mirror of
				https://github.com/RGBCube/serenity
				synced 2025-10-31 20:42:43 +00:00 
			
		
		
		
	 6b85b358f8
			
		
	
	
		6b85b358f8
		
	
	
	
	
		
			
			This change unifies the naming convention for kernel tasks. The goal of this change is to: - Make the task names more descriptive, so users can more easily understand their purpose in System Monitor. - Unify the naming convention so they are consistent.
		
			
				
	
	
		
			596 lines
		
	
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			596 lines
		
	
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
 | |
|  *
 | |
|  * SPDX-License-Identifier: BSD-2-Clause
 | |
|  */
 | |
| 
 | |
| #include <AK/BuiltinWrappers.h>
 | |
| #include <AK/ScopeGuard.h>
 | |
| #include <AK/Singleton.h>
 | |
| #include <AK/Time.h>
 | |
| #include <Kernel/Arch/InterruptDisabler.h>
 | |
| #include <Kernel/Arch/x86/TrapFrame.h>
 | |
| #include <Kernel/Debug.h>
 | |
| #include <Kernel/Panic.h>
 | |
| #include <Kernel/PerformanceManager.h>
 | |
| #include <Kernel/Process.h>
 | |
| #include <Kernel/RTC.h>
 | |
| #include <Kernel/Scheduler.h>
 | |
| #include <Kernel/Sections.h>
 | |
| #include <Kernel/Time/TimeManagement.h>
 | |
| #include <Kernel/kstdio.h>
 | |
| 
 | |
| // Remove this once SMP is stable and can be enabled by default
 | |
| #define SCHEDULE_ON_ALL_PROCESSORS 0
 | |
| 
 | |
| namespace Kernel {
 | |
| 
 | |
| RecursiveSpinlock g_scheduler_lock;
 | |
| 
 | |
| static u32 time_slice_for(Thread const& thread)
 | |
| {
 | |
|     // One time slice unit == 4ms (assuming 250 ticks/second)
 | |
|     if (thread.is_idle_thread())
 | |
|         return 1;
 | |
|     return 2;
 | |
| }
 | |
| 
 | |
| READONLY_AFTER_INIT Thread* g_finalizer;
 | |
| READONLY_AFTER_INIT WaitQueue* g_finalizer_wait_queue;
 | |
| Atomic<bool> g_finalizer_has_work { false };
 | |
| READONLY_AFTER_INIT static Process* s_colonel_process;
 | |
| 
 | |
| struct ThreadReadyQueue {
 | |
|     IntrusiveList<&Thread::m_ready_queue_node> thread_list;
 | |
| };
 | |
| 
 | |
| struct ThreadReadyQueues {
 | |
|     u32 mask {};
 | |
|     static constexpr size_t count = sizeof(mask) * 8;
 | |
|     Array<ThreadReadyQueue, count> queues;
 | |
| };
 | |
| 
 | |
| static Singleton<SpinlockProtected<ThreadReadyQueues>> g_ready_queues;
 | |
| 
 | |
| static SpinlockProtected<TotalTimeScheduled> g_total_time_scheduled;
 | |
| 
 | |
| // The Scheduler::current_time function provides a current time for scheduling purposes,
 | |
| // which may not necessarily relate to wall time
 | |
| u64 (*Scheduler::current_time)();
 | |
| 
 | |
| static void dump_thread_list(bool = false);
 | |
| 
 | |
| static inline u32 thread_priority_to_priority_index(u32 thread_priority)
 | |
| {
 | |
|     // Converts the priority in the range of THREAD_PRIORITY_MIN...THREAD_PRIORITY_MAX
 | |
|     // to a index into g_ready_queues where 0 is the highest priority bucket
 | |
|     VERIFY(thread_priority >= THREAD_PRIORITY_MIN && thread_priority <= THREAD_PRIORITY_MAX);
 | |
|     constexpr u32 thread_priority_count = THREAD_PRIORITY_MAX - THREAD_PRIORITY_MIN + 1;
 | |
|     static_assert(thread_priority_count > 0);
 | |
|     auto priority_bucket = ((thread_priority_count - (thread_priority - THREAD_PRIORITY_MIN)) / thread_priority_count) * (ThreadReadyQueues::count - 1);
 | |
|     VERIFY(priority_bucket < ThreadReadyQueues::count);
 | |
|     return priority_bucket;
 | |
| }
 | |
| 
 | |
| Thread& Scheduler::pull_next_runnable_thread()
 | |
| {
 | |
|     auto affinity_mask = 1u << Processor::current_id();
 | |
| 
 | |
|     return g_ready_queues->with([&](auto& ready_queues) -> Thread& {
