1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-06-16 19:52:11 +00:00
serenity/Libraries/LibRegex/RegexParser.cpp_
Emanuel Sprung 55450055d8 LibRegex: Add a regular expression library
This commit is a mix of several commits, squashed into one because the
commits before 'Move regex to own Library and fix all the broken stuff'
were not fixable in any elegant way.
The commits are listed below for "historical" purposes:

- AK: Add options/flags and Errors for regular expressions

Flags can be provided for any possible flavour by adding a new scoped enum.
Handling of flags is done by templated Options class and the overloaded
'|' and '&' operators.

- AK: Add Lexer for regular expressions

The lexer parses the input and extracts tokens needed to parse a regular
expression.

- AK: Add regex Parser and PosixExtendedParser

This patchset adds a abstract parser class that can be derived to implement
different parsers. A parser produces bytecode to be executed within the
regex matcher.

- AK: Add regex matcher

This patchset adds an regex matcher based on the principles of the T-REX VM.
The bytecode pruduced by the respective Parser is put into the matcher and
the VM will recursively execute the bytecode according to the available OpCodes.
Possible improvement: the recursion could be replaced by multi threading capabilities.

To match a Regular expression, e.g. for the Posix standard regular expression matcher
use the following API:

```
Pattern<PosixExtendedParser> pattern("^.*$");
auto result = pattern.match("Well, hello friends!\nHello World!"); // Match whole needle

EXPECT(result.count == 1);
EXPECT(result.matches.at(0).view.starts_with("Well"));
EXPECT(result.matches.at(0).view.end() == "!");

result = pattern.match("Well, hello friends!\nHello World!", PosixFlags::Multiline); // Match line by line

EXPECT(result.count == 2);
EXPECT(result.matches.at(0).view == "Well, hello friends!");
EXPECT(result.matches.at(1).view == "Hello World!");

EXPECT(pattern.has_match("Well,....")); // Just check if match without a result, which saves some resources.
```

- AK: Rework regex to work with opcodes objects

This patchsets reworks the matcher to work on a more structured base.
For that an abstract OpCode class and derived classes for the specific
OpCodes have been added. The respective opcode logic is contained in
each respective execute() method.

- AK: Add benchmark for regex

- AK: Some optimization in regex for runtime and memory

- LibRegex: Move regex to own Library and fix all the broken stuff

Now regex works again and grep utility is also in place for testing.
This commit also fixes the use of regex.h in C by making `regex_t`
an opaque (-ish) type, which makes its behaviour consistent between
C and C++ compilers.
Previously, <regex.h> would've blown C compilers up, and even if it
didn't, would've caused a leak in C code, and not in C++ code (due to
the existence of `OwnPtr` inside the struct).

To make this whole ordeal easier to deal with (for now), this pulls the
definitions of `reg*()` into LibRegex.

pros:
- The circular dependency between LibC and LibRegex is broken
- Eaiser to test (without accidentally pulling in the host's libc!)

cons:
- Using any of the regex.h functions will require the user to link -lregex
- The symbols will be missing from libc, which will be a big surprise
  down the line (especially with shared libs).

Co-Authored-By: Ali Mohammad Pur <ali.mpfard@gmail.com>
2020-11-27 21:32:41 +01:00

