1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-06-10 21:02:07 +00:00
serenity/Libraries/LibELF/ELFDynamicObject.cpp
Andrew Kaster 331f37d1a8 LibELF: Re-organize ELFDynamicObject::load and add PLT trampoline
ELFDynamicObject::load looks a lot better with all the steps
re-organized into helpers.

Add plt_trampoline.S to handle PLT fixups for lazy loading.
Add the needed trampoline-trampolines in ELFDynamicObject to get to
the proper relocations and to return the symbol back to the assembly
method to call into from the PLT once we return back to user code.
2020-01-01 23:54:06 +01:00

600 lines
23 KiB
C++

#include <AK/StringBuilder.h>
#include <LibELF/ELFDynamicObject.h>
#include <assert.h>
#include <mman.h>
#include <stdio.h>
#include <stdlib.h>
#define DYNAMIC_LOAD_DEBUG
//#define DYNAMIC_LOAD_VERBOSE
#ifdef DYNAMIC_LOAD_VERBOSE
# define VERBOSE(fmt, ...) dbgprintf(fmt, ##__VA_ARGS__)
#else
# define VERBOSE(fmt, ...) \
do { \
} while (0)
#endif
static bool s_always_bind_now = false;
static const char* name_for_dtag(Elf32_Sword tag);
// SYSV ELF hash algorithm
// Note that the GNU HASH algorithm has less collisions
static uint32_t calculate_elf_hash(const char* name)
{
uint32_t hash = 0;
uint32_t top_nibble_of_hash = 0;
while (*name != '\0') {
hash = hash << 4;
hash += *name;
name++;
top_nibble_of_hash = hash & 0xF0000000U;
if (top_nibble_of_hash != 0)
hash ^= top_nibble_of_hash >> 24;
hash &= ~top_nibble_of_hash;
}
return hash;
}
NonnullRefPtr<ELFDynamicObject> ELFDynamicObject::construct(const char* filename, int fd, size_t size)
{
return adopt(*new ELFDynamicObject(filename, fd, size));
}
ELFDynamicObject::ELFDynamicObject(const char* filename, int fd, size_t size)
: m_filename(filename)
, m_file_size(size)
, m_image_fd(fd)
{
String file_mmap_name = String::format("ELF_DYN: %s", m_filename.characters());
m_file_mapping = mmap_with_name(nullptr, size, PROT_READ, MAP_PRIVATE, m_image_fd, 0, file_mmap_name.characters());
if (MAP_FAILED == m_file_mapping) {
m_valid = false;
return;
}
m_image = AK::make<ELFImage>((u8*)m_file_mapping);
m_valid = m_image->is_valid() && m_image->parse() && m_image->is_dynamic();
if (!m_valid) {
return;
}
const ELFImage::DynamicSection probably_dynamic_section = m_image->dynamic_section();
if (StringView(".dynamic") != probably_dynamic_section.name() || probably_dynamic_section.type() != SHT_DYNAMIC) {
m_valid = false;
return;
}
}
ELFDynamicObject::~ELFDynamicObject()
{
if (MAP_FAILED != m_file_mapping)
munmap(m_file_mapping, m_file_size);
}
void* ELFDynamicObject::symbol_for_name(const char* name)
{
// FIXME: If we enable gnu hash in the compiler, we should use that here instead
// The algo is way better with less collisions
uint32_t hash_value = calculate_elf_hash(name);
u8* load_addr = m_text_region->load_address().as_ptr();
// NOTE: We need to use the loaded hash/string/symbol tables here to get the right
// addresses. The ones that are in the ELFImage won't cut it, they aren't relocated
u32* hash_table_begin = (u32*)(load_addr + m_hash_table_offset);
Elf32_Sym* symtab = (Elf32_Sym*)(load_addr + m_symbol_table_offset);
const char* strtab = (const char*)load_addr + m_string_table_offset;
size_t num_buckets = hash_table_begin[0];
// This is here for completeness, but, since we're using the fact that every chain
// will end at chain 0 (which means 'not found'), we don't need to check num_chains.
