1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-16 02:44:58 +00:00
serenity/Kernel/Time/TimeManagement.cpp
Nico Weber 323e727a4c Kernel+LibC: Add adjtime(2)
Most systems (Linux, OpenBSD) adjust 0.5 ms per second, or 0.5 us per
1 ms tick. That is, the clock is sped up or slowed down by at most
0.05%.  This means adjusting the clock by 1 s takes 2000 s, and the
clock an be adjusted by at most 1.8 s per hour.

FreeBSD adjusts 5 ms per second if the remaining time adjustment is
>= 1 s (0.5%) , else it adjusts by 0.5 ms as well. This allows adjusting
by (almost) 18 s per hour.

Since Serenity OS can lose more than 22 s per hour (#3429), this
picks an adjustment rate up to 1% for now. This allows us to
adjust up to 36s per hour, which should be sufficient to adjust
the clock fast enough to keep up with how much time the clock
currently loses. Once we have a fancier NTP implementation that can
adjust tick rate in addition to offset, we can think about reducing
this.

adjtime is a bit old-school and most current POSIX-y OSs instead
implement adjtimex/ntp_adjtime, but a) we have to start somewhere
b) ntp_adjtime() is a fairly gnarly API. OpenBSD's adjfreq looks
like it might provide similar functionality with a nicer API. But
before worrying about all this, it's probably a good idea to get
to a place where the kernel APIs are (barely) good enough so that
we can write an ntp service, and once we have that we should write
a way to automatically evaluate how well it keeps the time adjusted,
and only then should we add improvements ot the adjustment mechanism.
2020-11-10 19:03:08 +01:00