803 lines
28 KiB
Text

/*
* Copyright (c) 2020, Emanuel Sprung <emanuel.sprung@gmail.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "RegexParser.h"
#include <AK/String.h>
#include <AK/StringBuilder.h>
namespace AK {
namespace regex {
const char* ByteCodeValue::name(OpCode type)
{
switch (type) {
#define __ENUMERATE_OPCODE(x) \
case OpCode::x: \
return #x;
ENUMERATE_OPCODES
#undef __ENUMERATE_OPCODE
default:
ASSERT_NOT_REACHED();
return "<Unknown>";
}
}
const char* ByteCodeValue::name() const
{
return name(op_code);
}
template<class T>
bool Parser<T>::set_error(Error error)
{
if (m_parser_state.error == Error::NoError) {
m_parser_state.error = error;
m_parser_state.error_token = m_parser_state.current_token;
}
return false; // always return false, that eases the API usage (return set_error(...)) :^)
}
template<class T>
bool Parser<T>::done() const
{
return match(TokenType::Eof);
}
template<class T>
bool Parser<T>::match(TokenType type) const
{
return m_parser_state.current_token.type() == type;
}
template<class T>
Token Parser<T>::consume()
{
auto old_token = m_parser_state.current_token;
m_parser_state.current_token = m_parser_state.lexer.next();
return old_token;
}
template<class T>
Token Parser<T>::consume(TokenType type, Error error)
{
if (m_parser_state.current_token.type() != type) {
set_error(error);
#ifdef __serenity__
dbg() << "[PARSER] Error: Unexpected token " << m_parser_state.m_current_token.name() << ". Expected: " << Token::name(type);
#else
fprintf(stderr, "[PARSER] Error: Unexpected token %s. Expected %s\n", m_parser_state.current_token.name(), Token::name(type));
#endif
}
return consume();
}
template<class T>
bool Parser<T>::consume(const String& str)
{
size_t potentially_go_back { 1 };
for (auto ch : str) {
if (match(TokenType::OrdinaryCharacter)) {
if (m_parser_state.current_token.value()[0] != ch) {
m_parser_state.lexer.back(potentially_go_back);
m_parser_state.current_token = m_parser_state.lexer.next();
return false;
}
} else {
m_parser_state.lexer.back(potentially_go_back);
m_parser_state.current_token = m_parser_state.lexer.next();
return false;
}
consume(TokenType::OrdinaryCharacter);
++potentially_go_back;
}
return true;
}
template<class T>
void Parser<T>::reset()
{
m_parser_state.bytecode.clear();
m_parser_state.lexer.reset();
m_parser_state.current_token = m_parser_state.lexer.next();
m_parser_state.error = Error::NoError;
m_parser_state.error_token = { TokenType::Eof, 0, StringView(nullptr) };
m_parser_state.regex_options = {};
}
template<class T>
ParserResult Parser<T>::parse(Optional<OptionsType> regex_options)
{
reset();
if (regex_options.has_value())
m_parser_state.regex_options = regex_options.value();
if (parse_internal(m_parser_state.bytecode, m_parser_state.match_length_minimum))
consume(TokenType::Eof);
else
set_error(Error::InvalidPattern);
#ifdef REGEX_DEBUG
printf("[PARSER] Produced bytecode with %lu entries (opcodes + arguments)\n", m_parser_state.m_bytes.size());
#endif
return {
move(m_parser_state.bytecode),
move(m_parser_state.capture_groups_count),
move(m_parser_state.named_capture_groups_count),
move(m_parser_state.match_length_minimum),
move(m_parser_state.error),
move(m_parser_state.error_token)
};
}
template<class T>
void Parser<T>::insert_bytecode_compare_values(Vector<ByteCodeValue>& stack, Vector<CompareTypeAndValuePair>&& pairs)
{
Vector<ByteCodeValue> bytecode;
bytecode.empend(OpCode::Compare);
bytecode.empend(pairs.size()); // number of arguments
for (auto& value : pairs) {
ASSERT(value.type != CharacterCompareType::RangeExpressionDummy);
