1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-31 12:48:10 +00:00
serenity/Userland/Services/WindowServer/Screen.h
Tom 38af4c29e6 WindowServer: Coalesce flushing buffers into one ioctl() call
We regularily need to flush many rectangles, so instead of making many
expensive ioctl() calls to the framebuffer driver, collect the
rectangles and only make one call. And if we have too many rectangles
then it may be cheaper to just update the entire region, in which case
we simply convert them all into a union and just flush that one
rectangle instead.
2021-06-27 09:46:27 +02:00

212 lines
6.1 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include "ScreenLayout.h"
#include <AK/NonnullOwnPtrVector.h>
#include <AK/OwnPtr.h>
#include <Kernel/API/KeyCode.h>
#include <LibGfx/Bitmap.h>
#include <LibGfx/Color.h>
#include <LibGfx/Rect.h>
#include <LibGfx/Size.h>
struct MousePacket;
namespace WindowServer {
constexpr double mouse_accel_max = 3.5;
constexpr double mouse_accel_min = 0.5;
constexpr unsigned scroll_step_size_min = 1;
// Most people will probably have 4 screens or less
constexpr size_t default_screen_count = 4;
// We currently only support 2 scale factors: 1x and 2x
constexpr size_t default_scale_factors_in_use_count = 2;
class Screen;
class ScreenInput {
public:
static ScreenInput& the();
Screen& cursor_location_screen();
const Screen& cursor_location_screen() const;
unsigned mouse_button_state() const { return m_mouse_button_state; }
double acceleration_factor() const { return m_acceleration_factor; }
void set_acceleration_factor(double);
unsigned scroll_step_size() const { return m_scroll_step_size; }
void set_scroll_step_size(unsigned);
void on_receive_mouse_data(const MousePacket&);
void on_receive_keyboard_data(::KeyEvent);
Gfx::IntPoint cursor_location() const { return m_cursor_location; }
void set_cursor_location(const Gfx::IntPoint point) { m_cursor_location = point; }
private:
Gfx::IntPoint m_cursor_location;
unsigned m_mouse_button_state { 0 };
unsigned m_modifiers { 0 };
double m_acceleration_factor { 1.0 };
unsigned m_scroll_step_size { 1 };
};
struct ScreenFBData;
class Screen {
public:
template<typename... Args>
static Screen* create(Args&&... args)
{
auto screen = adopt_own(*new Screen(forward<Args>(args)...));
if (!screen->is_opened())
return nullptr;
auto* screen_ptr = screen.ptr();
s_screens.append(move(screen));
update_indices();
update_bounding_rect();
if (!s_main_screen)
s_main_screen = screen_ptr;
screen_ptr->init();
return screen_ptr;
}
~Screen();
static bool apply_layout(ScreenLayout&&, String&);
static const ScreenLayout& layout() { return s_layout; }
static Screen& main()
{
VERIFY(s_main_screen);
return *s_main_screen;
}
static Screen& closest_to_rect(const Gfx::IntRect&);
static Screen& closest_to_location(const Gfx::IntPoint&);
static Screen* find_by_index(size_t index)
{
if (index >= s_screens.size())
return nullptr;
return &s_screens[index];
}
static Vector<Gfx::IntRect, 4> rects()
{
Vector<Gfx::IntRect, 4> rects;
for (auto& screen : s_screens)
rects.append(screen.rect());
return rects;
}
static Screen* find_by_location(const Gfx::IntPoint& point)
{
for (auto& screen : s_screens) {
if (screen.rect().contains(point))
return &screen;
}
return nullptr;
}
static const Gfx::IntRect& bounding_rect() { return s_bounding_screens_rect; }
static size_t count() { return s_screens.size(); }
size_t index() const { return m_index; }
template<typename F>
static IterationDecision for_each(F f)
{
for (auto& screen : s_screens) {
IterationDecision decision = f(screen);
if (decision != IterationDecision::Continue)
return decision;
}
return IterationDecision::Continue;
}
template<typename F>
static IterationDecision for_each_scale_factor_in_use(F f)
{
for (auto& scale_factor : s_scale_factors_in_use) {
IterationDecision decision = f(scale_factor);
if (decision != IterationDecision::Continue)
return decision;
}
return IterationDecision::Continue;
}
void make_main_screen() { s_main_screen = this; }
bool is_main_screen() const { return s_main_screen == this; }
bool can_set_buffer() { return m_can_set_buffer; }
void set_buffer(int index);
int physical_width() const { return width() * scale_factor(); }
int physical_height() const { return height() * scale_factor(); }
size_t pitch() const { return m_pitch; }
int width() const { return m_virtual_rect.width(); }
int height() const { return m_virtual_rect.height(); }
int scale_factor() const { return m_info.scale_factor; }
Gfx::RGBA32* scanline(int y);
Gfx::IntSize physical_size() const { return { physical_width(), physical_height() }; }
Gfx::IntSize size() const { return { m_virtual_rect.width(), m_virtual_rect.height() }; }
Gfx::IntRect rect() const { return m_virtual_rect; }
bool can_device_flush_buffers() const { return m_can_device_flush_buffers; }
void queue_flush_display_rect(Gfx::IntRect const& rect);
void flush_display();
private:
Screen(ScreenLayout::Screen&);
bool open_device();
void close_device();
void init();
bool set_resolution(bool initial);
static void update_indices()
{
for (size_t i = 0; i < s_screens.size(); i++)
s_screens[i].m_index = i;
}
static void update_bounding_rect();
static void update_scale_factors_in_use();
bool is_opened() const { return m_framebuffer_fd >= 0; }
static NonnullOwnPtrVector<Screen, default_screen_count> s_screens;
static Screen* s_main_screen;
static Gfx::IntRect s_bounding_screens_rect;
static ScreenLayout s_layout;
static Vector<int, default_scale_factors_in_use_count> s_scale_factors_in_use;
size_t m_index { 0 };
size_t m_size_in_bytes;
Gfx::RGBA32* m_framebuffer { nullptr };
bool m_can_set_buffer { false };
bool m_can_device_flush_buffers { true }; // If the device can't do it we revert to false
int m_pitch { 0 };
Gfx::IntRect m_virtual_rect;
int m_framebuffer_fd { -1 };
NonnullOwnPtr<ScreenFBData> m_framebuffer_data;
ScreenLayout::Screen& m_info;
};
inline Gfx::RGBA32* Screen::scanline(int y)
{
return reinterpret_cast<Gfx::RGBA32*>(((u8*)m_framebuffer) + (y * m_pitch));
}
}