mirror of
				https://github.com/RGBCube/serenity
				synced 2025-10-31 02:32:45 +00:00 
			
		
		
		
	 7c0540a229
			
		
	
	
		7c0540a229
		
	
	
	
	
		
			
			This has KString, KBuffer, DoubleBuffer, KBufferBuilder, IOWindow, UserOrKernelBuffer and ScopedCritical classes being moved to the Kernel/Library subdirectory. Also, move the panic and assertions handling code to that directory.
		
			
				
	
	
		
			265 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			265 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | ||
|  * Copyright (c) 2022, Liav A. <liavalb@hotmail.co.il>
 | ||
|  *
 | ||
|  * SPDX-License-Identifier: BSD-2-Clause
 | ||
|  */
 | ||
| 
 | ||
| #include <Kernel/Bus/PCI/API.h>
 | ||
| #include <Kernel/Bus/PCI/Definitions.h>
 | ||
| #include <Kernel/Library/IOWindow.h>
 | ||
| 
 | ||
| namespace Kernel {
 | ||
| 
 | ||
| #if ARCH(X86_64)
 | ||
| ErrorOr<NonnullOwnPtr<IOWindow>> IOWindow::create_for_io_space(IOAddress address, u64 space_length)
 | ||
| {
 | ||
|     VERIFY(!Checked<u64>::addition_would_overflow(address.get(), space_length));
 | ||
|     auto io_address_range = TRY(adopt_nonnull_own_or_enomem(new (nothrow) IOAddressData(address.get(), space_length)));
 | ||
|     return TRY(adopt_nonnull_own_or_enomem(new (nothrow) IOWindow(move(io_address_range))));
 | ||
| }
 | ||
| 
 | ||
| IOWindow::IOWindow(NonnullOwnPtr<IOAddressData> io_range)
 | ||
|     : m_space_type(SpaceType::IO)
 | ||
|     , m_io_range(move(io_range))
 | ||
| {
 | ||
| }
 | ||
| #endif
 | ||
| 
 | ||
| ErrorOr<NonnullOwnPtr<IOWindow>> IOWindow::create_from_io_window_with_offset(u64 offset, u64 space_length)
 | ||
| {
 | ||
| #if ARCH(X86_64)
 | ||
|     if (m_space_type == SpaceType::IO) {
 | ||
|         VERIFY(m_io_range);
 | ||
|         if (Checked<u64>::addition_would_overflow(m_io_range->address(), space_length))
 | ||
|             return Error::from_errno(EOVERFLOW);
 | ||
|         auto io_address_range = TRY(adopt_nonnull_own_or_enomem(new (nothrow) IOAddressData(as_io_address().offset(offset).get(), space_length)));
 | ||
|         return TRY(adopt_nonnull_own_or_enomem(new (nothrow) IOWindow(move(io_address_range))));
 | ||
|     }
 | ||
| #endif
 | ||
|     VERIFY(space_type() == SpaceType::Memory);
 | ||
|     VERIFY(m_memory_mapped_range);
 | ||
| 
 | ||
|     if (Checked<u64>::addition_would_overflow(m_memory_mapped_range->paddr.get(), offset))
 | ||
|         return Error::from_errno(EOVERFLOW);
 | ||
|     if (Checked<u64>::addition_would_overflow(m_memory_mapped_range->paddr.get() + offset, space_length))
 | ||
|         return Error::from_errno(EOVERFLOW);
 | ||
| 
 | ||
|     auto memory_mapped_range = TRY(Memory::adopt_new_nonnull_own_typed_mapping<u8 volatile>(m_memory_mapped_range->paddr.offset(offset), space_length, Memory::Region::Access::ReadWrite));
 | ||
|     return TRY(adopt_nonnull_own_or_enomem(new (nothrow) IOWindow(move(memory_mapped_range))));
 | ||
| }
 | ||
| 
 | ||
| ErrorOr<NonnullOwnPtr<IOWindow>> IOWindow::create_from_io_window_with_offset(u64 offset)
 | ||
| {
 | ||
| 
 | ||
| #if ARCH(X86_64)
 | ||
|     if (m_space_type == SpaceType::IO) {
 | ||
|         VERIFY(m_io_range);
 | ||
|         VERIFY(m_io_range->space_length() >= offset);
 | ||
|         return create_from_io_window_with_offset(offset, m_io_range->space_length() - offset);
 | ||
|     }
 | ||
| #endif
 | ||
|     VERIFY(space_type() == SpaceType::Memory);
 | ||
|     VERIFY(m_memory_mapped_range);
 | ||
|     VERIFY(m_memory_mapped_range->length >= offset);
 | ||
|     return create_from_io_window_with_offset(offset, m_memory_mapped_range->length - offset);
