mirror of
				https://github.com/RGBCube/serenity
				synced 2025-10-30 22:42:45 +00:00 
			
		
		
		
	 2a840a538c
			
		
	
	
		2a840a538c
		
	
	
	
	
		
			
			This decreases the number of bytes necessary to capture the variables for this lambda. The next step will be to remove dynamic allocations from AK::Function which depends on this change to keep the size of AK::Function objects reasonable.
		
			
				
	
	
		
			179 lines
		
	
	
	
		
			5.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			179 lines
		
	
	
	
		
			5.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2020, the SerenityOS developers.
 | |
|  *
 | |
|  * SPDX-License-Identifier: BSD-2-Clause
 | |
|  */
 | |
| 
 | |
| #include <Kernel/Arch/x86/Time/APICTimer.h>
 | |
| #include <Kernel/Arch/x86/common/Interrupts/APIC.h>
 | |
| #include <Kernel/Panic.h>
 | |
| #include <Kernel/Sections.h>
 | |
| #include <Kernel/Time/TimeManagement.h>
 | |
| 
 | |
| namespace Kernel {
 | |
| 
 | |
| #define APIC_TIMER_MEASURE_CPU_CLOCK
 | |
| 
 | |
| UNMAP_AFTER_INIT APICTimer* APICTimer::initialize(u8 interrupt_number, HardwareTimerBase& calibration_source)
 | |
| {
 | |
|     auto timer = adopt_lock_ref(*new APICTimer(interrupt_number, nullptr));
 | |
|     timer->register_interrupt_handler();
 | |
|     if (!timer->calibrate(calibration_source)) {
 | |
|         return nullptr;
 | |
|     }
 | |
|     return &timer.leak_ref();
 | |
| }
 | |
| 
 | |
| UNMAP_AFTER_INIT APICTimer::APICTimer(u8 interrupt_number, Function<void(RegisterState const&)> callback)
 | |
|     : HardwareTimer<GenericInterruptHandler>(interrupt_number, move(callback))
 | |
| {
 | |
|     disable_remap();
 | |
| }
 | |
| 
 | |
| UNMAP_AFTER_INIT bool APICTimer::calibrate(HardwareTimerBase& calibration_source)
 | |
| {
 | |
|     VERIFY_INTERRUPTS_DISABLED();
 | |
| 
 | |
|     dmesgln("APICTimer: Using {} as calibration source", calibration_source.model());
 | |
| 
 | |
|     struct {
 | |
| #ifdef APIC_TIMER_MEASURE_CPU_CLOCK
 | |
|         bool supports_tsc { Processor::current().has_feature(CPUFeature::TSC) };
 | |
| #endif
 | |
|         APIC& apic { APIC::the() };
 | |
|         size_t ticks_in_100ms { 0 };
 | |
|         Atomic<size_t, AK::memory_order_relaxed> calibration_ticks { 0 };
 | |
| #ifdef APIC_TIMER_MEASURE_CPU_CLOCK
 | |
|         volatile u64 start_tsc { 0 }, end_tsc { 0 };
 | |
| #endif
 | |
|         volatile u64 start_reference { 0 }, end_reference { 0 };
 | |
|         volatile u32 start_apic_count { 0 }, end_apic_count { 0 };
 | |
|         bool query_reference { false };
 | |
|     } state;
 | |
| 
 | |
|     state.ticks_in_100ms = calibration_source.ticks_per_second() / 10;
 | |
|     state.query_reference = calibration_source.can_query_raw();
 | |
| 
 | |
|     // temporarily replace the timer callbacks
 | |
|     auto original_source_callback = calibration_source.set_callback([&state, &calibration_source](RegisterState const&) {
 | |
|         u32 current_timer_count = state.apic.get_timer_current_count();
 | |
| #ifdef APIC_TIMER_MEASURE_CPU_CLOCK
 | |
|         u64 current_tsc = state.supports_tsc ? read_tsc() : 0;
 | |
| #endif
 | |
|         u64 current_reference = state.query_reference ? calibration_source.current_raw() : 0;
 | |
| 
 | |
|         auto prev_tick = state.calibration_ticks.fetch_add(1);
 | |
|         if (prev_tick == 0) {
 | |
| #ifdef APIC_TIMER_MEASURE_CPU_CLOCK
 | |
|             state.start_tsc = current_tsc;
 | |
| #endif
 | |
|             state.start_apic_count = current_timer_count;
 | |
|             state.start_reference = current_reference;
 | |
|         } else if (prev_tick + 1 == state.ticks_in_100ms + 1) {
 | |
| #ifdef APIC_TIMER_MEASURE_CPU_CLOCK
 | |
|             state.end_tsc = current_tsc;
 | |
| #endif
 | |
|             state.end_apic_count = current_timer_count;
 | |
|             state.end_reference = current_reference;