ASSERT(value.type != CharacterCompareType::Undefined);
ASSERT(value.type != CharacterCompareType::OrdinaryCharacters);
bytecode.append(move(value.type));
if (value.type != CharacterCompareType::Inverse && value.type != CharacterCompareType::AnySingleCharacter)
bytecode.append(move(value.value));
}
stack.append(move(bytecode));
}
template<class T>
void Parser<T>::insert_bytecode_group_capture_left(Vector<ByteCodeValue>& stack)
{
stack.empend(OpCode::SaveLeftCaptureGroup);
stack.empend(m_parser_state.capture_groups_count);
}
template<class T>
void Parser<T>::insert_bytecode_group_capture_left(Vector<ByteCodeValue>& stack, const StringView& name)
{
stack.empend(OpCode::SaveLeftNamedCaptureGroup);
stack.empend(name.characters_without_null_termination());
stack.empend(name.length());
}
template<class T>
void Parser<T>::insert_bytecode_group_capture_right(Vector<ByteCodeValue>& stack)
{
stack.empend(OpCode::SaveRightCaptureGroup);
stack.empend(m_parser_state.capture_groups_count);
}
template<class T>
void Parser<T>::insert_bytecode_group_capture_right(Vector<ByteCodeValue>& stack, const StringView& name)
{
stack.empend(OpCode::SaveRightNamedCaptureGroup);
stack.empend(name.characters_without_null_termination());
stack.empend(name.length());
}
template<class T>
void Parser<T>::insert_bytecode_alternation(Vector<ByteCodeValue>& stack, Vector<ByteCodeValue>&& left, Vector<ByteCodeValue>&& right)
{
// FORKSTAY _ALT
// REGEXP ALT1
// JUMP _END
// LABEL _ALT
// REGEXP ALT2
// LABEL _END
stack.empend(OpCode::ForkJump);
stack.empend(left.size() + 2); // Jump to the _ALT label
for (auto& op : left)
stack.append(move(op));
stack.empend(OpCode::Jump);
stack.empend(right.size()); // Jump to the _END label
// LABEL _ALT = bytecode.size() + 2
for (auto& op : right)
stack.append(move(op));
// LABEL _END = alterantive_bytecode.size
}
template<class T>
void Parser<T>::insert_bytecode_repetition_min_max(Vector<ByteCodeValue>& bytecode_to_repeat, size_t minimum, Optional<size_t> maximum)
{
Vector<ByteCodeValue> new_bytecode;
insert_bytecode_repetition_n(new_bytecode, bytecode_to_repeat, minimum);
if (maximum.has_value()) {
if (maximum.value() > minimum) {
auto diff = maximum.value() - minimum;
new_bytecode.empend(OpCode::ForkStay);
new_bytecode.empend(diff * (bytecode_to_repeat.size() + 2)); // Jump to the _END label
for (size_t i = 0; i < diff; ++i) {
new_bytecode.append(bytecode_to_repeat);
new_bytecode.empend(OpCode::ForkStay);
new_bytecode.empend((diff - i - 1) * (bytecode_to_repeat.size() + 2)); // Jump to the _END label
}
}
} else {
// no maximum value set, repeat finding if possible
new_bytecode.empend(OpCode::ForkJump);
new_bytecode.empend(-bytecode_to_repeat.size() - 2); // Jump to the last iteration
}
bytecode_to_repeat = move(new_bytecode);
}
template<class T>
void Parser<T>::insert_bytecode_repetition_n(Vector<ByteCodeValue>& stack, Vector<ByteCodeValue>& bytecode_to_repeat, size_t n)
{
for (size_t i = 0; i < n; ++i)
stack.append(bytecode_to_repeat);
}
template<class T>
void Parser<T>::insert_bytecode_repetition_min_one(Vector<ByteCodeValue>& bytecode_to_repeat, bool greedy)
{
// LABEL _START = -bytecode_to_repeat.size()
// REGEXP
// FORKJUMP _START (FORKSTAY -> Greedy)
if (greedy)
bytecode_to_repeat.empend(OpCode::ForkStay);
else
bytecode_to_repeat.empend(OpCode::ForkJump);
bytecode_to_repeat.empend(-bytecode_to_repeat.size() - 1); // Jump to the _START label
}
template<class T>
void Parser<T>::insert_bytecode_repetition_any(Vector<ByteCodeValue>& bytecode_to_repeat, bool greedy)
{
// LABEL _START
// FORKSTAY _END (FORKJUMP -> Greedy)
// REGEXP