 | |
|         auto priority_mask = ready_queues.mask;
 | |
|         while (priority_mask != 0) {
 | |
|             auto priority = bit_scan_forward(priority_mask);
 | |
|             VERIFY(priority > 0);
 | |
|             auto& ready_queue = ready_queues.queues[--priority];
 | |
|             for (auto& thread : ready_queue.thread_list) {
 | |
|                 VERIFY(thread.m_runnable_priority == (int)priority);
 | |
|                 if (thread.is_active())
 | |
|                     continue;
 | |
|                 if (!(thread.affinity() & affinity_mask))
 | |
|                     continue;
 | |
|                 thread.m_runnable_priority = -1;
 | |
|                 ready_queue.thread_list.remove(thread);
 | |
|                 if (ready_queue.thread_list.is_empty())
 | |
|                     ready_queues.mask &= ~(1u << priority);
 | |
|                 // Mark it as active because we are using this thread. This is similar
 | |
|                 // to comparing it with Processor::current_thread, but when there are
 | |
|                 // multiple processors there's no easy way to check whether the thread
 | |
|                 // is actually still needed. This prevents accidental finalization when
 | |
|                 // a thread is no longer in Running state, but running on another core.
 | |
| 
 | |
|                 // We need to mark it active here so that this thread won't be
 | |
|                 // scheduled on another core if it were to be queued before actually
 | |
|                 // switching to it.
 | |
|                 // FIXME: Figure out a better way maybe?
 | |
|                 thread.set_active(true);
 | |
|                 return thread;
 | |
|             }
 | |
|             priority_mask &= ~(1u << priority);
 | |
|         }
 | |
|         return *Processor::idle_thread();
 | |
|     });
 | |
| }
 | |
| 
 | |
| Thread* Scheduler::peek_next_runnable_thread()
 | |
| {
 | |
|     auto affinity_mask = 1u << Processor::current_id();
 | |
| 
 | |
|     return g_ready_queues->with([&](auto& ready_queues) -> Thread* {
 | |
|         auto priority_mask = ready_queues.mask;
 | |
|         while (priority_mask != 0) {
 | |
|             auto priority = bit_scan_forward(priority_mask);
 | |
|             VERIFY(priority > 0);
 | |
|             auto& ready_queue = ready_queues.queues[--priority];
 | |
|             for (auto& thread : ready_queue.thread_list) {
 | |
|                 VERIFY(thread.m_runnable_priority == (int)priority);
 | |
|                 if (thread.is_active())
 | |
|                     continue;
 | |
|                 if (!(thread.affinity() & affinity_mask))
 | |
|                     continue;
 | |
|                 return &thread;
 | |
|             }
 | |
|             priority_mask &= ~(1u << priority);
 | |
|         }
 | |
| 
 | |
|         // Unlike in pull_next_runnable_thread() we don't want to fall back to
 | |
|         // the idle thread. We just want to see if we have any other thread ready
 | |
|         // to be scheduled.
 | |
|         return nullptr;
 | |
|     });
 | |
| }
 | |
| 
 | |
| bool Scheduler::dequeue_runnable_thread(Thread& thread, bool check_affinity)
 | |
| {
 | |
|     if (thread.is_idle_thread())
 | |
|         return true;
 | |
| 
 | |
|     return g_ready_queues->with([&](auto& ready_queues) {
 | |
|         auto priority = thread.m_runnable_priority;
 | |
|         if (priority < 0) {
 | |
|             VERIFY(!thread.m_ready_queue_node.is_in_list());
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         if (check_affinity && !(thread.affinity() & (1 << Processor::current_id())))