// Interestingly, num_chains is required to be num_symbols
//size_t num_chains = hash_table_begin[1];
u32* buckets = &hash_table_begin[2];
u32* chains = &buckets[num_buckets];
for (u32 i = buckets[hash_value % num_buckets]; i; i = chains[i]) {
if (strcmp(name, strtab + symtab[i].st_name) == 0) {
void* symbol_address = load_addr + symtab[i].st_value;
#ifdef DYNAMIC_LOAD_DEBUG
dbgprintf("Returning dynamic symbol with index %d for %s: %p\n", i, strtab + symtab[i].st_name, symbol_address);
#endif
return symbol_address;
}
}
return nullptr;
}
void ELFDynamicObject::dump()
{
auto dynamic_section = m_image->dynamic_section();
StringBuilder builder;
builder.append("\nd_tag tag_name value\n");
size_t num_dynamic_sections = 0;
dynamic_section.for_each_dynamic_entry([&](const ELFImage::DynamicSectionEntry& entry) {
String name_field = String::format("(%s)", name_for_dtag(entry.tag()));
builder.appendf("0x%08X %-17s0x%X\n", entry.tag(), name_field.characters(), entry.val());
num_dynamic_sections++;
return IterationDecision::Continue;
});
dbgprintf("Dynamic section at offset 0x%x contains %zu entries:\n", dynamic_section.offset(), num_dynamic_sections);
dbgprintf(builder.to_string().characters());
}
void ELFDynamicObject::parse_dynamic_section()
{
auto dynamic_section = m_image->dynamic_section();
dynamic_section.for_each_dynamic_entry([&](const ELFImage::DynamicSectionEntry& entry) {
switch (entry.tag()) {
case DT_INIT:
m_init_offset = entry.ptr();
break;
case DT_FINI:
m_fini_offset = entry.ptr();
break;
case DT_INIT_ARRAY:
m_init_array_offset = entry.ptr();
break;
case DT_INIT_ARRAYSZ:
m_init_array_size = entry.val();
break;
case DT_HASH:
m_hash_table_offset = entry.ptr();
break;
case DT_SYMTAB:
m_symbol_table_offset = entry.ptr();
break;
case DT_STRTAB:
m_string_table_offset = entry.ptr();
break;
case DT_STRSZ:
m_size_of_string_table = entry.val();
break;
case DT_SYMENT:
m_size_of_symbol_table_entry = entry.val();
break;
case DT_PLTGOT:
m_procedure_linkage_table_offset = entry.ptr();
break;
case DT_PLTRELSZ:
m_size_of_plt_relocation_entry_list = entry.val();
break;
case DT_PLTREL:
m_procedure_linkage_table_relocation_type = entry.val();
ASSERT(m_procedure_linkage_table_relocation_type & (DT_REL | DT_RELA));
break;
case DT_JMPREL:
m_plt_relocation_offset_location = entry.ptr();
break;
case DT_RELA:
case DT_REL:
m_relocation_table_offset = entry.ptr();
break;
case DT_RELASZ:
case DT_RELSZ:
m_size_of_relocation_table = entry.val();
break;
case DT_RELAENT:
case DT_RELENT:
m_size_of_relocation_entry = entry.val();
break;
case DT_RELACOUNT:
case DT_RELCOUNT:
m_number_of_relocations = entry.val();
break;
case DT_FLAGS:
m_must_bind_now = entry.val() & DF_BIND_NOW;
m_has_text_relocations = entry.val() & DF_TEXTREL;
m_should_process_origin = entry.val() & DF_ORIGIN;
m_has_static_thread_local_storage = entry.val() & DF_STATIC_TLS;
m_requires_symbolic_symbol_resolution = entry.val() & DF_SYMBOLIC;
break;
case DT_TEXTREL:
m_has_text_relocations = true; // This tag seems to exist for legacy reasons only?
break;
default:
dbgprintf("ELFDynamicObject: DYNAMIC tag handling not implemented for DT_%s\n", name_for_dtag(entry.tag()));
printf("ELFDynamicObject: DYNAMIC tag handling not implemented for DT_%s\n", name_for_dtag(entry.tag()));
ASSERT_NOT_REACHED(); // FIXME: Maybe just break out here and return false?
