1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-31 12:38:12 +00:00
serenity/Kernel/Arch/aarch64/Processor.cpp

579 lines
19 KiB
C++

/*
* Copyright (c) 2022, Timon Kruiper <timonkruiper@gmail.com>
* Copyright (c) 2023, Idan Horowitz <idan.horowitz@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Format.h>
#include <AK/Vector.h>
#include <Kernel/Arch/Processor.h>
#include <Kernel/Arch/TrapFrame.h>
#include <Kernel/Arch/aarch64/ASM_wrapper.h>
#include <Kernel/Arch/aarch64/CPU.h>
#include <Kernel/Arch/aarch64/CPUID.h>
#include <Kernel/Interrupts/InterruptDisabler.h>
#include <Kernel/Security/Random.h>
#include <Kernel/Tasks/Process.h>
#include <Kernel/Tasks/Scheduler.h>
#include <Kernel/Tasks/Thread.h>
#include <Kernel/Time/TimeManagement.h>
namespace Kernel {
extern "C" void thread_context_first_enter(void);
extern "C" void exit_kernel_thread(void);
extern "C" void do_assume_context(Thread* thread, u32 new_interrupts_state);
extern "C" void context_first_init(Thread* from_thread, Thread* to_thread) __attribute__((used));
extern "C" void enter_thread_context(Thread* from_thread, Thread* to_thread) __attribute__((used));
extern "C" FlatPtr do_init_context(Thread* thread, u32 new_interrupts_state) __attribute__((used));
Processor* g_current_processor;
READONLY_AFTER_INIT FPUState Processor::s_clean_fpu_state;
static void store_fpu_state(FPUState* fpu_state)
{
asm volatile(
"mov x0, %[fpu_state]\n"
"stp q0, q1, [x0, #(0 * 16)]\n"
"stp q2, q3, [x0, #(2 * 16)]\n"
"stp q4, q5, [x0, #(4 * 16)]\n"
"stp q6, q7, [x0, #(6 * 16)]\n"
"stp q8, q9, [x0, #(8 * 16)]\n"
"stp q10, q11, [x0, #(10 * 16)]\n"
"stp q12, q13, [x0, #(12 * 16)]\n"
"stp q14, q15, [x0, #(14 * 16)]\n"
"stp q16, q17, [x0, #(16 * 16)]\n"
"stp q18, q19, [x0, #(18 * 16)]\n"
"stp q20, q21, [x0, #(20 * 16)]\n"
"stp q22, q23, [x0, #(22 * 16)]\n"
"stp q24, q25, [x0, #(24 * 16)]\n"
"stp q26, q27, [x0, #(26 * 16)]\n"
"stp q28, q29, [x0, #(28 * 16)]\n"
"stp q30, q31, [x0, #(30 * 16)]\n"
"\n" ::[fpu_state] "r"(fpu_state));
}
static void load_fpu_state(FPUState* fpu_state)
{
asm volatile(
"mov x0, %[fpu_state]\n"
"ldp q0, q1, [x0, #(0 * 16)]\n"
"ldp q2, q3, [x0, #(2 * 16)]\n"
"ldp q4, q5, [x0, #(4 * 16)]\n"
"ldp q6, q7, [x0, #(6 * 16)]\n"
"ldp q8, q9, [x0, #(8 * 16)]\n"
"ldp q10, q11, [x0, #(10 * 16)]\n"
"ldp q12, q13, [x0, #(12 * 16)]\n"
"ldp q14, q15, [x0, #(14 * 16)]\n"
"ldp q16, q17, [x0, #(16 * 16)]\n"
"ldp q18, q19, [x0, #(18 * 16)]\n"
"ldp q20, q21, [x0, #(20 * 16)]\n"
"ldp q22, q23, [x0, #(22 * 16)]\n"
"ldp q24, q25, [x0, #(24 * 16)]\n"
"ldp q26, q27, [x0, #(26 * 16)]\n"
"ldp q28, q29, [x0, #(28 * 16)]\n"
"ldp q30, q31, [x0, #(30 * 16)]\n"
"\n" ::[fpu_state] "r"(fpu_state));
}
void Processor::early_initialize(u32 cpu)
{
VERIFY(g_current_processor == nullptr);
m_cpu = cpu;
m_features = detect_cpu_features();
m_physical_address_bit_width = detect_physical_address_bit_width();
m_virtual_address_bit_width = detect_virtual_address_bit_width();
g_current_processor = this;
}
void Processor::initialize(u32)
{
m_deferred_call_pool.init();
dmesgln("CPU[{}]: Supports {}", m_cpu, build_cpu_feature_names(m_features));
dmesgln("CPU[{}]: Physical address bit width: {}", m_cpu, m_physical_address_bit_width);
