mirror of
				https://github.com/RGBCube/serenity
				synced 2025-10-31 20:42:43 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			749 lines
		
	
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			749 lines
		
	
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
 | |
|  *
 | |
|  * SPDX-License-Identifier: BSD-2-Clause
 | |
|  */
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <AK/Concepts.h>
 | |
| #include <AK/Error.h>
 | |
| #include <AK/Forward.h>
 | |
| #include <AK/HashFunctions.h>
 | |
| #include <AK/StdLibExtras.h>
 | |
| #include <AK/Traits.h>
 | |
| #include <AK/Types.h>
 | |
| #include <AK/kmalloc.h>
 | |
| 
 | |
| namespace AK {
 | |
| 
 | |
| enum class HashSetResult {
 | |
|     InsertedNewEntry,
 | |
|     ReplacedExistingEntry,
 | |
|     KeptExistingEntry
 | |
| };
 | |
| 
 | |
| enum class HashSetExistingEntryBehavior {
 | |
|     Keep,
 | |
|     Replace
 | |
| };
 | |
| 
 | |
| // Upper nibble determines state class:
 | |
| // - 0: unused bucket
 | |
| // - 1: used bucket
 | |
| // - F: end bucket
 | |
| // Lower nibble determines state within a class.
 | |
| enum class BucketState : u8 {
 | |
|     Free = 0x00,
 | |
|     Used = 0x10,
 | |
|     Deleted = 0x01,
 | |
|     Rehashed = 0x12,
 | |
|     End = 0xFF,
 | |
| };
 | |
| 
 | |
| // Note that because there's the end state, used and free are not 100% opposites!
 | |
| constexpr bool is_used_bucket(BucketState state)
 | |
| {
 | |
|     return (static_cast<u8>(state) & 0xf0) == 0x10;
 | |
| }
 | |
| 
 | |
| constexpr bool is_free_bucket(BucketState state)
 | |
| {
 | |
|     return (static_cast<u8>(state) & 0xf0) == 0x00;
 | |
| }
 | |
| 
 | |
| template<typename HashTableType, typename T, typename BucketType>
 | |
| class HashTableIterator {
 | |
|     friend HashTableType;
 | |
| 
 | |
| public:
 | |
|     bool operator==(HashTableIterator const& other) const { return m_bucket == other.m_bucket; }
 | |
|     bool operator!=(HashTableIterator const& other) const { return m_bucket != other.m_bucket; }
 | |
|     T& operator*() { return *m_bucket->slot(); }
 | |
|     T* operator->() { return m_bucket->slot(); }
 | |
|     void operator++() { skip_to_next(); }
 | |
| 
 | |
| private:
 | |
|     void skip_to_next()
 | |
|     {
 | |
|         if (!m_bucket)
 | |
|             return;
 | |
|         do {
 | |
|             ++m_bucket;
 | |
|             if (m_bucket->state == BucketState::Used)
 | |
|                 return;
 | |
|         } while (m_bucket->state != BucketState::End);
 | |
|         if (m_bucket->state == BucketState::End)
 | |
|             m_bucket = nullptr;
 | |
|     }
 | |
| 
 | |
|     explicit HashTableIterator(BucketType* bucket)
 | |
|         : m_bucket(bucket)
 | |
|     {
 | |
|     }
 | |
| 
 | |
|     BucketType* m_bucket { nullptr };
 | |
| };
 | |
| 
 | |
| template<typename OrderedHashTableType, typename T, typename BucketType>
 | |
| class OrderedHashTableIterator {
 | |
|     friend OrderedHashTableType;
 | |
| 
 | |
| public:
 | |
|     bool operator==(OrderedHashTableIterator const& other) const { return m_bucket == other.m_bucket; }
 | |
|     bool operator!=(OrderedHashTableIterator const& other) const { return m_bucket != other.m_bucket; }
 | |
|     T& operator*() { return *m_bucket->slot(); }
 | |
|     T* operator->() { return m_bucket->slot(); }
 | |
|     void operator++() { m_bucket = m_bucket->next; }
 | |
|     void operator--() { m_bucket = m_bucket->previous; }
 | |
| 
 | |
| private:
 | |
|     explicit OrderedHashTableIterator(BucketType* bucket)
 | |
|         : m_bucket(bucket)
 | |
|     {