 | ||
| }
 | ||
| 
 | ||
| ErrorOr<NonnullOwnPtr<IOWindow>> IOWindow::create_for_pci_device_bar(PCI::DeviceIdentifier const& pci_device_identifier, PCI::HeaderType0BaseRegister pci_bar, u64 space_length)
 | ||
| {
 | ||
|     u64 pci_bar_value = PCI::get_BAR(pci_device_identifier, pci_bar);
 | ||
|     auto pci_bar_space_type = PCI::get_BAR_space_type(pci_bar_value);
 | ||
|     if (pci_bar_space_type == PCI::BARSpaceType::Memory64BitSpace) {
 | ||
|         // FIXME: In theory, BAR5 cannot be assigned to 64 bit as it is the last one...
 | ||
|         // however, there might be 64 bit BAR5 for real bare metal hardware, so remove this
 | ||
|         // if it makes a problem.
 | ||
|         if (pci_bar == PCI::HeaderType0BaseRegister::BAR5) {
 | ||
|             return Error::from_errno(EINVAL);
 | ||
|         }
 | ||
|         u64 next_pci_bar_value = PCI::get_BAR(pci_device_identifier, static_cast<PCI::HeaderType0BaseRegister>(to_underlying(pci_bar) + 1));
 | ||
|         pci_bar_value |= next_pci_bar_value << 32;
 | ||
|     }
 | ||
| 
 | ||
|     auto pci_bar_space_size = PCI::get_BAR_space_size(pci_device_identifier, pci_bar);
 | ||
|     if (pci_bar_space_size < space_length)
 | ||
|         return Error::from_errno(EIO);
 | ||
| 
 | ||
|     if (pci_bar_space_type == PCI::BARSpaceType::IOSpace) {
 | ||
| #if ARCH(X86_64)
 | ||
|         if (Checked<u64>::addition_would_overflow(pci_bar_value, space_length))
 | ||
|             return Error::from_errno(EOVERFLOW);
 | ||
|         auto io_address_range = TRY(adopt_nonnull_own_or_enomem(new (nothrow) IOAddressData((pci_bar_value & 0xfffffffc), space_length)));
 | ||
|         return TRY(adopt_nonnull_own_or_enomem(new (nothrow) IOWindow(move(io_address_range))));
 | ||
| #else
 | ||
|         // Note: For non-x86 platforms, IO PCI BARs are simply not useable.
 | ||
|         return Error::from_errno(ENOTSUP);
 | ||
| #endif
 | ||
|     }
 | ||
| 
 | ||
|     if (pci_bar_space_type == PCI::BARSpaceType::Memory32BitSpace && Checked<u32>::addition_would_overflow(pci_bar_value, space_length))
 | ||
|         return Error::from_errno(EOVERFLOW);
 | ||
|     if (pci_bar_space_type == PCI::BARSpaceType::Memory16BitSpace && Checked<u16>::addition_would_overflow(pci_bar_value, space_length))
 | ||
|         return Error::from_errno(EOVERFLOW);
 | ||
|     if (pci_bar_space_type == PCI::BARSpaceType::Memory64BitSpace && Checked<u64>::addition_would_overflow(pci_bar_value, space_length))
 | ||
|         return Error::from_errno(EOVERFLOW);
 | ||
|     auto memory_mapped_range = TRY(Memory::adopt_new_nonnull_own_typed_mapping<u8 volatile>(PhysicalAddress(pci_bar_value & PCI::bar_address_mask), space_length, Memory::Region::Access::ReadWrite));
 | ||
|     return TRY(adopt_nonnull_own_or_enomem(new (nothrow) IOWindow(move(memory_mapped_range))));
 | ||
| }
 | ||
| 
 | ||
| ErrorOr<NonnullOwnPtr<IOWindow>> IOWindow::create_for_pci_device_bar(PCI::DeviceIdentifier const& pci_device_identifier, PCI::HeaderType0BaseRegister pci_bar)
 | ||
| {
 | ||
|     u64 pci_bar_space_size = PCI::get_BAR_space_size(pci_device_identifier, pci_bar);
 | ||
|     return create_for_pci_device_bar(pci_device_identifier, pci_bar, pci_bar_space_size);
 | ||
| }
 | ||
| 
 | ||
| IOWindow::IOWindow(NonnullOwnPtr<Memory::TypedMapping<u8 volatile>> memory_mapped_range)
 | ||
|     : m_space_type(SpaceType::Memory)
 | ||
|     , m_memory_mapped_range(move(memory_mapped_range))
 | ||
| {
 | ||
| }
 | ||
| 
 | ||
| IOWindow::~IOWindow() = default;
 | ||
| 
 | ||
| bool IOWindow::is_access_aligned(u64 offset, size_t byte_size_access) const