285 lines
9.5 KiB
C++

/*
* Copyright (c) 2020, Liav A. <liavalb@hotmail.co.il>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/Singleton.h>
#include <AK/StdLibExtras.h>
#include <AK/Time.h>
#include <Kernel/ACPI/Parser.h>
#include <Kernel/CommandLine.h>
#include <Kernel/Interrupts/APIC.h>
#include <Kernel/Scheduler.h>
#include <Kernel/Time/APICTimer.h>
#include <Kernel/Time/HPET.h>
#include <Kernel/Time/HPETComparator.h>
#include <Kernel/Time/HardwareTimer.h>
#include <Kernel/Time/PIT.h>
#include <Kernel/Time/RTC.h>
#include <Kernel/Time/TimeManagement.h>
#include <Kernel/VM/MemoryManager.h>
//#define TIME_DEBUG
namespace Kernel {
static AK::Singleton<TimeManagement> s_the;
TimeManagement& TimeManagement::the()
{
return *s_the;
}
bool TimeManagement::is_system_timer(const HardwareTimerBase& timer) const
{
return &timer == m_system_timer.ptr();
}
void TimeManagement::set_epoch_time(timespec ts)
{
InterruptDisabler disabler;
m_epoch_time = ts;
m_remaining_epoch_time_adjustment = { 0, 0 };
}
timespec TimeManagement::epoch_time() const
{
return m_epoch_time;
}
void TimeManagement::initialize(u32 cpu)
{
if (cpu == 0) {
ASSERT(!s_the.is_initialized());
s_the.ensure_instance();
// Initialize the APIC timers after the other timers as the
// initialization needs to briefly enable interrupts, which then
// would trigger a deadlock trying to get the s_the instance while
// creating it.
if (auto* apic_timer = APIC::the().initialize_timers(*s_the->m_system_timer)) {
klog() << "Time: Using APIC timer as system timer";
s_the->set_system_timer(*apic_timer);
}
} else {
ASSERT(s_the.is_initialized());
if (auto* apic_timer = APIC::the().get_timer()) {
klog() << "Time: Enable APIC timer on CPU #" << cpu;
apic_timer->enable_local_timer();
}
}
}
void TimeManagement::set_system_timer(HardwareTimerBase& timer)
{
auto original_callback = m_system_timer->set_callback(nullptr);
timer.set_callback(move(original_callback));
m_system_timer = timer;
}
time_t TimeManagement::seconds_since_boot() const
{
return m_seconds_since_boot;
}
time_t TimeManagement::ticks_per_second() const
{
return m_system_timer->ticks_per_second();
}
time_t TimeManagement::ticks_this_second() const
{
return m_ticks_this_second;
}
time_t TimeManagement::boot_time() const
{
return RTC::boot_time();
}
TimeManagement::TimeManagement()
{
bool probe_non_legacy_hardware_timers = !(kernel_command_line().lookup("time").value_or("modern") == "legacy");
if (ACPI::is_enabled()) {
if (!ACPI::Parser::the()->x86_specific_flags().cmos_rtc_not_present) {
RTC::initialize();
m_epoch_time.tv_sec += boot_time();
} else {
klog() << "ACPI: RTC CMOS Not present";
}
} else {
// We just assume that we can access RTC CMOS, if ACPI isn't usable.
RTC::initialize();
m_epoch_time.tv_sec += boot_time();
}
if (probe_non_legacy_hardware_timers) {
if (!probe_and_set_non_legacy_hardware_timers())
if (!probe_and_set_legacy_hardware_timers())
ASSERT_NOT_REACHED();
} else if (!probe_and_set_legacy_hardware_timers()) {
ASSERT_NOT_REACHED();
}
}
timeval TimeManagement::now_as_timeval()
{
timespec ts = s_the.ptr()->epoch_time();
timeval tv;
timespec_to_timeval(ts, tv);
return tv;
}
Vector<HardwareTimerBase*> TimeManagement::scan_and_initialize_periodic_timers()
{
bool should_enable = is_hpet_periodic_mode_allowed();
dbg() << "Time: Scanning for periodic timers";
Vector<HardwareTimerBase*> timers;
for (auto& hardware_timer : m_hardware_timers) {
if (hardware_timer.is_periodic_capable()) {
timers.append(&hardware_timer);
if (should_enable)
hardware_timer.set_periodic();
}
}
return timers;
}
Vector<HardwareTimerBase*> TimeManagement::scan_for_non_periodic_timers()
{
dbg() << "Time: Scanning for non-periodic timers";
Vector<HardwareTimerBase*> timers;
for (auto& hardware_timer : m_hardware_timers) {
if (!hardware_timer.is_periodic_capable())
timers.append(&hardware_timer);
}
return timers;
}
bool TimeManagement::is_hpet_periodic_mode_allowed()
{
auto hpet_mode = kernel_command_line().lookup("hpet").value_or("periodic");
if (hpet_mode == "periodic")
return true;
if (hpet_mode == "nonperiodic")
return false;
ASSERT_NOT_REACHED();
}
bool TimeManagement::probe_and_set_non_legacy_hardware_timers()
{
if (!ACPI::is_enabled())
return false;
if (!HPET::test_and_initialize())
return false;
if (!HPET::the().comparators().size()) {
dbg() << "HPET initialization aborted.";
return false;
}
dbg() << "HPET: Setting appropriate functions to timers.";
for (auto& hpet_comparator : HPET::the().comparators())
m_hardware_timers.append(hpet_comparator);
auto periodic_timers = scan_and_initialize_periodic_timers();
auto non_periodic_timers = scan_for_non_periodic_timers();
if (is_hpet_periodic_mode_allowed())
ASSERT(!periodic_timers.is_empty());
ASSERT(periodic_timers.size() + non_periodic_timers.size() >= 2);
if (periodic_timers.size() >= 2) {
m_time_keeper_timer = periodic_timers[1];
m_system_timer = periodic_timers[0];
} else {
if (periodic_timers.size() == 1) {
m_time_keeper_timer = periodic_timers[0];
m_system_timer = non_periodic_timers[0];
} else {
m_time_keeper_timer = non_periodic_timers[1];
m_system_timer = non_periodic_timers[0];
}
}
m_system_timer->set_callback(Scheduler::timer_tick);
m_time_keeper_timer->set_callback(TimeManagement::update_time);
dbg() << "Reset timers";
m_system_timer->try_to_set_frequency(m_system_timer->calculate_nearest_possible_frequency(1024));
m_time_keeper_timer->try_to_set_frequency(OPTIMAL_TICKS_PER_SECOND_RATE);
return true;
}
bool TimeManagement::probe_and_set_legacy_hardware_timers()
{
if (ACPI::is_enabled()) {
if (ACPI::Parser::the()->x86_specific_flags().cmos_rtc_not_present) {
dbg() << "ACPI: CMOS RTC Not Present";
return false;
} else {
dbg() << "ACPI: CMOS RTC Present";
}
}
m_hardware_timers.append(PIT::initialize(TimeManagement::update_time));
m_hardware_timers.append(RealTimeClock::create(Scheduler::timer_tick));
m_time_keeper_timer = m_hardware_timers[0];
m_system_timer = m_hardware_timers[1];
return true;
}
void TimeManagement::update_time(const RegisterState& regs)
{
TimeManagement::the().increment_time_since_boot(regs);
}
void TimeManagement::increment_time_since_boot(const RegisterState&)
{
ASSERT(!m_time_keeper_timer.is_null());
// Compute time adjustment for adjtime. Let the clock run up to 1% fast or slow.
// That way, adjtime can adjust up to 36 seconds per hour, without time getting very jumpy.
// Once we have a smarter NTP service that also adjusts the frequency instead of just slewing time, maybe we can lower this.
constexpr long NanosPerTick = 1'000'000; // FIXME: Don't assume that one tick is 1 ms.
constexpr time_t MaxSlewNanos = NanosPerTick / 100;
static_assert(MaxSlewNanos < NanosPerTick);
// Clamp twice, to make sure intermediate fits into a long.
long slew_nanos = clamp(clamp(m_remaining_epoch_time_adjustment.tv_sec, (time_t)-1, (time_t)1) * 1'000'000'000 + m_remaining_epoch_time_adjustment.tv_nsec, -MaxSlewNanos, MaxSlewNanos);
timespec slew_nanos_ts;
timespec_sub({ 0, slew_nanos }, { 0, 0 }, slew_nanos_ts); // Normalize tv_nsec to be positive.
timespec_sub(m_remaining_epoch_time_adjustment, slew_nanos_ts, m_remaining_epoch_time_adjustment);
timespec epoch_tick = { .tv_sec = 0, .tv_nsec = NanosPerTick };
epoch_tick.tv_nsec += slew_nanos; // No need for timespec_add(), guaranteed to be in range.
timespec_add(m_epoch_time, epoch_tick, m_epoch_time);
if (++m_ticks_this_second >= m_time_keeper_timer->ticks_per_second()) {
// FIXME: Synchronize with other clock somehow to prevent drifting apart.
++m_seconds_since_boot;
m_ticks_this_second = 0;
}
}
}