break;
}
return IterationDecision::Continue;
});
}
typedef void (*InitFunc)();
bool ELFDynamicObject::load(unsigned flags)
{
ASSERT(flags & RTLD_GLOBAL);
ASSERT(flags & RTLD_LAZY);
#ifdef DYNAMIC_LOAD_DEBUG
dump();
#endif
#ifdef DYNAMIC_LOAD_VERBOSE
m_image->dump();
#endif
parse_dynamic_section();
load_program_headers();
if (m_has_text_relocations) {
if (0 > mprotect(m_text_region->load_address().as_ptr(), m_text_region->required_load_size(), PROT_READ | PROT_WRITE)) {
perror("mprotect"); // FIXME: dlerror?
return false;
}
}
do_relocations();
setup_plt_trampoline();
// Clean up our setting of .text to PROT_READ | PROT_WRITE
if (m_has_text_relocations) {
if (0 > mprotect(m_text_region->load_address().as_ptr(), m_text_region->required_load_size(), PROT_READ | PROT_EXEC)) {
perror("mprotect"); // FIXME: dlerror?
return false;
}
}
call_object_init_functions();
#ifdef DYNAMIC_LOAD_DEBUG
dbgprintf("Loaded %s\n", m_filename.characters());
#endif
// FIXME: return false sometimes? missing symbol etc
return true;
}
void ELFDynamicObject::load_program_headers()
{
size_t total_required_allocation_size = 0;
// FIXME: Can we re-use ELFLoader? This and what follows looks a lot like what's in there...
// With the exception of using desired_load_address().offset(text_segment_begin)
// It seems kinda gross to expect the program headers to be in a specific order..
m_image->for_each_program_header([&](const ELFImage::ProgramHeader& program_header) {
ProgramHeaderRegion new_region(program_header.raw_header());
if (new_region.is_load())
total_required_allocation_size += new_region.required_load_size();
m_program_header_regions.append(move(new_region));
auto& region = m_program_header_regions.last();
if (region.is_tls_template())
m_tls_region = &region;
else if (region.is_load()) {
if (region.is_executable())
m_text_region = &region;
else
m_data_region = &region;
}
});
ASSERT(m_text_region && m_data_region);
// Process regions in order: .text, .data, .tls
auto* region = m_text_region;
void* text_segment_begin = mmap_with_name(nullptr, region->required_load_size(), region->mmap_prot(), MAP_PRIVATE, m_image_fd, region->offset(), String::format(".text: %s", m_filename.characters()).characters());
size_t text_segment_size = region->required_load_size();
region->set_base_address(VirtualAddress { (u32)text_segment_begin });
region->set_load_address(VirtualAddress { (u32)text_segment_begin });
region = m_data_region;
void* data_segment_begin = mmap_with_name((u8*)text_segment_begin + text_segment_size, region->required_load_size(), region->mmap_prot(), MAP_ANONYMOUS | MAP_PRIVATE, 0, 0, String::format(".data: %s", m_filename.characters()).characters());
size_t data_segment_size = region->required_load_size();
VirtualAddress data_segment_actual_addr = region->desired_load_address().offset((u32)text_segment_begin);
region->set_base_address(VirtualAddress { (u32)text_segment_begin });
region->set_load_address(data_segment_actual_addr);
memcpy(data_segment_actual_addr.as_ptr(), (u8*)m_file_mapping + region->offset(), region->size_in_image());
if (m_tls_region) {
region = m_data_region;
VirtualAddress tls_segment_actual_addr = region->desired_load_address().offset((u32)text_segment_begin);
region->set_base_address(VirtualAddress { (u32)text_segment_begin });
region->set_load_address(tls_segment_actual_addr);
memcpy(tls_segment_actual_addr.as_ptr(), (u8*)m_file_mapping + region->offset(), region->size_in_image());
}
// sanity check
u8* end_of_in_memory_image = (u8*)data_segment_begin + data_segment_size;
ASSERT((ptrdiff_t)total_required_allocation_size == (ptrdiff_t)(end_of_in_memory_image - (u8*)text_segment_begin));
}
void ELFDynamicObject::do_relocations()
{
auto dyn_relocation_section = m_image->dynamic_relocation_section();
if (StringView(".rel.dyn") != dyn_relocation_section.name() || SHT_REL != dyn_relocation_section.type()) {
ASSERT_NOT_REACHED();
}
u8* load_base_address = m_text_region->base_address().as_ptr();
int i = -1;
// FIXME: We should really bail on undefined symbols here. (but, there's some TLS vars that are currently undef soooo.... :) )
dyn_relocation_section.for_each_relocation([&](const ELFImage::DynamicRelocation& relocation) {
++i;
VERBOSE("====== RELOCATION %d: offset 0x%08X, type %d, symidx %08X\n", i, relocation.offset(), relocation.type(), relocation.symbol_index());
u32* patch_ptr = (u32*)(load_base_address + relocation.offset());
switch (relocation.type()) {
case R_386_NONE:
// Apparently most loaders will just skip these?