 | |
|             return false;
 | |
| 
 | |
|         VERIFY(ready_queues.mask & (1u << priority));
 | |
|         auto& ready_queue = ready_queues.queues[priority];
 | |
|         thread.m_runnable_priority = -1;
 | |
|         ready_queue.thread_list.remove(thread);
 | |
|         if (ready_queue.thread_list.is_empty())
 | |
|             ready_queues.mask &= ~(1u << priority);
 | |
|         return true;
 | |
|     });
 | |
| }
 | |
| 
 | |
| void Scheduler::enqueue_runnable_thread(Thread& thread)
 | |
| {
 | |
|     VERIFY(g_scheduler_lock.is_locked_by_current_processor());
 | |
|     if (thread.is_idle_thread())
 | |
|         return;
 | |
|     auto priority = thread_priority_to_priority_index(thread.priority());
 | |
| 
 | |
|     g_ready_queues->with([&](auto& ready_queues) {
 | |
|         VERIFY(thread.m_runnable_priority < 0);
 | |
|         thread.m_runnable_priority = (int)priority;
 | |
|         VERIFY(!thread.m_ready_queue_node.is_in_list());
 | |
|         auto& ready_queue = ready_queues.queues[priority];
 | |
|         bool was_empty = ready_queue.thread_list.is_empty();
 | |
|         ready_queue.thread_list.append(thread);
 | |
|         if (was_empty)
 | |
|             ready_queues.mask |= (1u << priority);
 | |
|     });
 | |
| }
 | |
| 
 | |
| UNMAP_AFTER_INIT void Scheduler::start()
 | |
| {
 | |
|     VERIFY_INTERRUPTS_DISABLED();
 | |
| 
 | |
|     // We need to acquire our scheduler lock, which will be released
 | |
|     // by the idle thread once control transferred there
 | |
|     g_scheduler_lock.lock();
 | |
| 
 | |
|     auto& processor = Processor::current();
 | |
|     VERIFY(processor.is_initialized());
 | |
|     auto& idle_thread = *Processor::idle_thread();
 | |
|     VERIFY(processor.current_thread() == &idle_thread);
 | |
|     idle_thread.set_ticks_left(time_slice_for(idle_thread));
 | |
|     idle_thread.did_schedule();
 | |
|     idle_thread.set_initialized(true);
 | |
|     processor.init_context(idle_thread, false);
 | |
|     idle_thread.set_state(Thread::State::Running);
 | |
|     VERIFY(idle_thread.affinity() == (1u << processor.id()));
 | |
|     processor.initialize_context_switching(idle_thread);
 | |
|     VERIFY_NOT_REACHED();
 | |
| }
 | |
| 
 | |
| void Scheduler::pick_next()
 | |
| {
 | |
|     VERIFY_INTERRUPTS_DISABLED();
 | |
| 
 | |
|     // Set the in_scheduler flag before acquiring the spinlock. This
 | |
|     // prevents a recursive call into Scheduler::invoke_async upon
 | |
|     // leaving the scheduler lock.
 | |
|     ScopedCritical critical;
 | |
|     Processor::set_current_in_scheduler(true);
 | |
|     ScopeGuard guard(
 | |
|         []() {
 | |
|             // We may be on a different processor after we got switched
 | |
|             // back to this thread!
 | |
|             VERIFY(Processor::current_in_scheduler());
 | |
|             Processor::set_current_in_scheduler(false);
 | |
|         });
 | |
| 
 | |
|     SpinlockLocker lock(g_scheduler_lock);
 | |
| 
 | |
|     if constexpr (SCHEDULER_RUNNABLE_DEBUG) {
 | |
|         dump_thread_list();
 | |
|     }
 | |
| 
 | |
|     auto& thread_to_schedule = pull_next_runnable_thread();
 | |
|     if constexpr (SCHEDULER_DEBUG) {
 | |
|         dbgln("Scheduler[{}]: Switch to {} @ {:#04x}:{:p}",
 | |
|             Processor::current_id(),
 | |
|             thread_to_schedule,
 | |
|             thread_to_schedule.regs().cs, thread_to_schedule.regs().ip());
 | |
|     }
 | |
| 
 | |
|     // We need to leave our first critical section before switching context,
 | |