 | |
|     }
 | |
| 
 | |
|     BucketType* m_bucket { nullptr };
 | |
| };
 | |
| 
 | |
| template<typename T, typename TraitsForT, bool IsOrdered>
 | |
| class HashTable {
 | |
|     static constexpr size_t load_factor_in_percent = 60;
 | |
| 
 | |
|     struct Bucket {
 | |
|         BucketState state;
 | |
|         alignas(T) u8 storage[sizeof(T)];
 | |
| 
 | |
|         T* slot() { return reinterpret_cast<T*>(storage); }
 | |
|         T const* slot() const { return reinterpret_cast<T const*>(storage); }
 | |
|     };
 | |
| 
 | |
|     struct OrderedBucket {
 | |
|         OrderedBucket* previous;
 | |
|         OrderedBucket* next;
 | |
|         BucketState state;
 | |
|         alignas(T) u8 storage[sizeof(T)];
 | |
|         T* slot() { return reinterpret_cast<T*>(storage); }
 | |
|         T const* slot() const { return reinterpret_cast<T const*>(storage); }
 | |
|     };
 | |
| 
 | |
|     using BucketType = Conditional<IsOrdered, OrderedBucket, Bucket>;
 | |
| 
 | |
|     struct CollectionData {
 | |
|     };
 | |
| 
 | |
|     struct OrderedCollectionData {
 | |
|         BucketType* head { nullptr };
 | |
|         BucketType* tail { nullptr };
 | |
|     };
 | |
| 
 | |
|     using CollectionDataType = Conditional<IsOrdered, OrderedCollectionData, CollectionData>;
 | |
| 
 | |
| public:
 | |
|     HashTable() = default;
 | |
|     explicit HashTable(size_t capacity) { rehash(capacity); }
 | |
| 
 | |
|     ~HashTable()
 | |
|     {
 | |
|         if (!m_buckets)
 | |
|             return;
 | |
| 
 | |
|         for (size_t i = 0; i < m_capacity; ++i) {
 | |
|             if (is_used_bucket(m_buckets[i].state))
 | |
|                 m_buckets[i].slot()->~T();
 | |
|         }
 | |
| 
 | |
|         kfree_sized(m_buckets, size_in_bytes(m_capacity));
 | |
|     }
 | |
| 
 | |
|     HashTable(HashTable const& other)
 | |
|     {
 | |
|         rehash(other.capacity());
 | |
|         for (auto& it : other)
 | |
|             set(it);
 | |
|     }
 | |
| 
 | |
|     HashTable& operator=(HashTable const& other)
 | |
|     {
 | |
|         HashTable temporary(other);
 | |
|         swap(*this, temporary);
 | |
|         return *this;
 | |
|     }
 | |
| 
 | |
|     HashTable(HashTable&& other) noexcept
 | |
|         : m_buckets(other.m_buckets)
 | |
|         , m_collection_data(other.m_collection_data)
 | |
|         , m_size(other.m_size)
 | |
|         , m_capacity(other.m_capacity)
 | |
|         , m_deleted_count(other.m_deleted_count)
 | |
|     {
 | |
|         other.m_size = 0;
 | |
|         other.m_capacity = 0;
 | |
|         other.m_deleted_count = 0;
 | |
|         other.m_buckets = nullptr;
 | |
|         if constexpr (IsOrdered)
 | |
|             other.m_collection_data = { nullptr, nullptr };
 | |
|     }
 | |
| 
 | |
|     HashTable& operator=(HashTable&& other) noexcept
 | |
|     {
 | |
|         HashTable temporary { move(other) };
 | |
|         swap(*this, temporary);
 | |
|         return *this;
 | |
|     }
 | |
| 
 | |
|     friend void swap(HashTable& a, HashTable& b) noexcept
 | |
|     {
 | |
|         swap(a.m_buckets, b.m_buckets);
 | |
|         swap(a.m_size, b.m_size);
 | |
|         swap(a.m_capacity, b.m_capacity);
 | |
|         swap(a.m_deleted_count, b.m_deleted_count);
 | |
| 
 | |
|         if constexpr (IsOrdered)
 | |
|             swap(a.m_collection_data, b.m_collection_data);
 | |
|     }
 | |
| 
 | |
|     [[nodiscard]] bool is_empty() const { return m_size == 0; }
 | |
|     [[nodiscard]] size_t size() const { return m_size; }
 | |
|     [[nodiscard]] size_t capacity() const { return m_capacity; }