// Seems if the 'link editor' generates one something is funky with your code
VERBOSE("None relocation. No symbol, no nothin.\n");
break;
case R_386_32: {
auto symbol = relocation.symbol();
VERBOSE("Absolute relocation: name: '%s', value: %p\n", symbol.name(), symbol.value());
if (symbol.bind() == STB_LOCAL) {
u32 symbol_address = symbol.section().address() + symbol.value();
*patch_ptr += symbol_address;
} else if (symbol.bind() == STB_GLOBAL) {
u32 symbol_address = symbol.value() + (u32)load_base_address;
*patch_ptr += symbol_address;
} else if (symbol.bind() == STB_WEAK) {
// FIXME: Handle weak symbols...
dbgprintf("ELFDynamicObject: Ignoring weak symbol %s\n", symbol.name());
} else {
VERBOSE("Found new fun symbol bind value %d\n", symbol.bind());
ASSERT_NOT_REACHED();
}
VERBOSE(" Symbol address: %p\n", *patch_ptr);
break;
}
case R_386_PC32: {
auto symbol = relocation.symbol();
VERBOSE("PC-relative relocation: '%s', value: %p\n", symbol.name(), symbol.value());
u32 relative_offset = (symbol.value() - relocation.offset());
*patch_ptr += relative_offset;
VERBOSE(" Symbol address: %p\n", *patch_ptr);
break;
}
case R_386_GLOB_DAT: {
auto symbol = relocation.symbol();
VERBOSE("Global data relocation: '%s', value: %p\n", symbol.name(), symbol.value());
u32 symbol_location = (u32)(m_data_region->base_address().as_ptr() + symbol.value());
*patch_ptr = symbol_location;
VERBOSE(" Symbol address: %p\n", *patch_ptr);
break;
}
case R_386_RELATIVE: {
// FIXME: According to the spec, R_386_relative ones must be done first.
// We could explicitly do them first using m_number_of_relocatoins from DT_RELCOUNT
// However, our compiler is nice enough to put them at the front of the relocations for us :)
VERBOSE("Load address relocation at offset %X\n", relocation.offset());
VERBOSE(" patch ptr == %p, adding load base address (%p) to it and storing %p\n", *patch_ptr, load_base_address, *patch_ptr + (u32)load_base_address);
*patch_ptr += (u32)load_base_address; // + addend for RelA (addend for Rel is stored at addr)
break;
}
case R_386_TLS_TPOFF: {
VERBOSE("Relocation type: R_386_TLS_TPOFF at offset %X\n", relocation.offset());
// FIXME: this can't be right? I have no idea what "negative offset into TLS storage" means...
// FIXME: Check m_has_static_tls and do something different for dynamic TLS
VirtualAddress tls_region_loctation = m_tls_region->desired_load_address();
*patch_ptr = relocation.offset() - (u32)tls_region_loctation.as_ptr() - *patch_ptr;
break;
}
default:
// Raise the alarm! Someone needs to implement this relocation type
dbgprintf("Found a new exciting relocation type %d\n", relocation.type());
printf("ELFDynamicObject: Found unknown relocation type %d\n", relocation.type());
ASSERT_NOT_REACHED();
break;
}
return IterationDecision::Continue;
});
// Handle PLT Global offset table relocations.
for (size_t idx = 0; idx < m_size_of_plt_relocation_entry_list; idx += m_size_of_relocation_entry) {
// FIXME: Or BIND_NOW flag passed in?