// JUMP _START
// LABEL _END
// LABEL _START = stack.size();
Vector<ByteCodeValue> bytecode;
if (greedy)
bytecode.empend(OpCode::ForkJump);
else
bytecode.empend(OpCode::ForkStay);
bytecode.empend(bytecode_to_repeat.size() + 2); // Jump to the _END label
for (auto& op : bytecode_to_repeat)
bytecode.append(move(op));
bytecode.empend(OpCode::Jump);
bytecode.empend(-bytecode.size() - 1); // Jump to the _START label
// LABEL _END = bytecode.size()
bytecode_to_repeat = move(bytecode);
}
template<class T>
void Parser<T>::insert_bytecode_repetition_zero_or_one(Vector<ByteCodeValue>& bytecode_to_repeat, bool greedy)
{
// FORKSTAY _END (FORKJUMP -> Greedy)
// REGEXP
// LABEL _END
Vector<ByteCodeValue> bytecode;
if (greedy)
bytecode.empend(OpCode::ForkJump);
else
bytecode.empend(OpCode::ForkStay);
bytecode.empend(bytecode_to_repeat.size()); // Jump to the _END label
for (auto& op : bytecode_to_repeat)
bytecode.append(move(op));
// LABEL _END = bytecode.size()
bytecode_to_repeat = move(bytecode);
}
// =============================
// PosixExtended Parser
// =============================
bool PosixExtendedParser::parse_internal(Vector<ByteCodeValue>& stack, size_t& match_length_minimum)
{
return parse_root(stack, match_length_minimum);
}
bool PosixExtendedParser::match_repetition_symbol()
{
auto type = m_parser_state.current_token.type();
return (type == TokenType::Asterisk
|| type == TokenType::Plus
|| type == TokenType::Questionmark
|| type == TokenType::LeftCurly);
}
bool PosixExtendedParser::match_ordinary_characters()
{
// NOTE: This method must not be called during bracket and repetition parsing!
// FIXME: Add assertion for that?
auto type = m_parser_state.current_token.type();
return (type == TokenType::OrdinaryCharacter
|| type == TokenType::Comma
|| type == TokenType::Slash
|| type == TokenType::EqualSign
|| type == TokenType::HyphenMinus
|| type == TokenType::Colon);
}
bool PosixExtendedParser::parse_repetition_symbol(Vector<ByteCodeValue>& bytecode_to_repeat, size_t& match_length_minimum)
{
if (match(TokenType::LeftCurly)) {
consume();
StringBuilder number_builder;
bool ok;
while (match(TokenType::OrdinaryCharacter)) {
number_builder.append(consume().value());
}
size_t minimum = number_builder.build().to_uint(ok);
if (!ok)
return set_error(Error::InvalidBraceContent);
match_length_minimum *= minimum;
if (match(TokenType::Comma)) {
consume();
} else {
Vector<ByteCodeValue> bytecode;
insert_bytecode_repetition_n(bytecode, bytecode_to_repeat, minimum);
bytecode_to_repeat = move(bytecode);
return !has_error();
}
Optional<size_t> maximum {};
number_builder.clear();
while (match(TokenType::OrdinaryCharacter)) {
number_builder.append(consume().value());
}
if (!number_builder.is_empty()) {
maximum = number_builder.build().to_uint(ok);
if (!ok || minimum > maximum.value())
return set_error(Error::InvalidBraceContent);
}
insert_bytecode_repetition_min_max(bytecode_to_repeat, minimum, maximum);
consume(TokenType::RightCurly, Error::BraceMismatch);
return !has_error();
} else if (match(TokenType::Plus)) {
consume();
bool greedy = match(TokenType::Questionmark);
if (greedy)
consume();
// Note: dont touch match_length_minimum, it's already correct
insert_bytecode_repetition_min_one(bytecode_to_repeat, greedy);
return !has_error();
} else if (match(TokenType::Asterisk)) {
consume();
match_length_minimum = 0;
bool greedy = match(TokenType::Questionmark);
if (greedy)
consume();
insert_bytecode_repetition_any(bytecode_to_repeat, greedy);
return !has_error();
} else if (match(TokenType::Questionmark)) {
consume();
match_length_minimum = 0;
