess;
 | |
|     }
 | |
|     return ESRCH;
 | |
| }
 | |
| 
 | |
| RefPtr<Thread> Process::create_kernel_thread(void (*entry)(void*), void* entry_data, u32 priority, NonnullOwnPtr<KString> name, u32 affinity, bool joinable)
 | |
| {
 | |
|     VERIFY((priority >= THREAD_PRIORITY_MIN) && (priority <= THREAD_PRIORITY_MAX));
 | |
| 
 | |
|     // FIXME: Do something with guard pages?
 | |
| 
 | |
|     auto thread_or_error = Thread::try_create(*this);
 | |
|     if (thread_or_error.is_error())
 | |
|         return {};
 | |
| 
 | |
|     auto thread = thread_or_error.release_value();
 | |
|     thread->set_name(move(name));
 | |
|     thread->set_affinity(affinity);
 | |
|     thread->set_priority(priority);
 | |
|     if (!joinable)
 | |
|         thread->detach();
 | |
| 
 | |
|     auto& regs = thread->regs();
 | |
|     regs.set_ip((FlatPtr)entry);
 | |
|     regs.set_sp((FlatPtr)entry_data); // entry function argument is expected to be in the SP register
 | |
| 
 | |
|     SpinlockLocker lock(g_scheduler_lock);
 | |
|     thread->set_state(Thread::State::Runnable);
 | |
|     return thread;
 | |
| }
 | |
| 
 | |
| void Process::OpenFileDescriptionAndFlags::clear()
 | |
| {
 | |
|     // FIXME: Verify Process::m_fds_lock is locked!
 | |
|     m_description = nullptr;
 | |
|     m_flags = 0;
 | |
| }
 | |
| 
 | |
| void Process::OpenFileDescriptionAndFlags::set(NonnullRefPtr<OpenFileDescription>&& description, u32 flags)
 | |
| {
 | |
|     // FIXME: Verify Process::m_fds_lock is locked!
 | |
|     m_description = move(description);
 | |
|     m_flags = flags;
 | |
| }
 | |
| 
 | |
| void Process::set_tty(TTY* tty)
 | |
| {
 | |
|     m_tty = tty;
 | |
| }
 | |
| 
 | |
| KResult Process::start_tracing_from(ProcessID tracer)
 | |
| {
 | |
|     m_tracer = TRY(ThreadTracer::try_create(tracer));
 | |
|     return KSuccess;
 | |
| }
 | |
| 
 | |
| void Process::stop_tracing()
 | |
| {
 | |
|     m_tracer = nullptr;
 | |
| }
 | |
| 
 | |
| void Process::tracer_trap(Thread& thread, const RegisterState& regs)
 | |
| {
 | |
|     VERIFY(m_tracer.ptr());
 | |
|     m_tracer->set_regs(regs);
 | |
|     thread.send_urgent_signal_to_self(SIGTRAP);
 | |
| }
 | |
| 
 | |
| bool Process::create_perf_events_buffer_if_needed()
 | |
| {
 | |
|     if (!m_perf_event_buffer) {
 | |
|         m_perf_event_buffer = PerformanceEventBuffer::try_create_with_size(4 * MiB);
 | |
|         m_perf_event_buffer->add_process(*this, ProcessEventType::Create);
 | |
|     }
 | |
|     return !!m_perf_event_buffer;
 | |
| }
 | |
| 
 | |
| void Process::delete_perf_events_buffer()
 | |
| {
 | |
|     if (m_perf_event_buffer)
 | |
|         m_perf_event_buffer = nullptr;
 | |
| }
 | |
| 
 | |
| bool Process::remove_thread(Thread& thread)
 | |
| {
 | |
|     ProtectedDataMutationScope scope { *this };
 | |
|     auto thread_cnt_before = m_protected_values.thread_count.fetch_sub(1, AK::MemoryOrder::memory_order_acq_rel);
 | |
|     VERIFY(thread_cnt_before != 0);
 | |
|     thread_list().with([&](auto& thread_list) {
 | |
|         thread_list.remove(thread);
 | |
|     });
 | |
|     return thread_cnt_before == 1;
 | |
| }
 | |
| 
 | |
| bool Process::add_thread(Thread& thread)
 | |
| {
 | |
|     ProtectedDataMutationScope scope { *this };
 | |
|     bool is_first = m_protected_values.thread_count.fetch_add(1, AK::MemoryOrder::memory_order_relaxed) == 0;
 | |
|     thread_list().with([&](auto& thread_list) {
 | |
|         thread_list.append(thread);
 | |
|     });
 | |
|     return is_first;
 | |
| }
 | |
| 
 | |
| void Process::set_dumpable(bool dumpable)
 | |
| {
 | |
|     if (dumpable == m_protected_values.dumpable)
 | |
|         return;
 | |
|     ProtectedDataMutationScope scope { *this };
 | |
|     m_protected_values.dumpable = dumpable;
 | |
| }
 | |
| 
 | |
| KResult Process::set_coredump_property(NonnullOwnPtr<KString> key, NonnullOwnPtr<KString> value)
 | |
| {
 | |
|     // Write it into the first available property slot.
 | |
|     for (auto& slot : m_coredump_properties) {
 | |
|         if (slot.key)
 | |
|             continue;
 | |
|         slot.key = move(key);
 | |
|         slot.value = move(value);
 | |
|         return KSuccess;
 | |
|     }
 | |
|     return ENOBUFS;
 | |
| }
 | |
| 
 | |
| KResult Process::try_set_coredump_property(StringView key, StringView value)
 | |
| {
 | |
|     auto key_kstring = TRY(KString::try_create(key));
 | |
|     auto value_kstring = TRY(KString::try_create(value));
 | |
|     return set_coredump_property(move(key_kstring), move(value_kstring));
 | |
| };
 | |
| 
 | |
| static constexpr StringView to_string(Pledge promise)
 | |
| {
 | |
| #define __ENUMERATE_PLEDGE_PROMISE(x) \
 | |
|     case Pledge::x:                   \
 | |
|         return #x;
 | |
|     switch (promise) {
 | |
|         ENUMERATE_PLEDGE_PROMISES
 | |
|     }
 | |
| #undef __ENUMERATE_PLEDGE_PROMISE
 | |
|     VERIFY_NOT_REACHED();
 | |
| }
 | |
| 
 | |
| void Process::require_no_promises()
 | |
| {
 | |
|     if (!has_promises())
 | |
|         return;
 | |
|     dbgln("Has made a promise");
 | |
|     Process::current().crash(SIGABRT, 0);
 | |
|     VERIFY_NOT_REACHED();
 | |
| }
 | |
| 
 | |
| void Process::require_promise(Pledge promise)
 | |
| {
 | |
|     if (!has_promises())
 | |
|         return;
 | |
| 
 | |
|     if (has_promised(promise))
 | |
|         return;
 | |
| 
 | |
|     dbgln("Has not pledged {}", to_string(promise));
 | |
|     (void)try_set_coredump_property("pledge_violation"sv, to_string(promise));
 | |
|     crash(SIGABRT, 0);
 | |
| }
 | |
| 
 | |
| }
 |