 | |
| 
 | |
|     template<typename U, size_t N>
 | |
|     ErrorOr<void> try_set_from(U (&from_array)[N])
 | |
|     {
 | |
|         for (size_t i = 0; i < N; ++i)
 | |
|             TRY(try_set(from_array[i]));
 | |
|         return {};
 | |
|     }
 | |
|     template<typename U, size_t N>
 | |
|     void set_from(U (&from_array)[N])
 | |
|     {
 | |
|         MUST(try_set_from(from_array));
 | |
|     }
 | |
| 
 | |
|     void ensure_capacity(size_t capacity)
 | |
|     {
 | |
|         VERIFY(capacity >= size());
 | |
|         rehash(capacity * 2);
 | |
|     }
 | |
| 
 | |
|     ErrorOr<void> try_ensure_capacity(size_t capacity)
 | |
|     {
 | |
|         VERIFY(capacity >= size());
 | |
|         return try_rehash(capacity * 2);
 | |
|     }
 | |
| 
 | |
|     [[nodiscard]] bool contains(T const& value) const
 | |
|     {
 | |
|         return find(value) != end();
 | |
|     }
 | |
| 
 | |
|     template<Concepts::HashCompatible<T> K>
 | |
|     requires(IsSame<TraitsForT, Traits<T>>) [[nodiscard]] bool contains(K const& value) const
 | |
|     {
 | |
|         return find(value) != end();
 | |
|     }
 | |
| 
 | |
|     using Iterator = Conditional<IsOrdered,
 | |
|         OrderedHashTableIterator<HashTable, T, BucketType>,
 | |
|         HashTableIterator<HashTable, T, BucketType>>;
 | |
| 
 | |
|     [[nodiscard]] Iterator begin()
 | |
|     {
 | |
|         if constexpr (IsOrdered)
 | |
|             return Iterator(m_collection_data.head);
 | |
| 
 | |
|         for (size_t i = 0; i < m_capacity; ++i) {
 | |
|             if (is_used_bucket(m_buckets[i].state))
 | |
|                 return Iterator(&m_buckets[i]);
 | |
|         }
 | |
|         return end();
 | |
|     }
 | |
| 
 | |
|     [[nodiscard]] Iterator end()
 | |
|     {
 | |
|         return Iterator(nullptr);
 | |
|     }
 | |
| 
 | |
|     using ConstIterator = Conditional<IsOrdered,
 | |
|         OrderedHashTableIterator<const HashTable, const T, BucketType const>,
 | |
|         HashTableIterator<const HashTable, const T, BucketType const>>;
 | |
| 
 | |
|     [[nodiscard]] ConstIterator begin() const
 | |
|     {
 | |
|         if constexpr (IsOrdered)
 | |
|             return ConstIterator(m_collection_data.head);
 | |
| 
 | |
|         for (size_t i = 0; i < m_capacity; ++i) {
 | |
|             if (is_used_bucket(m_buckets[i].state))
 | |
|                 return ConstIterator(&m_buckets[i]);
 | |
|         }
 | |
|         return end();
 | |
|     }
 | |
| 
 | |
|     [[nodiscard]] ConstIterator end() const
 | |
|     {
 | |
|         return ConstIterator(nullptr);
 | |
|     }
 | |
| 
 | |
|     void clear()
 | |
|     {
 | |
|         *this = HashTable();
 | |
|     }
 | |
|     void clear_with_capacity()
 | |
|     {
 | |
|         if (m_capacity == 0)
 | |
|             return;
 | |
|         if constexpr (!IsTriviallyDestructible<T>) {
 | |
|             for (auto* bucket : *this)
 | |
|                 bucket->~T();
 | |
|         }
 | |
|         __builtin_memset(m_buckets, 0, size_in_bytes(capacity()));
 | |
|         m_size = 0;
 | |
|         m_deleted_count = 0;
 | |
| 
 | |
|         if constexpr (IsOrdered)
 | |
|             m_collection_data = { nullptr, nullptr };
 | |
|         else
 | |
|             m_buckets[m_capacity].state = BucketState::End;
 | |
|     }
 | |
| 
 | |
|     template<typename U = T>
 | |
|     ErrorOr<HashSetResult> try_set(U&& value, HashSetExistingEntryBehavior existing_entry_behavior = HashSetExistingEntryBehavior::Replace)
 | |
|     {
 | |
|         auto* bucket = TRY(try_lookup_for_writing(value));