bool greedy = match(TokenType::Questionmark);
if (greedy)
consume();
insert_bytecode_repetition_zero_or_one(bytecode_to_repeat, greedy);
return !has_error();
}
return false;
}
bool PosixExtendedParser::parse_bracket_expression(Vector<ByteCodeValue>& stack, size_t& match_length_minimum)
{
Vector<CompareTypeAndValuePair> values;
for (;;) {
if (match(TokenType::HyphenMinus)) {
consume();
if (values.is_empty() || (values.size() == 1 && values.last().type == CharacterCompareType::Inverse)) {
// first in the bracket expression
values.append({ CharacterCompareType::OrdinaryCharacter, { '-' } });
} else if (match(TokenType::RightBracket)) {
// Last in the bracket expression
values.append({ CharacterCompareType::OrdinaryCharacter, { '-' } });
} else if (values.last().type == CharacterCompareType::OrdinaryCharacter) {
values.append({ CharacterCompareType::RangeExpressionDummy, 0 });
if (match(TokenType::HyphenMinus)) {
consume();
// Valid range, add ordinary character
values.append({ CharacterCompareType::OrdinaryCharacter, { '-' } });
}
} else {
return set_error(Error::InvalidRange);
}
} else if (match(TokenType::OrdinaryCharacter) || match(TokenType::Period) || match(TokenType::Asterisk) || match(TokenType::EscapeSequence) || match(TokenType::Plus)) {
values.append({ CharacterCompareType::OrdinaryCharacter, { *consume().value().characters_without_null_termination() } });
} else if (match(TokenType::Circumflex)) {
auto t = consume();
if (values.is_empty())
values.append({ CharacterCompareType::Inverse, 0 });
else
values.append({ CharacterCompareType::OrdinaryCharacter, { *t.value().characters_without_null_termination() } });
} else if (match(TokenType::LeftBracket)) {
consume();
if (match(TokenType::Period)) {
consume();
// FIXME: Parse collating element, this is needed when we have locale support
// This could have impact on length parameter, I guess.
ASSERT_NOT_REACHED();
consume(TokenType::Period, Error::InvalidCollationElement);
consume(TokenType::RightBracket, Error::BracketMismatch);
} else if (match(TokenType::EqualSign)) {
consume();
// FIXME: Parse collating element, this is needed when we have locale support
// This could have impact on length parameter, I guess.
ASSERT_NOT_REACHED();
consume(TokenType::EqualSign, Error::InvalidCollationElement);
consume(TokenType::RightBracket, Error::BracketMismatch);
} else if (match(TokenType::Colon)) {
consume();
CharacterClass ch_class;
// parse character class
if (match(TokenType::OrdinaryCharacter)) {
if (consume("alnum"))
ch_class = CharacterClass::Alnum;
else if (consume("alpha"))
ch_class = CharacterClass::Alpha;
else if (consume("blank"))
ch_class = CharacterClass::Blank;
else if (consume("cntrl"))
ch_class = CharacterClass::Cntrl;
else if (consume("digit"))
ch_class = CharacterClass::Digit;
else if (consume("graph"))
ch_class = CharacterClass::Graph;
else if (consume("lower"))
ch_class = CharacterClass::Lower;
else if (consume("print"))
ch_class = CharacterClass::Print;
else if (consume("punct"))
ch_class = CharacterClass::Punct;
else if (consume("space"))
ch_class = CharacterClass::Space;
else if (consume("upper"))
ch_class = CharacterClass::Upper;
else if (consume("xdigit"))
ch_class = CharacterClass::Xdigit;
else
return set_error(Error::InvalidCharacterClass);
values.append({ CharacterCompareType::CharacterClass, ch_class });
} else
return set_error(Error::InvalidCharacterClass);
// FIXME: we do not support locale specific character classes until locales are implemented
consume(TokenType::Colon, Error::InvalidCharacterClass);
consume(TokenType::RightBracket, Error::BracketMismatch);