dmesgln("CPU[{}]: Virtual address bit width: {}", m_cpu, m_virtual_address_bit_width);
if (!has_feature(CPUFeature::RNG))
dmesgln("CPU[{}]: {} not detected, randomness will be poor", m_cpu, cpu_feature_to_description(CPUFeature::RNG));
store_fpu_state(&s_clean_fpu_state);
}
[[noreturn]] void Processor::halt()
{
disable_interrupts();
for (;;)
asm volatile("wfi");
}
void Processor::flush_tlb_local(VirtualAddress, size_t)
{
// FIXME: Figure out how to flush a single page
asm volatile("dsb ishst");
asm volatile("tlbi vmalle1");
asm volatile("dsb ish");
asm volatile("isb");
}
void Processor::flush_entire_tlb_local()
{
asm volatile("dsb ishst");
asm volatile("tlbi vmalle1");
asm volatile("dsb ish");
asm volatile("isb");
}
void Processor::flush_tlb(Memory::PageDirectory const*, VirtualAddress vaddr, size_t page_count)
{
flush_tlb_local(vaddr, page_count);
}
void Processor::leave_critical()
{
InterruptDisabler disabler;
current().do_leave_critical();
}
void Processor::do_leave_critical()
{
VERIFY(m_in_critical > 0);
if (m_in_critical == 1) {
if (m_in_irq == 0) {
m_deferred_call_pool.execute_pending();
VERIFY(m_in_critical == 1);
}
m_in_critical = 0;
if (m_in_irq == 0)
check_invoke_scheduler();
} else {
m_in_critical = m_in_critical - 1;
}
}
u32 Processor::clear_critical()
{
InterruptDisabler disabler;
auto prev_critical = in_critical();
auto& proc = current();
proc.m_in_critical = 0;
if (proc.m_in_irq == 0)
proc.check_invoke_scheduler();
return prev_critical;
}
u64 Processor::time_spent_idle() const
{
return m_idle_thread->time_in_user() + m_idle_thread->time_in_kernel();
}
u32 Processor::smp_wake_n_idle_processors(u32 wake_count)
{
(void)wake_count;
// FIXME: Actually wake up other cores when SMP is supported for aarch64.
return 0;
}
void Processor::initialize_context_switching(Thread& initial_thread)
{
VERIFY(initial_thread.process().is_kernel_process());
m_scheduler_initialized = true;
// FIXME: Figure out if we need to call {pre_,post_,}init_finished once aarch64 supports SMP
Processor::set_current_in_scheduler(true);
auto& regs = initial_thread.regs();
// clang-format off
asm volatile(
"mov sp, %[new_sp] \n"
"sub sp, sp, 32 \n"
"str %[from_to_thread], [sp, #0] \n"
"str %[from_to_thread], [sp, #8] \n"
"br %[new_ip] \n"
:: [new_sp] "r" (regs.sp_el0),
[new_ip] "r" (regs.elr_el1),
[from_to_thread] "r" (&initial_thread)
);
// clang-format on
VERIFY_NOT_REACHED();
}
void Processor::switch_context(Thread*& from_thread, Thread*& to_thread)
{
VERIFY(!m_in_irq);
VERIFY(m_in_critical == 1);
dbgln_if(CONTEXT_SWITCH_DEBUG, "switch_context --> switching out of: {} {}", VirtualAddress(from_thread), *from_thread);
// m_in_critical is restored in enter_thread_context
from_thread->save_critical(m_in_critical);
// clang-format off
asm volatile(
"sub sp, sp, #256 \n"
"stp x0, x1, [sp, #(0 * 0)] \n"
"stp x2, x3, [sp, #(2 * 8)] \n"
"stp x4, x5, [sp, #(4 * 8)] \n"
"stp x6, x7, [sp, #(6 * 8)] \n"
"stp x8, x9, [sp, #(8 * 8)] \n"
"stp x10, x11, [sp, #(10 * 8)] \n"
"stp x12, x13, [sp, #(12 * 8)] \n"
"stp x14, x15, [sp, #(14 * 8)] \n"
"stp x16, x17, [sp, #(16 * 8)] \n"
"stp x18, x19, [sp, #(18 * 8)] \n"
"stp x20, x21, [sp, #(20 * 8)] \n"
"stp x22, x23, [sp, #(22 * 8)] \n"
"stp x24, x25, [sp, #(24 * 8)] \n"
"stp x26, x27, [sp, #(26 * 8)] \n"