 | ||
| {
 | ||
|     return (offset % byte_size_access) == 0;
 | ||
| }
 | ||
| 
 | ||
| bool IOWindow::is_access_in_range(u64 offset, size_t byte_size_access) const
 | ||
| {
 | ||
|     if (Checked<u64>::addition_would_overflow(offset, byte_size_access))
 | ||
|         return false;
 | ||
| #if ARCH(X86_64)
 | ||
|     if (m_space_type == SpaceType::IO) {
 | ||
|         VERIFY(m_io_range);
 | ||
|         VERIFY(!Checked<u64>::addition_would_overflow(m_io_range->address(), m_io_range->space_length()));
 | ||
|         // To understand how we treat IO address space with the corresponding calculation, the Intel Software Developer manual
 | ||
|         // helps us to understand the layout of the IO address space -
 | ||
|         //
 | ||
|         // Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture, 16.3 I/O ADDRESS SPACE, page 16-1 wrote:
 | ||
|         // Any two consecutive 8-bit ports can be treated as a 16-bit port, and any four consecutive ports can be a 32-bit port.
 | ||
|         // In this manner, the processor can transfer 8, 16, or 32 bits to or from a device in the I/O address space.
 | ||
|         // Like words in memory, 16-bit ports should be aligned to even addresses (0, 2, 4, ...) so that all 16 bits can be transferred in a single bus cycle.
 | ||
|         // Likewise, 32-bit ports should be aligned to addresses that are multiples of four (0, 4, 8, ...).
 | ||
|         // The processor supports data transfers to unaligned ports, but there is a performance penalty because one or more
 | ||
|         // extra bus cycle must be used.
 | ||
|         return (m_io_range->address() + m_io_range->space_length()) >= (offset + byte_size_access);
 | ||
|     }
 | ||
| #endif
 | ||
|     VERIFY(space_type() == SpaceType::Memory);
 | ||
|     VERIFY(m_memory_mapped_range);
 | ||
|     VERIFY(!Checked<u64>::addition_would_overflow(m_memory_mapped_range->offset, m_memory_mapped_range->length));
 | ||
|     return (m_memory_mapped_range->offset + m_memory_mapped_range->length) >= (offset + byte_size_access);
 | ||
| }
 | ||
| 
 | ||
| u8 IOWindow::read8(u64 offset)
 | ||
| {
 | ||
|     VERIFY(is_access_in_range(offset, sizeof(u8)));
 | ||
|     u8 data { 0 };
 | ||
|     in<u8>(offset, data);
 | ||
|     return data;
 | ||
| }
 | ||
| u16 IOWindow::read16(u64 offset)
 | ||
| {
 | ||
|     // Note: Although it might be OK to allow unaligned access on regular memory,
 | ||
|     // for memory mapped IO access, it should always be considered a bug.
 | ||
|     // The same goes for port mapped IO access, because in x86 unaligned access to ports
 | ||
|     // is possible but there's a performance penalty.
 | ||
|     VERIFY(is_access_in_range(offset, sizeof(u16)));
 | ||
|     VERIFY(is_access_aligned(offset, sizeof(u16)));
 | ||
|     u16 data { 0 };
 | ||
|     in<u16>(offset, data);
 | ||
|     return data;
 | ||
| }
 | ||
| u32 IOWindow::read32(u64 offset)
 | ||
| {
 | ||
|     // Note: Although it might be OK to allow unaligned access on regular memory,
 | ||
|     // for memory mapped IO access, it should always be considered a bug.
 | ||
|     // The same goes for port mapped IO access, because in x86 unaligned access to ports
 | ||
|     // is possible but there's a performance penalty.
 | ||
|     VERIFY(is_access_in_range(offset, sizeof(u32)));
 | ||
|     VERIFY(is_access_aligned(offset, sizeof(u32)));
 | ||
|     u32 data { 0 };
 | ||
|     in<u32>(offset, data);
 | ||
|     return data;
 | ||
| }
 | ||
| 
 | ||
| void IOWindow::write8(u64 offset, u8 data)
 | ||
| {
 | ||
|     VERIFY(is_access_in_range(offset, sizeof(u8)));
 | ||