 | |
|         if (is_used_bucket(bucket->state)) {
 | |
|             if (existing_entry_behavior == HashSetExistingEntryBehavior::Keep)
 | |
|                 return HashSetResult::KeptExistingEntry;
 | |
|             (*bucket->slot()) = forward<U>(value);
 | |
|             return HashSetResult::ReplacedExistingEntry;
 | |
|         }
 | |
| 
 | |
|         new (bucket->slot()) T(forward<U>(value));
 | |
|         if (bucket->state == BucketState::Deleted)
 | |
|             --m_deleted_count;
 | |
|         bucket->state = BucketState::Used;
 | |
| 
 | |
|         if constexpr (IsOrdered) {
 | |
|             if (!m_collection_data.head) [[unlikely]] {
 | |
|                 m_collection_data.head = bucket;
 | |
|             } else {
 | |
|                 bucket->previous = m_collection_data.tail;
 | |
|                 m_collection_data.tail->next = bucket;
 | |
|             }
 | |
|             m_collection_data.tail = bucket;
 | |
|         }
 | |
| 
 | |
|         ++m_size;
 | |
|         return HashSetResult::InsertedNewEntry;
 | |
|     }
 | |
|     template<typename U = T>
 | |
|     HashSetResult set(U&& value, HashSetExistingEntryBehavior existing_entry_behaviour = HashSetExistingEntryBehavior::Replace)
 | |
|     {
 | |
|         return MUST(try_set(forward<U>(value), existing_entry_behaviour));
 | |
|     }
 | |
| 
 | |
|     template<typename TUnaryPredicate>
 | |
|     [[nodiscard]] Iterator find(unsigned hash, TUnaryPredicate predicate)
 | |
|     {
 | |
|         return Iterator(lookup_with_hash(hash, move(predicate)));
 | |
|     }
 | |
| 
 | |
|     [[nodiscard]] Iterator find(T const& value)
 | |
|     {
 | |
|         return find(TraitsForT::hash(value), [&](auto& other) { return TraitsForT::equals(value, other); });
 | |
|     }
 | |
| 
 | |
|     template<typename TUnaryPredicate>
 | |
|     [[nodiscard]] ConstIterator find(unsigned hash, TUnaryPredicate predicate) const
 | |
|     {
 | |
|         return ConstIterator(lookup_with_hash(hash, move(predicate)));
 | |
|     }
 | |
| 
 | |
|     [[nodiscard]] ConstIterator find(T const& value) const
 | |
|     {
 | |
|         return find(TraitsForT::hash(value), [&](auto& other) { return TraitsForT::equals(value, other); });
 | |
|     }
 | |
|     // FIXME: Support for predicates, while guaranteeing that the predicate call
 | |
|     //        does not call a non trivial constructor each time invoked
 | |
|     template<Concepts::HashCompatible<T> K>
 | |
|     requires(IsSame<TraitsForT, Traits<T>>) [[nodiscard]] Iterator find(K const& value)
 | |
|     {
 | |
|         return find(Traits<K>::hash(value), [&](auto& other) { return Traits<T>::equals(other, value); });
 | |
|     }
 | |
| 
 | |
|     template<Concepts::HashCompatible<T> K, typename TUnaryPredicate>
 | |
|     requires(IsSame<TraitsForT, Traits<T>>) [[nodiscard]] Iterator find(K const& value, TUnaryPredicate predicate)
 | |
|     {
 | |
|         return find(Traits<K>::hash(value), move(predicate));
 | |
|     }
 | |
| 
 | |
|     template<Concepts::HashCompatible<T> K>
 | |
|     requires(IsSame<TraitsForT, Traits<T>>) [[nodiscard]] ConstIterator find(K const& value) const
 | |
|     {
 | |
|         return find(Traits<K>::hash(value), [&](auto& other) { return Traits<T>::equals(other, value); });
 | |
|     }
 | |
| 
 | |
|     template<Concepts::HashCompatible<T> K, typename TUnaryPredicate>
 | |
|     requires(IsSame<TraitsForT, Traits<T>>) [[nodiscard]] ConstIterator find(K const& value, TUnaryPredicate predicate) const
 | |
|     {
 | |
|         return find(Traits<K>::hash(value), move(predicate));