"stp x28, x29, [sp, #(28 * 8)] \n"
"str x30, [sp, #(30 * 8)] \n"
"mov x0, sp \n"
"str x0, %[from_sp] \n"
"ldr x0, =1f \n"
"str x0, %[from_ip] \n"
"ldr x0, %[to_sp] \n"
"mov sp, x0 \n"
"sub sp, sp, 32 \n"
"ldr x0, %[from_thread] \n"
"ldr x1, %[to_thread] \n"
"ldr x2, %[to_ip] \n"
"str x0, [sp, #0] \n"
"str x1, [sp, #8] \n"
"str x2, [sp, #16] \n"
"bl enter_thread_context \n"
"ldr x0, [sp, #16]\n"
"br x0 \n"
"1: \n"
"add sp, sp, 32 \n"
"ldp x0, x1, [sp, #(0 * 0)] \n"
"ldp x2, x3, [sp, #(2 * 8)] \n"
"ldp x4, x5, [sp, #(4 * 8)] \n"
"ldp x6, x7, [sp, #(6 * 8)] \n"
"ldp x8, x9, [sp, #(8 * 8)] \n"
"ldp x10, x11, [sp, #(10 * 8)] \n"
"ldp x12, x13, [sp, #(12 * 8)] \n"
"ldp x14, x15, [sp, #(14 * 8)] \n"
"ldp x16, x17, [sp, #(16 * 8)] \n"
"ldp x18, x19, [sp, #(18 * 8)] \n"
"ldp x20, x21, [sp, #(20 * 8)] \n"
"ldp x22, x23, [sp, #(22 * 8)] \n"
"ldp x24, x25, [sp, #(24 * 8)] \n"
"ldp x26, x27, [sp, #(26 * 8)] \n"
"ldp x28, x29, [sp, #(28 * 8)] \n"
"ldr x30, [sp, #(30 * 8)] \n"
"sub sp, sp, 32 \n"
"ldr x0, [sp, #0] \n"
"ldr x1, [sp, #8] \n"
"str x0, %[from_thread] \n"
"str x1, %[to_thread] \n"
"add sp, sp, #288 \n"
:
[from_ip] "=m"(from_thread->regs().elr_el1),
[from_sp] "=m"(from_thread->regs().sp_el0),
"=m"(from_thread),
"=m"(to_thread)
: [to_ip] "m"(to_thread->regs().elr_el1),
[to_sp] "m"(to_thread->regs().sp_el0),
[from_thread] "m"(from_thread),
[to_thread] "m"(to_thread)
: "memory", "x0", "x1", "x2");
// clang-format on
dbgln_if(CONTEXT_SWITCH_DEBUG, "switch_context <-- from {} {} to {} {}", VirtualAddress(from_thread), *from_thread, VirtualAddress(to_thread), *to_thread);
}
extern "C" FlatPtr do_init_context(Thread* thread, u32 new_interrupts_state)
{
VERIFY_INTERRUPTS_DISABLED();
Aarch64::SPSR_EL1 spsr_el1 = {};
memcpy(&spsr_el1, (u8 const*)&thread->regs().spsr_el1, sizeof(u64));
spsr_el1.I = (new_interrupts_state == to_underlying(InterruptsState::Disabled));
memcpy((void*)&thread->regs().spsr_el1, &spsr_el1, sizeof(u64));
return Processor::current().init_context(*thread, true);
}
void Processor::assume_context(Thread& thread, InterruptsState new_interrupts_state)
{
dbgln_if(CONTEXT_SWITCH_DEBUG, "Assume context for thread {} {}", VirtualAddress(&thread), thread);
VERIFY_INTERRUPTS_DISABLED();
Scheduler::prepare_after_exec();
// in_critical() should be 2 here. The critical section in Process::exec
// and then the scheduler lock
VERIFY(Processor::in_critical() == 2);
do_assume_context(&thread, to_underlying(new_interrupts_state));
VERIFY_NOT_REACHED();
}
FlatPtr Processor::init_context(Thread& thread, bool leave_crit)
{
VERIFY(g_scheduler_lock.is_locked());
if (leave_crit) {
// Leave the critical section we set up in Process::exec,
// but because we still have the scheduler lock we should end up with 1
VERIFY(in_critical() == 2);
m_in_critical = 1; // leave it without triggering anything or restoring flags
}
u64 kernel_stack_top = thread.kernel_stack_top();
// Add a random offset between 0-256 (16-byte aligned)
kernel_stack_top -= round_up_to_power_of_two(get_fast_random<u8>(), 16);
u64 stack_top = kernel_stack_top;
auto& thread_regs = thread.regs();
// Push a RegisterState and TrapFrame onto the stack, which will be popped of the stack and restored into the
// state of the processor by restore_previous_context.