|     out<u8>(offset, data);
 | ||
| }
 | ||
| void IOWindow::write16(u64 offset, u16 data)
 | ||
| {
 | ||
|     // Note: Although it might be OK to allow unaligned access on regular memory,
 | ||
|     // for memory mapped IO access, it should always be considered a bug.
 | ||
|     // The same goes for port mapped IO access, because in x86 unaligned access to ports
 | ||
|     // is possible but there's a performance penalty.
 | ||
|     VERIFY(is_access_in_range(offset, sizeof(u16)));
 | ||
|     VERIFY(is_access_aligned(offset, sizeof(u16)));
 | ||
|     out<u16>(offset, data);
 | ||
| }
 | ||
| void IOWindow::write32(u64 offset, u32 data)
 | ||
| {
 | ||
|     // Note: Although it might be OK to allow unaligned access on regular memory,
 | ||
|     // for memory mapped IO access, it should always be considered a bug.
 | ||
|     // The same goes for port mapped IO access, because in x86 unaligned access to ports
 | ||
|     // is possible but there's a performance penalty.
 | ||
|     VERIFY(is_access_in_range(offset, sizeof(u32)));
 | ||
|     VERIFY(is_access_aligned(offset, sizeof(u32)));
 | ||
|     out<u32>(offset, data);
 | ||
| }
 | ||
| 
 | ||
| void IOWindow::write32_unaligned(u64 offset, u32 data)
 | ||
| {
 | ||
|     // Note: We only verify that we access IO in the expected range.
 | ||
|     // Note: for port mapped IO access, because in x86 unaligned access to ports
 | ||
|     // is possible but there's a performance penalty, we can still allow that to happen.
 | ||
|     // However, it should be noted that most cases should not use unaligned access
 | ||
|     // to hardware IO, so this is a valid case in emulators or hypervisors only.
 | ||
|     // Note: Using this for memory mapped IO will fail for unaligned access, because
 | ||
|     // there's no valid use case for it (yet).
 | ||
|     VERIFY(space_type() != SpaceType::Memory);
 | ||
|     VERIFY(is_access_in_range(offset, sizeof(u32)));
 | ||
|     out<u32>(offset, data);
 | ||
| }
 | ||
| 
 | ||
| u32 IOWindow::read32_unaligned(u64 offset)
 | ||
| {
 | ||
|     // Note: We only verify that we access IO in the expected range.
 | ||
|     // Note: for port mapped IO access, because in x86 unaligned access to ports
 | ||
|     // is possible but there's a performance penalty, we can still allow that to happen.
 | ||
|     // However, it should be noted that most cases should not use unaligned access
 | ||
|     // to hardware IO, so this is a valid case in emulators or hypervisors only.
 | ||
|     // Note: Using this for memory mapped IO will fail for unaligned access, because
 | ||
|     // there's no valid use case for it (yet).
 | ||
|     VERIFY(space_type() != SpaceType::Memory);
 | ||
|     VERIFY(is_access_in_range(offset, sizeof(u32)));
 | ||
|     u32 data { 0 };
 | ||
|     in<u32>(offset, data);
 | ||
|     return data;
 | ||
| }
 | ||
| 
 | ||
| PhysicalAddress IOWindow::as_physical_memory_address() const
 | ||
| {
 | ||
|     VERIFY(space_type() == SpaceType::Memory);
 | ||
|     VERIFY(m_memory_mapped_range);
 | ||
|     return m_memory_mapped_range->paddr;
 | ||
| }
 | ||
| 
 | ||
| u8 volatile* IOWindow::as_memory_address_pointer()
 | ||
| {
 | ||
|     VERIFY(space_type() == SpaceType::Memory);
 | ||
|     VERIFY(m_memory_mapped_range);
 | ||
|     return m_memory_mapped_range->ptr();
 | ||
| }
 | ||
| 
 | ||
| #if ARCH(X86_64)
 | ||
| IOAddress IOWindow::as_io_address() const
 | ||
| {
 | ||
|     VERIFY(space_type() == SpaceType::IO);
 | ||
|     VERIFY(m_io_range);
 | ||
|     return IOAddress(m_io_range->address());
 | ||
| }
 | ||
| #endif
 | ||
| 
 | ||
| }
 |