}
} else if (match(TokenType::RightBracket)) {
if (values.is_empty() || (values.size() == 1 && values.last().type == CharacterCompareType::Inverse)) {
// handle bracket as ordinary character
values.append({ CharacterCompareType::OrdinaryCharacter, { *consume().value().characters_without_null_termination() } });
} else {
// closing bracket expression
break;
}
} else
// nothing matched, this is a failure, as at least the closing bracket must match...
return set_error(Error::BracketMismatch);
// check if range expression has to be completed...
if (values.size() >= 3 && values.at(values.size() - 2).type == CharacterCompareType::RangeExpressionDummy) {
if (values.last().type != CharacterCompareType::OrdinaryCharacter)
return set_error(Error::InvalidRange);
auto value2 = values.take_last();
values.take_last(); // RangeExpressionDummy
auto value1 = values.take_last();
values.append({ CharacterCompareType::RangeExpression, ByteCodeValue { value1.value.ch, value2.value.ch } });
}
}
if (values.size())
match_length_minimum = 1;
if (values.first().type == CharacterCompareType::Inverse)
match_length_minimum = 0;
insert_bytecode_compare_values(stack, move(values));
return !has_error();
}
bool PosixExtendedParser::parse_sub_expression(Vector<ByteCodeValue>& stack, size_t& match_length_minimum)
{
Vector<ByteCodeValue> bytecode;
size_t length = 0;
bool should_parse_repetition_symbol { false };
for (;;) {
if (match_ordinary_characters()) {
Token start_token = m_parser_state.current_token;
Token last_token = m_parser_state.current_token;
for (;;) {
if (!match_ordinary_characters())
break;
++length;
last_token = consume();
}
if (length > 1) {
stack.empend(OpCode::Compare);
stack.empend(1ul); // number of arguments
stack.empend(CharacterCompareType::OrdinaryCharacters);
stack.empend(start_token.value().characters_without_null_termination());
stack.empend(length - ((match_repetition_symbol() && length > 1) ? 1 : 0)); // last character is inserted into 'bytecode' for duplication symbol handling
}
if ((match_repetition_symbol() && length > 1) || length == 1) // Create own compare opcode for last character before duplication symbol
insert_bytecode_compare_values(bytecode, { { CharacterCompareType::OrdinaryCharacter, { last_token.value().characters_without_null_termination()[0] } } });
should_parse_repetition_symbol = true;
break;
}
if (match_repetition_symbol())
return set_error(Error::InvalidRepetitionMarker);
if (match(TokenType::Period)) {
length = 1;
consume();
insert_bytecode_compare_values(bytecode, { { CharacterCompareType::AnySingleCharacter, { 0 } } });
should_parse_repetition_symbol = true;
break;
}
if (match(TokenType::EscapeSequence)) {
length = 1;
Token t = consume();
#ifdef REGEX_DEBUG
printf("[PARSER] EscapeSequence with substring %s\n", String(t.value()).characters());
#endif
insert_bytecode_compare_values(bytecode, { { CharacterCompareType::OrdinaryCharacter, { (char)t.value().characters_without_null_termination()[1] } } });
should_parse_repetition_symbol = true;
break;
}
if (match(TokenType::LeftBracket)) {
consume();
Vector<ByteCodeValue> sub_ops;
if (!parse_bracket_expression(sub_ops, length) || !sub_ops.size())
return set_error(Error::BracketMismatch);
bytecode.append(move(sub_ops));
consume(TokenType::RightBracket);
should_parse_repetition_symbol = true;
break;
}
if (match(TokenType::RightBracket)) {
return set_error(Error::BracketMismatch);
}
if (match(TokenType::RightCurly)) {
return set_error(Error::BraceMismatch);
}
if (match(TokenType::Circumflex)) {
consume();
bytecode.empend(OpCode::CheckBegin);
break;
