1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-23 12:55:08 +00:00
serenity/Libraries/LibJS/Heap/Heap.cpp
Andreas Kling b2f005125d LibJS: Always collect all garbage when destroying Heap
When the Heap is going down, it's our last chance to run destructors,
so add a separate collector mode where we simply skip over the marking
phase and go directly to sweeping. This causes everything to get swept
and all live cells get destroyed.

This way, valgrind reports 0 leaks on exit. :^)
2020-03-23 14:11:19 +01:00

260 lines
7.1 KiB
C++

/*
* Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/Badge.h>
#include <AK/HashTable.h>
#include <LibJS/Heap/Handle.h>
#include <LibJS/Heap/Heap.h>
#include <LibJS/Heap/HeapBlock.h>
#include <LibJS/Interpreter.h>
#include <LibJS/Runtime/Object.h>
#include <setjmp.h>
#include <stdio.h>
#ifdef __serenity__
# include <serenity.h>
#elif __linux__
# include <pthread.h>
#endif
#define HEAP_DEBUG
namespace JS {
Heap::Heap(Interpreter& interpreter)
: m_interpreter(interpreter)
{
}
Heap::~Heap()
{
collect_garbage(CollectionType::CollectEverything);
}
Cell* Heap::allocate_cell(size_t size)
{
if (should_collect_on_every_allocation())
collect_garbage();
for (auto& block : m_blocks) {
if (size > block->cell_size())
continue;
if (auto* cell = block->allocate())
return cell;
}
size_t cell_size = round_up_to_power_of_two(size, 16);
auto block = HeapBlock::create_with_cell_size(*this, cell_size);
auto* cell = block->allocate();
m_blocks.append(move(block));
return cell;
}
void Heap::collect_garbage(CollectionType collection_type)
{
if (collection_type == CollectionType::CollectGarbage) {
HashTable<Cell*> roots;
gather_roots(roots);
mark_live_cells(roots);
}
sweep_dead_cells();
}
void Heap::gather_roots(HashTable<Cell*>& roots)
{
m_interpreter.gather_roots({}, roots);
gather_conservative_roots(roots);
for (auto* handle : m_handles)
roots.set(handle->cell());
#ifdef HEAP_DEBUG
dbg() << "gather_roots:";
for (auto* root : roots) {
dbg() << " + " << root;
}
#endif
}
void Heap::gather_conservative_roots(HashTable<Cell*>& roots)
{
FlatPtr dummy;
#ifdef HEAP_DEBUG
dbg() << "gather_conservative_roots:";
#endif
jmp_buf buf;
setjmp(buf);
HashTable<FlatPtr> possible_pointers;
const FlatPtr* raw_jmp_buf = reinterpret_cast<const FlatPtr*>(buf);
for (size_t i = 0; i < sizeof(buf) / sizeof(FlatPtr); i += sizeof(FlatPtr))
possible_pointers.set(raw_jmp_buf[i]);
FlatPtr stack_base;
size_t stack_size;
#ifdef __serenity__
if (get_stack_bounds(&stack_base, &stack_size) < 0) {
perror("get_stack_bounds");
ASSERT_NOT_REACHED();
}
#elif __linux__
pthread_attr_t attr = {};
if (int rc = pthread_getattr_np(pthread_self(), &attr) != 0) {
fprintf(stderr, "pthread_getattr_np: %s\n", strerror(-rc));
ASSERT_NOT_REACHED();
}
if (int rc = pthread_attr_getstack(&attr, (void**)&stack_base, &stack_size) != 0) {
fprintf(stderr, "pthread_attr_getstack: %s\n", strerror(-rc));
ASSERT_NOT_REACHED();
}
pthread_attr_destroy(&attr);
#endif
FlatPtr stack_reference = reinterpret_cast<FlatPtr>(&dummy);
FlatPtr stack_top = stack_base + stack_size;
for (FlatPtr stack_address = stack_reference; stack_address < stack_top; stack_address += sizeof(FlatPtr)) {
auto data = *reinterpret_cast<FlatPtr*>(stack_address);
possible_pointers.set(data);
}
for (auto possible_pointer : possible_pointers) {
if (!possible_pointer)
continue;
#ifdef HEAP_DEBUG
dbg() << " ? " << (const void*)possible_pointer;
#endif
if (auto* cell = cell_from_possible_pointer(possible_pointer)) {
if (cell->is_live()) {
#ifdef HEAP_DEBUG
dbg() << " ?-> " << (const void*)cell;
#endif
roots.set(cell);
} else {
#ifdef HEAP_DEBUG
dbg() << " #-> " << (const void*)cell;
#endif
}
}
}
}
Cell* Heap::cell_from_possible_pointer(FlatPtr pointer)
{
auto* possible_heap_block = HeapBlock::from_cell(reinterpret_cast<const Cell*>(pointer));
if (m_blocks.find([possible_heap_block](auto& block) { return block.ptr() == possible_heap_block; }) == m_blocks.end())
return nullptr;
return possible_heap_block->cell_from_possible_pointer(pointer);
}
class MarkingVisitor final : public Cell::Visitor {
public:
MarkingVisitor() {}
virtual void visit(Cell* cell)
{
if (cell->is_marked())
return;
#ifdef HEAP_DEBUG
dbg() << " ! " << cell;
#endif
cell->set_marked(true);
cell->visit_children(*this);
}
};
void Heap::mark_live_cells(const HashTable<Cell*>& roots)
{
#ifdef HEAP_DEBUG
dbg() << "mark_live_cells:";
#endif
MarkingVisitor visitor;
for (auto* root : roots) {
if (!root)
continue;
visitor.visit(root);
}
}
void Heap::sweep_dead_cells()
{
#ifdef HEAP_DEBUG
dbg() << "sweep_dead_cells:";
#endif
Vector<HeapBlock*, 32> empty_blocks;
for (auto& block : m_blocks) {
bool block_has_live_cells = false;
block->for_each_cell([&](Cell* cell) {
if (cell->is_live()) {
if (!cell->is_marked()) {
#ifdef HEAP_DEBUG
dbg() << " ~ " << cell;
#endif
block->deallocate(cell);
} else {
cell->set_marked(false);
block_has_live_cells = true;
}
}
});
if (!block_has_live_cells)
empty_blocks.append(block);
}
for (auto* block : empty_blocks) {
#ifdef HEAP_DEBUG
dbg() << " - Reclaim HeapBlock @ " << block << ": cell_size=" << block->cell_size();
#endif
m_blocks.remove_first_matching([block](auto& entry) { return entry == block; });
}
#ifdef HEAP_DEBUG
for (auto& block : m_blocks) {
dbg() << " > Live HeapBlock @ " << block << ": cell_size=" << block->cell_size();
}
#endif
}
void Heap::did_create_handle(Badge<HandleImpl>, HandleImpl& impl)
{
ASSERT(!m_handles.contains(&impl));
m_handles.set(&impl);
}
void Heap::did_destroy_handle(Badge<HandleImpl>, HandleImpl& impl)
{
ASSERT(m_handles.contains(&impl));
m_handles.remove(&impl);
}
}