 | |
|     }
 | |
| 
 | |
|     bool remove(T const& value)
 | |
|     {
 | |
|         auto it = find(value);
 | |
|         if (it != end()) {
 | |
|             remove(it);
 | |
|             return true;
 | |
|         }
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     template<Concepts::HashCompatible<T> K>
 | |
|     requires(IsSame<TraitsForT, Traits<T>>) bool remove(K const& value)
 | |
|     {
 | |
|         auto it = find(value);
 | |
|         if (it != end()) {
 | |
|             remove(it);
 | |
|             return true;
 | |
|         }
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     void remove(Iterator iterator)
 | |
|     {
 | |
|         VERIFY(iterator.m_bucket);
 | |
|         auto& bucket = *iterator.m_bucket;
 | |
|         VERIFY(is_used_bucket(bucket.state));
 | |
| 
 | |
|         delete_bucket(bucket);
 | |
|         --m_size;
 | |
|         ++m_deleted_count;
 | |
| 
 | |
|         rehash_in_place_if_needed();
 | |
|     }
 | |
| 
 | |
|     template<typename TUnaryPredicate>
 | |
|     bool remove_all_matching(TUnaryPredicate const& predicate)
 | |
|     {
 | |
|         size_t removed_count = 0;
 | |
|         for (size_t i = 0; i < m_capacity; ++i) {
 | |
|             auto& bucket = m_buckets[i];
 | |
|             if (is_used_bucket(bucket.state) && predicate(*bucket.slot())) {
 | |
|                 delete_bucket(bucket);
 | |
|                 ++removed_count;
 | |
|             }
 | |
|         }
 | |
|         if (removed_count) {
 | |
|             m_deleted_count += removed_count;
 | |
|             m_size -= removed_count;
 | |
|         }
 | |
|         rehash_in_place_if_needed();
 | |
|         return removed_count;
 | |
|     }
 | |
| 
 | |
|     T pop()
 | |
|     {
 | |
|         VERIFY(!is_empty());
 | |
|         T element;
 | |
|         if constexpr (IsOrdered) {
 | |
|             element = *m_collection_data.tail->slot();
 | |
|         } else {
 | |
|             for (size_t i = 0; i < m_capacity; ++i) {
 | |
|                 if (is_used_bucket(m_buckets[i].state)) {
 | |
|                     element = *m_buckets[i].slot();
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         remove(element);
 | |
|         return element;
 | |
|     }
 | |
| 
 | |
| private:
 | |
|     void insert_during_rehash(T&& value)
 | |
|     {
 | |
|         auto& bucket = lookup_for_writing(value);
 | |
|         new (bucket.slot()) T(move(value));
 | |
|         bucket.state = BucketState::Used;
 | |
| 
 | |
|         if constexpr (IsOrdered) {
 | |
|             if (!m_collection_data.head) [[unlikely]] {
 | |
|                 m_collection_data.head = &bucket;
 | |
|             } else {
 | |
|                 bucket.previous = m_collection_data.tail;
 | |
|                 m_collection_data.tail->next = &bucket;
 | |
|             }
 | |
|             m_collection_data.tail = &bucket;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     [[nodiscard]] static constexpr size_t size_in_bytes(size_t capacity)
 | |
|     {
 | |
|         if constexpr (IsOrdered) {
 | |
|             return sizeof(BucketType) * capacity;
 | |
|         } else {
 | |
|             return sizeof(BucketType) * (capacity + 1);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ErrorOr<void> try_rehash(size_t new_capacity)
 | |
|     {
 | |
|         if (new_capacity == m_capacity && new_capacity >= 4) {
 | |
|             rehash_in_place();
 | |
|             return {};
 | |
|         }
 | |
| 
 | |
|         new_capacity = max(new_capacity, static_cast<size_t>(4));
 | |