if (m_must_bind_now || s_always_bind_now) {
// Eagerly BIND_NOW the PLT entries, doing all the symbol looking goodness
// The patch method returns the address for the LAZY fixup path, but we don't need it here
(void)patch_plt_entry(idx);
} else {
// LAZY-ily bind the PLT slots by just adding the base address to the offsets stored there
// This avoids doing symbol lookup, which might be expensive
VirtualAddress relocation_vaddr = m_text_region->load_address().offset(m_plt_relocation_offset_location).offset(idx);
Elf32_Rel* jump_slot_relocation = (Elf32_Rel*)relocation_vaddr.as_ptr();
ASSERT(ELF32_R_TYPE(jump_slot_relocation->r_info) == R_386_JMP_SLOT);
auto* image_base_address = m_text_region->base_address().as_ptr();
u8* relocation_address = image_base_address + jump_slot_relocation->r_offset;
*(u32*)relocation_address += (u32)image_base_address;
}
}
#ifdef DYNAMIC_LOAD_DEBUG
dbgprintf("Done relocating!\n");
#endif
}
// Defined in <arch>/plt_trampoline.S
extern "C" void _plt_trampoline(void) __attribute__((visibility("hidden")));
void ELFDynamicObject::setup_plt_trampoline()
{
const ELFImage::Section& got_section = m_image->lookup_section(".got.plt");
VirtualAddress got_address = m_text_region->load_address().offset(got_section.address());
u32* got_u32_ptr = reinterpret_cast<u32*>(got_address.as_ptr());
got_u32_ptr[1] = (u32)this;
got_u32_ptr[2] = (u32)&_plt_trampoline;
#ifdef DYNAMIC_LOAD_DEBUG
dbgprintf("Set GOT PLT entries at %p offset(%p): [0] = %p [1] = %p, [2] = %p\n", got_u32_ptr, got_section.offset(), got_u32_ptr[0], got_u32_ptr[1], got_u32_ptr[2]);
#endif
}
// Called from our ASM routine _plt_trampoline
extern "C" Elf32_Addr _fixup_plt_entry(ELFDynamicObject* object, u32 relocation_idx)
{
return object->patch_plt_entry(relocation_idx);
}
// offset is in PLT relocation table
Elf32_Addr ELFDynamicObject::patch_plt_entry(u32 relocation_idx)
{
VirtualAddress plt_relocation_table_address = m_text_region->load_address().offset(m_plt_relocation_offset_location);
VirtualAddress relocation_entry_address = plt_relocation_table_address.offset(relocation_idx);
Elf32_Rel* jump_slot_relocation = (Elf32_Rel*)relocation_entry_address.as_ptr();
ASSERT(ELF32_R_TYPE(jump_slot_relocation->r_info) == R_386_JMP_SLOT);
auto sym = m_image->dynamic_symbol(ELF32_R_SYM(jump_slot_relocation->r_info));
auto* image_base_address = m_text_region->base_address().as_ptr();
u8* relocation_address = image_base_address + jump_slot_relocation->r_offset;
u32 symbol_location = (u32)(image_base_address + sym.value());
VERBOSE("ELFDynamicObject: Jump slot relocation: putting %s (%p) into PLT at %p\n", sym.name(), symbol_location, relocation_address);
*(u32*)relocation_address = symbol_location;
return symbol_location;
}
void ELFDynamicObject::call_object_init_functions()
{
u8* load_addr = m_text_region->load_address().as_ptr();
InitFunc init_function = (InitFunc)(load_addr + m_init_offset);
#ifdef DYNAMIC_LOAD_DEBUG
dbgprintf("Calling DT_INIT at %p\n", init_function);
#endif
(init_function)();
InitFunc* init_begin = (InitFunc*)(load_addr + m_init_array_offset);
u32 init_end = (u32)((u8*)init_begin + m_init_array_size);
while ((u32)init_begin < init_end) {
// Andriod sources claim that these can be -1, to be ignored.