|     // but since we're still holding the scheduler lock we're still in a critical section
 | |
|     critical.leave();
 | |
| 
 | |
|     thread_to_schedule.set_ticks_left(time_slice_for(thread_to_schedule));
 | |
|     context_switch(&thread_to_schedule);
 | |
| }
 | |
| 
 | |
| void Scheduler::yield()
 | |
| {
 | |
|     InterruptDisabler disabler;
 | |
| 
 | |
|     auto const* current_thread = Thread::current();
 | |
|     dbgln_if(SCHEDULER_DEBUG, "Scheduler[{}]: yielding thread {} in_irq={}", Processor::current_id(), *current_thread, Processor::current_in_irq());
 | |
|     VERIFY(current_thread != nullptr);
 | |
|     if (Processor::current_in_irq() || Processor::in_critical()) {
 | |
|         // If we're handling an IRQ we can't switch context, or we're in
 | |
|         // a critical section where we don't want to switch contexts, then
 | |
|         // delay until exiting the trap or critical section
 | |
|         Processor::current().invoke_scheduler_async();
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     Scheduler::pick_next();
 | |
| }
 | |
| 
 | |
| void Scheduler::context_switch(Thread* thread)
 | |
| {
 | |
|     if (Memory::s_mm_lock.is_locked_by_current_processor()) {
 | |
|         PANIC("In context switch while holding Memory::s_mm_lock");
 | |
|     }
 | |
| 
 | |
|     thread->did_schedule();
 | |
| 
 | |
|     auto* from_thread = Thread::current();
 | |
|     VERIFY(from_thread);
 | |
| 
 | |
|     if (from_thread == thread)
 | |
|         return;
 | |
| 
 | |
|     // If the last process hasn't blocked (still marked as running),
 | |
|     // mark it as runnable for the next round.
 | |
|     if (from_thread->state() == Thread::State::Running)
 | |
|         from_thread->set_state(Thread::State::Runnable);
 | |
| 
 | |
| #ifdef LOG_EVERY_CONTEXT_SWITCH
 | |
|     auto const msg = "Scheduler[{}]: {} -> {} [prio={}] {:#04x}:{:p}";
 | |
| 
 | |
|     dbgln(msg,
 | |
|         Processor::current_id(), from_thread->tid().value(),
 | |
|         thread->tid().value(), thread->priority(), thread->regs().cs, thread->regs().ip());
 | |
| #endif
 | |
| 
 | |
|     auto& proc = Processor::current();
 | |
|     if (!thread->is_initialized()) {
 | |
|         proc.init_context(*thread, false);
 | |
|         thread->set_initialized(true);
 | |
|     }
 | |
|     thread->set_state(Thread::State::Running);
 | |
| 
 | |
|     PerformanceManager::add_context_switch_perf_event(*from_thread, *thread);
 | |
| 
 | |
|     proc.switch_context(from_thread, thread);
 | |
| 
 | |
|     // NOTE: from_thread at this point reflects the thread we were
 | |
|     // switched from, and thread reflects Thread::current()
 | |
|     enter_current(*from_thread);
 | |
|     VERIFY(thread == Thread::current());
 | |
| 
 | |
|     {
 | |
|         SpinlockLocker lock(thread->get_lock());
 | |
|         thread->dispatch_one_pending_signal();
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Scheduler::enter_current(Thread& prev_thread)
 | |
| {
 | |
|     VERIFY(g_scheduler_lock.is_locked_by_current_processor());
 | |
| 
 | |
|     // We already recorded the scheduled time when entering the trap, so this merely accounts for the kernel time since then
 | |
|     auto scheduler_time = Scheduler::current_time();
 | |
|     prev_thread.update_time_scheduled(scheduler_time, true, true);
 | |
|     auto* current_thread = Thread::current();
 | |
|     current_thread->update_time_scheduled(scheduler_time, true, false);
 | |
| 
 | |
|     // NOTE: When doing an exec(), we will context switch from and to the same thread!
 | |
|     //       In that case, we must not mark the previous thread as inactive.