stack_top -= sizeof(RegisterState);
RegisterState& eretframe = *reinterpret_cast<RegisterState*>(stack_top);
memcpy(eretframe.x, thread_regs.x, sizeof(thread_regs.x));
// We don't overwrite the link register if it's not 0, since that means this thread's register state was already initialized with
// an existing link register value (e.g. it was fork()'ed), so we assume exit_kernel_thread is already saved as previous LR on the
// stack somewhere.
if (eretframe.x[30] == 0x0) {
// x30 is the Link Register for the aarch64 ABI, so this will return to exit_kernel_thread when main thread function returns.
eretframe.x[30] = FlatPtr(&exit_kernel_thread);
}
eretframe.elr_el1 = thread_regs.elr_el1;
eretframe.sp_el0 = thread_regs.sp_el0;
eretframe.spsr_el1 = thread_regs.spsr_el1;
// Push a TrapFrame onto the stack
stack_top -= sizeof(TrapFrame);
TrapFrame& trap = *reinterpret_cast<TrapFrame*>(stack_top);
trap.regs = &eretframe;
trap.next_trap = nullptr;
if constexpr (CONTEXT_SWITCH_DEBUG) {
dbgln("init_context {} ({}) set up to execute at ip={}, sp={}, stack_top={}",
thread,
VirtualAddress(&thread),
VirtualAddress(thread_regs.elr_el1),
VirtualAddress(thread_regs.sp_el0),
VirtualAddress(stack_top));
}
// This make sure the thread first executes thread_context_first_enter, which will actually call restore_previous_context
// which restores the context set up above.
thread_regs.set_sp(stack_top);
thread_regs.set_ip(FlatPtr(&thread_context_first_enter));
return stack_top;
}
void Processor::enter_trap(TrapFrame& trap, bool raise_irq)
{
VERIFY_INTERRUPTS_DISABLED();
VERIFY(&Processor::current() == this);
// FIXME: Figure out if we need prev_irq_level, see duplicated code in Kernel/Arch/x86/common/Processor.cpp
if (raise_irq)
m_in_irq++;
auto* current_thread = Processor::current_thread();
if (current_thread) {
auto& current_trap = current_thread->current_trap();
trap.next_trap = current_trap;
current_trap = &trap;
auto new_previous_mode = trap.regs->previous_mode();
if (current_thread->set_previous_mode(new_previous_mode)) {
current_thread->update_time_scheduled(TimeManagement::scheduler_current_time(), new_previous_mode == ExecutionMode::Kernel, false);
}
} else {
trap.next_trap = nullptr;
}
}
void Processor::exit_trap(TrapFrame& trap)
{
VERIFY_INTERRUPTS_DISABLED();
VERIFY(&Processor::current() == this);
// Temporarily enter a critical section. This is to prevent critical
// sections entered and left within e.g. smp_process_pending_messages
// to trigger a context switch while we're executing this function
// See the comment at the end of the function why we don't use
// ScopedCritical here.
m_in_critical = m_in_critical + 1;
// FIXME: Figure out if we need prev_irq_level, see duplicated code in Kernel/Arch/x86/common/Processor.cpp
m_in_irq = 0;
// Process the deferred call queue. Among other things, this ensures
// that any pending thread unblocks happen before we enter the scheduler.
m_deferred_call_pool.execute_pending();
auto* current_thread = Processor::current_thread();
if (current_thread) {
auto& current_trap = current_thread->current_trap();
current_trap = trap.next_trap;
ExecutionMode new_previous_mode;
if (current_trap) {
VERIFY(current_trap->regs);
new_previous_mode = current_trap->regs->previous_mode();
} else {
// If we don't have a higher level trap then we're back in user mode.
// Which means that the previous mode prior to being back in user mode was kernel mode
new_previous_mode = ExecutionMode::Kernel;
}
if (current_thread->set_previous_mode(new_previous_mode))
current_thread->update_time_scheduled(TimeManagement::scheduler_current_time(), true, false);
}
VERIFY_INTERRUPTS_DISABLED();
// Leave the critical section without actually enabling interrupts.