|         new_capacity = kmalloc_good_size(new_capacity * sizeof(BucketType)) / sizeof(BucketType);
 | |
| 
 | |
|         auto* old_buckets = m_buckets;
 | |
|         auto old_capacity = m_capacity;
 | |
|         Iterator old_iter = begin();
 | |
| 
 | |
|         auto* new_buckets = kcalloc(1, size_in_bytes(new_capacity));
 | |
|         if (!new_buckets)
 | |
|             return Error::from_errno(ENOMEM);
 | |
| 
 | |
|         m_buckets = (BucketType*)new_buckets;
 | |
| 
 | |
|         m_capacity = new_capacity;
 | |
|         m_deleted_count = 0;
 | |
| 
 | |
|         if constexpr (IsOrdered)
 | |
|             m_collection_data = { nullptr, nullptr };
 | |
|         else
 | |
|             m_buckets[m_capacity].state = BucketState::End;
 | |
| 
 | |
|         if (!old_buckets)
 | |
|             return {};
 | |
| 
 | |
|         for (auto it = move(old_iter); it != end(); ++it) {
 | |
|             insert_during_rehash(move(*it));
 | |
|             it->~T();
 | |
|         }
 | |
| 
 | |
|         kfree_sized(old_buckets, size_in_bytes(old_capacity));
 | |
|         return {};
 | |
|     }
 | |
|     void rehash(size_t new_capacity)
 | |
|     {
 | |
|         MUST(try_rehash(new_capacity));
 | |
|     }
 | |
| 
 | |
|     void rehash_in_place()
 | |
|     {
 | |
|         // FIXME: This implementation takes two loops over the entire bucket array, but avoids re-allocation.
 | |
|         //        Please benchmark your new implementation before you replace this.
 | |
|         //        The reason is that because of collisions, we use the special "rehashed" bucket state to mark already-rehashed used buckets.
 | |
|         //        Because we of course want to write into old used buckets, but already rehashed data shall not be touched.
 | |
| 
 | |
|         // FIXME: Find a way to reduce the cognitive complexity of this function.
 | |
| 
 | |
|         for (size_t i = 0; i < m_capacity; ++i) {
 | |
|             auto& bucket = m_buckets[i];
 | |
| 
 | |
|             // FIXME: Bail out when we have handled every filled bucket.
 | |
| 
 | |
|             if (bucket.state == BucketState::Rehashed || bucket.state == BucketState::End || bucket.state == BucketState::Free)
 | |
|                 continue;
 | |
|             if (bucket.state == BucketState::Deleted) {
 | |
|                 bucket.state = BucketState::Free;
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             auto const new_hash = TraitsForT::hash(*bucket.slot());
 | |
|             if (new_hash % m_capacity == i) {
 | |
|                 bucket.state = BucketState::Rehashed;
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             auto target_hash = new_hash;
 | |
|             auto const to_move_hash = i;
 | |
|             BucketType* target_bucket = &m_buckets[target_hash % m_capacity];
 | |
|             BucketType* bucket_to_move = &m_buckets[i];
 | |
| 
 | |
|             // Try to move the bucket to move into its correct spot.
 | |
|             // During the procedure, we might re-hash or actually change the bucket to move.
 | |
|             while (!is_free_bucket(bucket_to_move->state)) {
 | |
| 
 | |
|                 // If we're targeting ourselves, there's nothing to do.
 | |
|                 if (to_move_hash == target_hash % m_capacity) {
 | |
|                     bucket_to_move->state = BucketState::Rehashed;
 | |
|                     break;
 | |
|                 }
 | |
| 
 | |
|                 if (is_free_bucket(target_bucket->state)) {
 | |
|                     // We can just overwrite the target bucket and bail out.