// 0 definitely shows up. Apparently 0/-1 are valid? Confusing.
if (!*init_begin || ((i32)*init_begin == -1))
continue;
#ifdef DYNAMIC_LOAD_DEBUG
dbgprintf("Calling DT_INITARRAY entry at %p\n", *init_begin);
#endif
(*init_begin)();
++init_begin;
}
}
u32 ELFDynamicObject::ProgramHeaderRegion::mmap_prot() const
{
int prot = 0;
prot |= is_executable() ? PROT_EXEC : 0;
prot |= is_readable() ? PROT_READ : 0;
prot |= is_writable() ? PROT_WRITE : 0;
return prot;
}
static const char* name_for_dtag(Elf32_Sword d_tag)
{
switch (d_tag) {
case DT_NULL:
return "NULL"; /* marks end of _DYNAMIC array */
case DT_NEEDED:
return "NEEDED"; /* string table offset of needed lib */
case DT_PLTRELSZ:
return "PLTRELSZ"; /* size of relocation entries in PLT */
case DT_PLTGOT:
return "PLTGOT"; /* address PLT/GOT */
case DT_HASH:
return "HASH"; /* address of symbol hash table */
case DT_STRTAB:
return "STRTAB"; /* address of string table */
case DT_SYMTAB:
return "SYMTAB"; /* address of symbol table */
case DT_RELA:
return "RELA"; /* address of relocation table */
case DT_RELASZ:
return "RELASZ"; /* size of relocation table */
case DT_RELAENT:
return "RELAENT"; /* size of relocation entry */
case DT_STRSZ:
return "STRSZ"; /* size of string table */
case DT_SYMENT:
return "SYMENT"; /* size of symbol table entry */
case DT_INIT:
return "INIT"; /* address of initialization func. */
case DT_FINI:
return "FINI"; /* address of termination function */
case DT_SONAME:
return "SONAME"; /* string table offset of shared obj */
case DT_RPATH:
return "RPATH"; /* string table offset of library search path */
case DT_SYMBOLIC:
return "SYMBOLIC"; /* start sym search in shared obj. */
case DT_REL:
return "REL"; /* address of rel. tbl. w addends */
case DT_RELSZ:
return "RELSZ"; /* size of DT_REL relocation table */
case DT_RELENT:
return "RELENT"; /* size of DT_REL relocation entry */
case DT_PLTREL:
return "PLTREL"; /* PLT referenced relocation entry */
case DT_DEBUG:
return "DEBUG"; /* bugger */
case DT_TEXTREL:
return "TEXTREL"; /* Allow rel. mod. to unwritable seg */
case DT_JMPREL:
return "JMPREL"; /* add. of PLT's relocation entries */
case DT_BIND_NOW:
return "BIND_NOW"; /* Bind now regardless of env setting */
case DT_INIT_ARRAY:
return "INIT_ARRAY"; /* address of array of init func */
case DT_FINI_ARRAY:
return "FINI_ARRAY"; /* address of array of term func */
case DT_INIT_ARRAYSZ:
return "INIT_ARRAYSZ"; /* size of array of init func */
case DT_FINI_ARRAYSZ:
return "FINI_ARRAYSZ"; /* size of array of term func */
case DT_RUNPATH:
return "RUNPATH"; /* strtab offset of lib search path */
case DT_FLAGS:
return "FLAGS"; /* Set of DF_* flags */
case DT_ENCODING:
return "ENCODING"; /* further DT_* follow encoding rules */
case DT_PREINIT_ARRAY:
return "PREINIT_ARRAY"; /* address of array of preinit func */
case DT_PREINIT_ARRAYSZ:
return "PREINIT_ARRAYSZ"; /* size of array of preinit func */
case DT_LOOS:
return "LOOS"; /* reserved range for OS */
case DT_HIOS:
return "HIOS"; /* specific dynamic array tags */
case DT_LOPROC:
return "LOPROC"; /* reserved range for processor */
case DT_HIPROC:
return "HIPROC"; /* specific dynamic array tags */
case DT_GNU_HASH:
return "GNU_HASH"; /* address of GNU hash table */
case DT_RELACOUNT:
return "RELACOUNT"; /* if present, number of RELATIVE */
case DT_RELCOUNT:
return "RELCOUNT"; /* relocs, which must come first */
case DT_FLAGS_1:
return "FLAGS_1";
default:
return "??";
}
}