// We don't want context switches to happen until we're explicitly
// triggering a switch in check_invoke_scheduler.
m_in_critical = m_in_critical - 1;
if (!m_in_irq && !m_in_critical)
check_invoke_scheduler();
}
ErrorOr<Vector<FlatPtr, 32>> Processor::capture_stack_trace(Thread& thread, size_t max_frames)
{
(void)thread;
(void)max_frames;
dbgln("FIXME: Implement Processor::capture_stack_trace() for AArch64");
return Vector<FlatPtr, 32> {};
}
void Processor::check_invoke_scheduler()
{
VERIFY_INTERRUPTS_DISABLED();
VERIFY(!m_in_irq);
VERIFY(!m_in_critical);
VERIFY(&Processor::current() == this);
if (m_invoke_scheduler_async && m_scheduler_initialized) {
m_invoke_scheduler_async = false;
Scheduler::invoke_async();
}
}
NAKED void thread_context_first_enter(void)
{
asm(
"ldr x0, [sp, #0] \n"
"ldr x1, [sp, #8] \n"
"add sp, sp, 32 \n"
"bl context_first_init \n"
"b restore_context_and_eret \n");
}
NAKED void do_assume_context(Thread*, u32)
{
// clang-format off
asm(
"mov x19, x0 \n" // save thread ptr
// We're going to call Processor::init_context, so just make sure
// we have enough stack space so we don't stomp over it
"sub sp, sp, #" __STRINGIFY(8 + REGISTER_STATE_SIZE + TRAP_FRAME_SIZE + 8) " \n"
"bl do_init_context \n"
"mov sp, x0 \n" // move stack pointer to what Processor::init_context set up for us
"mov x0, x19 \n" // to_thread
"mov x1, x19 \n" // from_thread
"sub sp, sp, 32 \n"
"stp x19, x19, [sp] \n" // to_thread, from_thread (for thread_context_first_enter)
"ldr lr, =thread_context_first_enter \n" // should be same as regs.elr_el1
"b enter_thread_context \n");
// clang-format on
}
void exit_kernel_thread(void)
{
Thread::current()->exit();
}
extern "C" void context_first_init([[maybe_unused]] Thread* from_thread, [[maybe_unused]] Thread* to_thread)
{
VERIFY(!are_interrupts_enabled());
dbgln_if(CONTEXT_SWITCH_DEBUG, "switch_context <-- from {} {} to {} {} (context_first_init)", VirtualAddress(from_thread), *from_thread, VirtualAddress(to_thread), *to_thread);
VERIFY(to_thread == Thread::current());
Scheduler::enter_current(*from_thread);
auto in_critical = to_thread->saved_critical();
VERIFY(in_critical > 0);
Processor::restore_critical(in_critical);
// Since we got here and don't have Scheduler::context_switch in the
// call stack (because this is the first time we switched into this
// context), we need to notify the scheduler so that it can release
// the scheduler lock. We don't want to enable interrupts at this point
// as we're still in the middle of a context switch. Doing so could
// trigger a context switch within a context switch, leading to a crash.
Scheduler::leave_on_first_switch(InterruptsState::Disabled);
}
extern "C" void enter_thread_context(Thread* from_thread, Thread* to_thread)
{
VERIFY(from_thread == to_thread || from_thread->state() != Thread::State::Running);
VERIFY(to_thread->state() == Thread::State::Running);
Processor::set_current_thread(*to_thread);
store_fpu_state(&from_thread->fpu_state());
auto& from_regs = from_thread->regs();
auto& to_regs = to_thread->regs();
if (from_regs.ttbr0_el1 != to_regs.ttbr0_el1) {
Aarch64::Asm::set_ttbr0_el1(to_regs.ttbr0_el1);
Processor::flush_entire_tlb_local();
}
to_thread->set_cpu(Processor::current().id());
Processor::set_thread_specific_data(to_thread->thread_specific_data());
auto in_critical = to_thread->saved_critical();
VERIFY(in_critical > 0);
Processor::restore_critical(in_critical);
load_fpu_state(&to_thread->fpu_state());
}
StringView Processor::platform_string()
{
return "aarch64"sv;
}
void Processor::set_thread_specific_data(VirtualAddress thread_specific_data)
{
Aarch64::Asm::set_tpidr_el0(thread_specific_data.get());
}
void Processor::deferred_call_queue(Function<void()> callback)
{
// NOTE: If we are called outside of a critical section and outside
// of an irq handler, the function will be executed before we return!
ScopedCritical critical;
auto& cur_proc = Processor::current();
auto* entry = cur_proc.m_deferred_call_pool.get_free();
entry->handler_value() = move(callback);
cur_proc.m_deferred_call_pool.queue_entry(entry);
}
}