 | |
|                     new (target_bucket->slot()) T(move(*bucket_to_move->slot()));
 | |
|                     target_bucket->state = BucketState::Rehashed;
 | |
|                     bucket_to_move->state = BucketState::Free;
 | |
| 
 | |
|                     if constexpr (IsOrdered) {
 | |
|                         swap(bucket_to_move->previous, target_bucket->previous);
 | |
|                         swap(bucket_to_move->next, target_bucket->next);
 | |
| 
 | |
|                         if (target_bucket->previous)
 | |
|                             target_bucket->previous->next = target_bucket;
 | |
|                         else
 | |
|                             m_collection_data.head = target_bucket;
 | |
|                         if (target_bucket->next)
 | |
|                             target_bucket->next->previous = target_bucket;
 | |
|                         else
 | |
|                             m_collection_data.tail = target_bucket;
 | |
|                     }
 | |
|                 } else if (target_bucket->state == BucketState::Rehashed) {
 | |
|                     // If the target bucket is already re-hashed, we do normal probing.
 | |
|                     target_hash = double_hash(target_hash);
 | |
|                     target_bucket = &m_buckets[target_hash % m_capacity];
 | |
|                 } else {
 | |
|                     VERIFY(target_bucket->state != BucketState::End);
 | |
|                     // The target bucket is a used bucket that hasn't been re-hashed.
 | |
|                     // Swap the data into the target; now the target's data resides in the bucket to move again.
 | |
|                     // (That's of course what we want, how neat!)
 | |
|                     swap(*bucket_to_move->slot(), *target_bucket->slot());
 | |
|                     bucket_to_move->state = target_bucket->state;
 | |
|                     target_bucket->state = BucketState::Rehashed;
 | |
| 
 | |
|                     if constexpr (IsOrdered) {
 | |
|                         // Update state for the target bucket, we'll do the bucket to move later.
 | |
|                         swap(bucket_to_move->previous, target_bucket->previous);
 | |
|                         swap(bucket_to_move->next, target_bucket->next);
 | |
| 
 | |
|                         if (target_bucket->previous)
 | |
|                             target_bucket->previous->next = target_bucket;
 | |
|                         else
 | |
|                             m_collection_data.head = target_bucket;
 | |
|                         if (target_bucket->next)
 | |
|                             target_bucket->next->previous = target_bucket;
 | |
|                         else
 | |
|                             m_collection_data.tail = target_bucket;
 | |
|                     }
 | |
| 
 | |
|                     target_hash = TraitsForT::hash(*bucket_to_move->slot());
 | |
|                     target_bucket = &m_buckets[target_hash % m_capacity];
 | |
| 
 | |
|                     // The data is already in the correct location: Adjust the pointers
 | |
|                     if (target_hash % m_capacity == to_move_hash) {
 | |
|                         bucket_to_move->state = BucketState::Rehashed;
 | |
|                         if constexpr (IsOrdered) {
 | |
|                             // Update state for the bucket to move as it's not actually moved anymore.
 | |
|                             if (bucket_to_move->previous)
 | |
|                                 bucket_to_move->previous->next = bucket_to_move;
 | |
|                             else
 | |
|                                 m_collection_data.head = bucket_to_move;
 | |
|                             if (bucket_to_move->next)
 | |
|                                 bucket_to_move->next->previous = bucket_to_move;
 | |
|                             else
 | |
|                                 m_collection_data.tail = bucket_to_move;
 | |
|                         }
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             // After this, the bucket_to_move either contains data that rehashes to itself, or it contains nothing as we were able to move the last thing.
 | |
|             if (bucket_to_move->state == BucketState::Deleted)
 | |
|                 bucket_to_move->state = BucketState::Free;
 | |
|         }
 | |
| 
 | |
|         for (size_t i = 0; i < m_capacity; ++i) {
 | |
|             if (m_buckets[i].state == BucketState::Rehashed)
 | |
|                 m_buckets[i].state = BucketState::Used;
 | |
|         }
 | |
| 
 | |
|         m_deleted_count = 0;
 | |
|     }
 | |
| 
 | |
|     void rehash_in_place_if_needed()
 | |
|     {
 | |
|         // This signals a "thrashed" hash table with many deleted slots.