 | |
|     if (&prev_thread != current_thread)
 | |
|         prev_thread.set_active(false);
 | |
| 
 | |
|     if (prev_thread.state() == Thread::State::Dying) {
 | |
|         // If the thread we switched from is marked as dying, then notify
 | |
|         // the finalizer. Note that as soon as we leave the scheduler lock
 | |
|         // the finalizer may free from_thread!
 | |
|         notify_finalizer();
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Scheduler::leave_on_first_switch(u32 flags)
 | |
| {
 | |
|     // This is called when a thread is switched into for the first time.
 | |
|     // At this point, enter_current has already be called, but because
 | |
|     // Scheduler::context_switch is not in the call stack we need to
 | |
|     // clean up and release locks manually here
 | |
|     g_scheduler_lock.unlock(flags);
 | |
| 
 | |
|     VERIFY(Processor::current_in_scheduler());
 | |
|     Processor::set_current_in_scheduler(false);
 | |
| }
 | |
| 
 | |
| void Scheduler::prepare_after_exec()
 | |
| {
 | |
|     // This is called after exec() when doing a context "switch" into
 | |
|     // the new process. This is called from Processor::assume_context
 | |
|     VERIFY(g_scheduler_lock.is_locked_by_current_processor());
 | |
| 
 | |
|     VERIFY(!Processor::current_in_scheduler());
 | |
|     Processor::set_current_in_scheduler(true);
 | |
| }
 | |
| 
 | |
| void Scheduler::prepare_for_idle_loop()
 | |
| {
 | |
|     // This is called when the CPU finished setting up the idle loop
 | |
|     // and is about to run it. We need to acquire the scheduler lock
 | |
|     VERIFY(!g_scheduler_lock.is_locked_by_current_processor());
 | |
|     g_scheduler_lock.lock();
 | |
| 
 | |
|     VERIFY(!Processor::current_in_scheduler());
 | |
|     Processor::set_current_in_scheduler(true);
 | |
| }
 | |
| 
 | |
| Process* Scheduler::colonel()
 | |
| {
 | |
|     VERIFY(s_colonel_process);
 | |
|     return s_colonel_process;
 | |
| }
 | |
| 
 | |
| static u64 current_time_tsc()
 | |
| {
 | |
|     return read_tsc();
 | |
| }
 | |
| 
 | |
| static u64 current_time_monotonic()
 | |
| {
 | |
|     // We always need a precise timestamp here, we cannot rely on a coarse timestamp
 | |
|     return (u64)TimeManagement::the().monotonic_time(TimePrecision::Precise).to_nanoseconds();
 | |
| }
 | |
| 
 | |
| UNMAP_AFTER_INIT void Scheduler::initialize()
 | |
| {
 | |
|     VERIFY(Processor::is_initialized()); // sanity check
 | |
| 
 | |
|     // Figure out a good scheduling time source
 | |
|     if (Processor::current().has_feature(CPUFeature::TSC)) {
 | |
|         // TODO: only use if TSC is running at a constant frequency?
 | |
|         current_time = current_time_tsc;
 | |
|     } else {
 | |
|         // TODO: Using HPET is rather slow, can we use any other time source that may be faster?
 | |
|         current_time = current_time_monotonic;
 | |
|     }
 | |
| 
 | |
|     RefPtr<Thread> idle_thread;
 | |
|     g_finalizer_wait_queue = new WaitQueue;
 | |
| 
 | |
|     g_finalizer_has_work.store(false, AK::MemoryOrder::memory_order_release);
 | |
|     s_colonel_process = Process::create_kernel_process(idle_thread, KString::must_create("colonel"), idle_loop, nullptr, 1, Process::RegisterProcess::No).leak_ref();
 | |
|     VERIFY(s_colonel_process);
 | |
|     VERIFY(idle_thread);
 | |
|     idle_thread->set_priority(THREAD_PRIORITY_MIN);
 | |
|     idle_thread->set_name(KString::must_create("Idle Task #0"));
 | |
| 
 | |
|     set_idle_thread(idle_thread);
 | |
| }
 | |
| 
 | |
| UNMAP_AFTER_INIT void Scheduler::set_idle_thread(Thread* idle_thread)