 | |
|         }
 | |
|     });
 | |
| 
 | |
|     // Setup a counter that should be much longer than our calibration time.
 | |
|     // We don't want the APIC timer to actually fire. We do however want the
 | |
|     // calbibration_source timer to fire so that we can read the current
 | |
|     // tick count from the APIC timer
 | |
|     auto original_callback = set_callback([&](RegisterState const&) {
 | |
|         // TODO: How should we handle this?
 | |
|         PANIC("APICTimer: Timer fired during calibration!");
 | |
|     });
 | |
|     state.apic.setup_local_timer(0xffffffff, APIC::TimerMode::Periodic, true);
 | |
| 
 | |
|     sti();
 | |
|     // Loop for about 100 ms
 | |
|     while (state.calibration_ticks.load() <= state.ticks_in_100ms)
 | |
|         ;
 | |
|     cli();
 | |
| 
 | |
|     // Restore timer callbacks
 | |
|     calibration_source.set_callback(move(original_source_callback));
 | |
|     set_callback(move(original_callback));
 | |
| 
 | |
|     disable_local_timer();
 | |
| 
 | |
|     if (state.query_reference) {
 | |
|         u64 one_tick_ns = calibration_source.raw_to_ns((state.end_reference - state.start_reference) / state.ticks_in_100ms);
 | |
|         m_frequency = (u32)(1000000000ull / one_tick_ns);
 | |
|         dmesgln("APICTimer: Ticks per second: {} ({}.{}ms)", m_frequency, one_tick_ns / 1000000, one_tick_ns % 1000000);
 | |
|     } else {
 | |
|         // For now, assume the frequency is exactly the same
 | |
|         m_frequency = calibration_source.ticks_per_second();
 | |
|         dmesgln("APICTimer: Ticks per second: {} (assume same frequency as reference clock)", m_frequency);
 | |
|     }
 | |
| 
 | |
|     auto delta_apic_count = state.start_apic_count - state.end_apic_count; // The APIC current count register decrements!
 | |
|     m_timer_period = (delta_apic_count * state.apic.get_timer_divisor()) / state.ticks_in_100ms;
 | |
| 
 | |
|     u64 apic_freq = delta_apic_count * state.apic.get_timer_divisor() * 10;
 | |
|     dmesgln("APICTimer: Bus clock speed: {}.{} MHz", apic_freq / 1000000, apic_freq % 1000000);
 | |
|     if (apic_freq < 1000000) {
 | |
|         dmesgln("APICTimer: Frequency too slow!");
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
| #ifdef APIC_TIMER_MEASURE_CPU_CLOCK
 | |
|     if (state.supports_tsc) {
 | |
|         auto delta_tsc = (state.end_tsc - state.start_tsc) * 10;
 | |
|         dmesgln("APICTimer: CPU clock speed: {}.{} MHz", delta_tsc / 1000000, delta_tsc % 1000000);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     enable_local_timer();
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| void APICTimer::enable_local_timer()
 | |
| {
 | |
|     APIC::the().setup_local_timer(m_timer_period, m_timer_mode, true);
 | |
| }
 | |
| 
 | |
| void APICTimer::disable_local_timer()
 | |
| {
 | |
|     APIC::the().setup_local_timer(0, APIC::TimerMode::OneShot, false);
 | |
| }
 | |
| 
 | |
| size_t APICTimer::ticks_per_second() const
 | |
| {
 | |
|     return m_frequency;
 | |
| }
 | |
| 
 | |
| void APICTimer::set_periodic()
 | |
| {
 | |
|     // FIXME: Implement it...
 | |
|     VERIFY_NOT_REACHED();
 | |
| }
 | |
| void APICTimer::set_non_periodic()
 | |
| {
 | |
|     // FIXME: Implement it...
 | |
|     VERIFY_NOT_REACHED();
 | |
| }
 | |
| 
 | |
| void APICTimer::reset_to_default_ticks_per_second()
 | |
| {
 | |
| }
 | |
| 
 | |
| bool APICTimer::try_to_set_frequency([[maybe_unused]] size_t frequency)
 | |
| {
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| bool APICTimer::is_capable_of_frequency([[maybe_unused]] size_t frequency) const
 | |
| {
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| size_t APICTimer::calculate_nearest_possible_frequency([[maybe_unused]] size_t frequency) const
 | |
| {
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| }
 |