 | |
|         if (m_deleted_count >= m_size && should_grow())
 | |
|             rehash_in_place();
 | |
|     }
 | |
| 
 | |
|     template<typename TUnaryPredicate>
 | |
|     [[nodiscard]] BucketType* lookup_with_hash(unsigned hash, TUnaryPredicate predicate) const
 | |
|     {
 | |
|         if (is_empty())
 | |
|             return nullptr;
 | |
| 
 | |
|         for (;;) {
 | |
|             auto& bucket = m_buckets[hash % m_capacity];
 | |
| 
 | |
|             if (is_used_bucket(bucket.state) && predicate(*bucket.slot()))
 | |
|                 return &bucket;
 | |
| 
 | |
|             if (bucket.state != BucketState::Used && bucket.state != BucketState::Deleted)
 | |
|                 return nullptr;
 | |
| 
 | |
|             hash = double_hash(hash);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ErrorOr<BucketType*> try_lookup_for_writing(T const& value)
 | |
|     {
 | |
|         // FIXME: Maybe overrun the "allowed" load factor to avoid OOM
 | |
|         //        If we are allowed to do that, separate that logic from
 | |
|         //        the normal lookup_for_writing
 | |
|         if (should_grow())
 | |
|             TRY(try_rehash(capacity() * 2));
 | |
|         auto hash = TraitsForT::hash(value);
 | |
|         BucketType* first_empty_bucket = nullptr;
 | |
|         for (;;) {
 | |
|             auto& bucket = m_buckets[hash % m_capacity];
 | |
| 
 | |
|             if (is_used_bucket(bucket.state) && TraitsForT::equals(*bucket.slot(), value))
 | |
|                 return &bucket;
 | |
| 
 | |
|             if (!is_used_bucket(bucket.state)) {
 | |
|                 if (!first_empty_bucket)
 | |
|                     first_empty_bucket = &bucket;
 | |
| 
 | |
|                 if (bucket.state != BucketState::Deleted)
 | |
|                     return const_cast<BucketType*>(first_empty_bucket);
 | |
|             }
 | |
| 
 | |
|             hash = double_hash(hash);
 | |
|         }
 | |
|     }
 | |
|     [[nodiscard]] BucketType& lookup_for_writing(T const& value)
 | |
|     {
 | |
|         return *MUST(try_lookup_for_writing(value));
 | |
|     }
 | |
| 
 | |
|     [[nodiscard]] size_t used_bucket_count() const { return m_size + m_deleted_count; }
 | |
|     [[nodiscard]] bool should_grow() const { return ((used_bucket_count() + 1) * 100) >= (m_capacity * load_factor_in_percent); }
 | |
| 
 | |
|     void delete_bucket(auto& bucket)
 | |
|     {
 | |
|         bucket.slot()->~T();
 | |
|         bucket.state = BucketState::Deleted;
 | |
| 
 | |
|         if constexpr (IsOrdered) {
 | |
|             if (bucket.previous)
 | |
|                 bucket.previous->next = bucket.next;
 | |
|             else
 | |
|                 m_collection_data.head = bucket.next;
 | |
|             if (bucket.next)
 | |
|                 bucket.next->previous = bucket.previous;
 | |
|             else
 | |
|                 m_collection_data.tail = bucket.previous;
 | |
|             bucket.previous = nullptr;
 | |
|             bucket.next = nullptr;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     BucketType* m_buckets { nullptr };
 | |
| 
 | |
|     [[no_unique_address]] CollectionDataType m_collection_data;
 | |
|     size_t m_size { 0 };
 | |
|     size_t m_capacity { 0 };
 | |
|     size_t m_deleted_count { 0 };
 | |
| };
 | |
| }
 | |
| 
 | |
| #if USING_AK_GLOBALLY
 | |
| using AK::HashSetResult;
 | |
| using AK::HashTable;
 | |
| using AK::OrderedHashTable;
 | |
| #endif
 | 