}
if (match(TokenType::Dollar)) {
consume();
bytecode.empend(OpCode::CheckEnd);
break;
}
if (match(TokenType::LeftParen)) {
consume();
Optional<StringView> capture_group_name;
bool no_subexpression_match_qualifier = false;
if (match(TokenType::Questionmark)) {
consume();
if (match(TokenType::Colon)) {
consume();
no_subexpression_match_qualifier = true;
} else if (consume("<")) { // named capturing group
Token start_token = m_parser_state.current_token;
Token last_token = m_parser_state.current_token;
size_t capture_group_name_length = 0;
for (;;) {
if (!match_ordinary_characters())
return set_error(Error::InvalidNameForCaptureGroup);
if (match(TokenType::OrdinaryCharacter) && m_parser_state.current_token.value()[0] == '>') {
consume();
break;
}
++capture_group_name_length;
last_token = consume();
}
capture_group_name = StringView(start_token.value().characters_without_null_termination(), capture_group_name_length);
} else if (match(TokenType::EqualSign)) { // positive lookahead
consume();
ASSERT_NOT_REACHED();
} else if (consume("!")) { // negative lookahead
ASSERT_NOT_REACHED();
} else if (consume("<")) {
if (match(TokenType::EqualSign)) { // positive lookbehind
consume();
ASSERT_NOT_REACHED();
}
if (consume("!")) // negative lookbehind
ASSERT_NOT_REACHED();
} else {
return set_error(Error::InvalidRepetitionMarker);
}
}
if (!(m_parser_state.regex_options & (u8)AllFlags::NoSubExpressions || no_subexpression_match_qualifier)) {
if (capture_group_name.has_value())
insert_bytecode_group_capture_left(bytecode, capture_group_name.value());
else
insert_bytecode_group_capture_left(bytecode);
}
Vector<ByteCodeValue> capture_group_bytecode;
bool res = !parse_root(capture_group_bytecode, length);
if (capture_group_bytecode.is_empty() && match(TokenType::RightParen))
return set_error(Error::ParenEmpty);
if (!res)
return false;
bytecode.append(move(capture_group_bytecode));
consume(TokenType::RightParen, Error::ParenMismatch);
if (!(m_parser_state.regex_options & (u8)AllFlags::NoSubExpressions || no_subexpression_match_qualifier)) {
if (capture_group_name.has_value()) {
insert_bytecode_group_capture_right(bytecode, capture_group_name.value());
++m_parser_state.named_capture_groups_count;
} else {
insert_bytecode_group_capture_right(bytecode);
++m_parser_state.capture_groups_count;
}
}
should_parse_repetition_symbol = true;
break;
}
return false;
}
if (match_repetition_symbol()) {
if (should_parse_repetition_symbol)
parse_repetition_symbol(bytecode, length);
else
return set_error(Error::InvalidRepetitionMarker);
}
stack.append(move(bytecode));
match_length_minimum += length;
return true;
}
bool PosixExtendedParser::parse_root(Vector<ByteCodeValue>& stack, size_t& match_length_minimum)
{
Vector<ByteCodeValue> bytecode_left;
size_t match_length_minimum_left { 0 };
if (match_repetition_symbol())
return set_error(Error::InvalidRepetitionMarker);
for (;;) {
if (!parse_sub_expression(bytecode_left, match_length_minimum_left))
break;
if (match(TokenType::Pipe)) {
consume();
Vector<ByteCodeValue> bytecode_right;
size_t match_length_minimum_right { 0 };
if (!parse_root(bytecode_right, match_length_minimum_right) || bytecode_right.is_empty())
return set_error(Error::InvalidPattern);
Vector<ByteCodeValue> new_bytecode;
insert_bytecode_alternation(new_bytecode, move(bytecode_left), move(bytecode_right));
bytecode_left = move(new_bytecode);
match_length_minimum_left = min(match_length_minimum_right, match_length_minimum_left);
}
}
stack.append(move(bytecode_left));
match_length_minimum = match_length_minimum_left;
return !has_error();
}
}
}