 | |
| {
 | |
|     idle_thread->set_idle_thread();
 | |
|     Processor::current().set_idle_thread(*idle_thread);
 | |
|     Processor::set_current_thread(*idle_thread);
 | |
| }
 | |
| 
 | |
| UNMAP_AFTER_INIT Thread* Scheduler::create_ap_idle_thread(u32 cpu)
 | |
| {
 | |
|     VERIFY(cpu != 0);
 | |
|     // This function is called on the bsp, but creates an idle thread for another AP
 | |
|     VERIFY(Processor::is_bootstrap_processor());
 | |
| 
 | |
|     VERIFY(s_colonel_process);
 | |
|     Thread* idle_thread = s_colonel_process->create_kernel_thread(idle_loop, nullptr, THREAD_PRIORITY_MIN, MUST(KString::formatted("idle thread #{}", cpu)), 1 << cpu, false);
 | |
|     VERIFY(idle_thread);
 | |
|     return idle_thread;
 | |
| }
 | |
| 
 | |
| void Scheduler::add_time_scheduled(u64 time_to_add, bool is_kernel)
 | |
| {
 | |
|     g_total_time_scheduled.with([&](auto& total_time_scheduled) {
 | |
|         total_time_scheduled.total += time_to_add;
 | |
|         if (is_kernel)
 | |
|             total_time_scheduled.total_kernel += time_to_add;
 | |
|     });
 | |
| }
 | |
| 
 | |
| void Scheduler::timer_tick(RegisterState const& regs)
 | |
| {
 | |
|     VERIFY_INTERRUPTS_DISABLED();
 | |
|     VERIFY(Processor::current_in_irq());
 | |
| 
 | |
|     auto* current_thread = Processor::current_thread();
 | |
|     if (!current_thread)
 | |
|         return;
 | |
| 
 | |
|     // Sanity checks
 | |
|     VERIFY(current_thread->current_trap());
 | |
|     VERIFY(current_thread->current_trap()->regs == ®s);
 | |
| 
 | |
| #if !SCHEDULE_ON_ALL_PROCESSORS
 | |
|     if (!Processor::is_bootstrap_processor())
 | |
|         return; // TODO: This prevents scheduling on other CPUs!
 | |
| #endif
 | |
| 
 | |
|     if (current_thread->process().is_kernel_process()) {
 | |
|         // Because the previous mode when entering/exiting kernel threads never changes
 | |
|         // we never update the time scheduled. So we need to update it manually on the
 | |
|         // timer interrupt
 | |
|         current_thread->update_time_scheduled(current_time(), true, false);
 | |
|     }
 | |
| 
 | |
|     if (current_thread->previous_mode() == Thread::PreviousMode::UserMode && current_thread->should_die() && !current_thread->is_blocked()) {
 | |
|         SpinlockLocker scheduler_lock(g_scheduler_lock);
 | |
|         dbgln_if(SCHEDULER_DEBUG, "Scheduler[{}]: Terminating user mode thread {}", Processor::current_id(), *current_thread);
 | |
|         current_thread->set_state(Thread::State::Dying);
 | |
|         Processor::current().invoke_scheduler_async();
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (current_thread->tick())
 | |
|         return;
 | |
| 
 | |
|     if (!current_thread->is_idle_thread() && !peek_next_runnable_thread()) {
 | |
|         // If no other thread is ready to be scheduled we don't need to
 | |
|         // switch to the idle thread. Just give the current thread another
 | |
|         // time slice and let it run!
 | |
|         current_thread->set_ticks_left(time_slice_for(*current_thread));
 | |
|         current_thread->did_schedule();
 | |
|         dbgln_if(SCHEDULER_DEBUG, "Scheduler[{}]: No other threads ready, give {} another timeslice", Processor::current_id(), *current_thread);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     VERIFY_INTERRUPTS_DISABLED();
 | |
|     VERIFY(Processor::current_in_irq());
 | |
|     Processor::current().invoke_scheduler_async();
 | |
| }
 | |
| 
 | |
| void Scheduler::invoke_async()
 | |
| {
 | |
|     VERIFY_INTERRUPTS_DISABLED();
 | |
|     VERIFY(!Processor::current_in_irq());
 | |
| 
 | |
|     // Since this function is called when leaving critical sections (such
 | |
|     // as a Spinlock), we need to check if we're not already doing this
 | |
|     // to prevent recursion
 | |
|     if (!Processor::current_in_scheduler())
 | |
|         pick_next();
 | |
| }
 | |
| 
 | |
| void Scheduler::notify_finalizer()
 | |
| {
 | |
|     if (!g_finalizer_has_work.exchange(true, AK::MemoryOrder::memory_order_acq_rel))
 | |
|         g_finalizer_wait_queue->wake_all();
 | |
| }
 | |
| 
 | |
| void Scheduler::idle_loop(void*)
 | |
| {
 | |
|     auto& proc = Processor::current();
 | |
|     dbgln("Scheduler[{}]: idle loop running", proc.id());
 | |
|     VERIFY(are_interrupts_enabled());
 | |
| 
 | |
|     for (;;) {
 | |
|         proc.idle_begin();
 | |
|         asm("hlt");
 | |
| 
 | |
|         proc.idle_end();
 | |
|         VERIFY_INTERRUPTS_ENABLED();
 | |
| #if SCHEDULE_ON_ALL_PROCESSORS
 | |
|         yield();
 | |
| #else
 | |
|         if (Processor::current_id() == 0)
 | |
|             yield();
 | |
| #endif
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Scheduler::dump_scheduler_state(bool with_stack_traces)
 | |
| {
 | |
|     dump_thread_list(with_stack_traces);
 | |
| }
 | |
| 
 | |
| bool Scheduler::is_initialized()
 | |
| {
 | |
|     // The scheduler is initialized iff the idle thread exists
 | |
|     return Processor::idle_thread() != nullptr;
 | |
| }
 | |
| 
 | |
| TotalTimeScheduled Scheduler::get_total_time_scheduled()
 | |
| {
 | |
|     return g_total_time_scheduled.with([&](auto& total_time_scheduled) { return total_time_scheduled; });
 | |
| }
 | |
| 
 | |
| void dump_thread_list(bool with_stack_traces)
 | |
| {
 | |
|     dbgln("Scheduler thread list for processor {}:", Processor::current_id());
 | |
| 
 | |
|     auto get_cs = [](Thread& thread) -> u16 {
 | |
|         if (!thread.current_trap())
 | |
|             return thread.regs().cs;
 | |
|         return thread.get_register_dump_from_stack().cs;
 | |
|     };
 | |
| 
 | |
|     auto get_eip = [](Thread& thread) -> u32 {
 | |
|         if (!thread.current_trap())
 | |
|             return thread.regs().ip();
 | |
|         return thread.get_register_dump_from_stack().ip();
 | |
|     };
 | |
| 
 | |
|     Thread::for_each([&](Thread& thread) {
 | |
|         switch (thread.state()) {
 | |
|         case Thread::State::Dying:
 | |
|             dmesgln("  {:14} {:30} @ {:04x}:{:08x} Finalizable: {}, (nsched: {})",
 | |
|                 thread.state_string(),
 | |
|                 thread,
 | |
|                 get_cs(thread),
 | |
|                 get_eip(thread),
 | |
|                 thread.is_finalizable(),
 | |
|                 thread.times_scheduled());
 | |
|             break;
 | |
|         default:
 | |
|             dmesgln("  {:14} Pr:{:2} {:30} @ {:04x}:{:08x} (nsched: {})",
 | |
|                 thread.state_string(),
 | |
|                 thread.priority(),
 | |
|                 thread,
 | |
|                 get_cs(thread),
 | |
|                 get_eip(thread),
 | |
|                 thread.times_scheduled());
 | |
|             break;
 | |
|         }
 | |
|         if (with_stack_traces) {
 | |
|             auto trace_or_error = thread.backtrace();
 | |
|             if (!trace_or_error.is_error()) {
 | |
|                 auto trace = trace_or_error.release_value();
 | |
|                 dbgln("Backtrace:");
 | |
|                 kernelputstr(trace->characters(), trace->length());
 | |
|             }
 | |
|         }
 | |
|         return IterationDecision::Continue;
 | |
|     });
 | |
| }
 | |
| 
 | |
| }
 |