1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-14 10:44:58 +00:00
serenity/Userland/Libraries/LibJS/JIT/NativeExecutable.cpp
Andreas Kling 3dc5f467a8 LibJS: Always allocate ExecutionContext objects on the malloc heap
Instead of allocating these in a mixture of ways, we now always put
them on the malloc heap, and keep an intrusive linked list of them
that we can iterate for GC marking purposes.
2023-11-29 09:48:18 +01:00

193 lines
6.9 KiB
C++

/*
* Copyright (c) 2023, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2023, Simon Wanner <simon@skyrising.xyz>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/BinarySearch.h>
#include <LibJS/Bytecode/Interpreter.h>
#include <LibJS/JIT/NativeExecutable.h>
#include <LibJS/Runtime/VM.h>
#include <LibX86/Disassembler.h>
#include <sys/mman.h>
namespace JS::JIT {
NativeExecutable::NativeExecutable(void* code, size_t size, Vector<BytecodeMapping> mapping)
: m_code(code)
, m_size(size)
, m_mapping(move(mapping))
{
// Translate block index to instruction address, so the native code can just jump to it.
for (auto const& entry : m_mapping) {
if (entry.block_index == BytecodeMapping::EXECUTABLE)
continue;
if (entry.bytecode_offset == 0) {
VERIFY(entry.block_index == m_block_entry_points.size());
m_block_entry_points.append(bit_cast<FlatPtr>(m_code) + entry.native_offset);
}
}
}
NativeExecutable::~NativeExecutable()
{
munmap(m_code, m_size);
}
void NativeExecutable::run(VM& vm, size_t entry_point) const
{
FlatPtr entry_point_address = 0;
if (entry_point != 0) {
entry_point_address = m_block_entry_points[entry_point];
VERIFY(entry_point_address != 0);
}
typedef void (*JITCode)(VM&, Value* registers, Value* locals, FlatPtr entry_point_address, ExecutionContext&);
((JITCode)m_code)(vm,
vm.bytecode_interpreter().registers().data(),
vm.running_execution_context().locals.data(),
entry_point_address,
vm.running_execution_context());
}
#if ARCH(X86_64)
class JITSymbolProvider : public X86::SymbolProvider {
public:
JITSymbolProvider(NativeExecutable const& executable)
: m_executable(executable)
{
}
virtual ~JITSymbolProvider() override = default;
virtual DeprecatedString symbolicate(FlatPtr address, u32* offset = nullptr) const override
{
auto base = bit_cast<FlatPtr>(m_executable.code_bytes().data());
auto native_offset = static_cast<u32>(address - base);
if (native_offset >= m_executable.code_bytes().size())
return {};
auto const& entry = m_executable.find_mapping_entry(native_offset);
if (offset)
*offset = native_offset - entry.native_offset;
if (entry.block_index == BytecodeMapping::EXECUTABLE)
return BytecodeMapping::EXECUTABLE_LABELS[entry.bytecode_offset];
if (entry.bytecode_offset == 0)
return DeprecatedString::formatted("Block {}", entry.block_index + 1);
return DeprecatedString::formatted("{}:{:x}", entry.block_index + 1, entry.bytecode_offset);
}
private:
NativeExecutable const& m_executable;
};
#endif
void NativeExecutable::dump_disassembly([[maybe_unused]] Bytecode::Executable const& executable) const
{
#if ARCH(X86_64)
auto const* code_bytes = static_cast<u8 const*>(m_code);
auto stream = X86::SimpleInstructionStream { code_bytes, m_size };
auto disassembler = X86::Disassembler(stream);
auto symbol_provider = JITSymbolProvider(*this);
auto mapping = m_mapping.begin();
if (!executable.basic_blocks.is_empty() && executable.basic_blocks[0]->size() != 0) {
auto first_instruction = Bytecode::InstructionStreamIterator { executable.basic_blocks[0]->instruction_stream(), &executable };
auto source_range = first_instruction.source_range().realize();
dbgln("Disassembly of '{}' ({}:{}:{}):", executable.name, source_range.filename(), source_range.start.line, source_range.start.column);
} else {
dbgln("Disassembly of '{}':", executable.name);
}
while (true) {
auto offset = stream.offset();
auto virtual_offset = bit_cast<size_t>(m_code) + offset;
while (!mapping.is_end() && offset > mapping->native_offset)
++mapping;
if (!mapping.is_end() && offset == mapping->native_offset) {
if (mapping->block_index == BytecodeMapping::EXECUTABLE) {
dbgln("{}:", BytecodeMapping::EXECUTABLE_LABELS[mapping->bytecode_offset]);
} else {
auto const& block = *executable.basic_blocks[mapping->block_index];
if (mapping->bytecode_offset == 0)
dbgln("\nBlock {}:", mapping->block_index + 1);
if (block.size() != 0) {
VERIFY(mapping->bytecode_offset < block.size());
auto const& instruction = *reinterpret_cast<Bytecode::Instruction const*>(block.data() + mapping->bytecode_offset);
dbgln("{}:{:x} {}:", mapping->block_index + 1, mapping->bytecode_offset, instruction.to_deprecated_string(executable));
}
}
}
auto insn = disassembler.next();
if (!insn.has_value())
break;
StringBuilder builder;
builder.appendff("{:p} ", virtual_offset);
auto length = insn.value().length();
for (size_t i = 0; i < 7; i++) {
if (i < length)
builder.appendff("{:02x} ", code_bytes[offset + i]);
else
builder.append(" "sv);
}
builder.append(" "sv);
builder.append(insn.value().to_deprecated_string(virtual_offset, &symbol_provider));
dbgln("{}", builder.string_view());
for (size_t bytes_printed = 7; bytes_printed < length; bytes_printed += 7) {
builder.clear();
builder.appendff("{:p} ", virtual_offset + bytes_printed);
for (size_t i = bytes_printed; i < bytes_printed + 7 && i < length; i++)
builder.appendff(" {:02x}", code_bytes[offset + i]);
dbgln("{}", builder.string_view());
}
}
dbgln();
#endif
}
BytecodeMapping const& NativeExecutable::find_mapping_entry(size_t native_offset) const
{
size_t nearby_index = 0;
AK::binary_search(
m_mapping,
native_offset,
&nearby_index,
[](FlatPtr needle, BytecodeMapping const& mapping_entry) {
if (needle > mapping_entry.native_offset)
return 1;
if (needle == mapping_entry.native_offset)
return 0;
return -1;
});
return m_mapping[nearby_index];
}
Optional<UnrealizedSourceRange> NativeExecutable::get_source_range(Bytecode::Executable const& executable, FlatPtr address) const
{
auto start = bit_cast<FlatPtr>(m_code);
auto end = start + m_size;
if (address < start || address >= end)
return {};
auto const& entry = find_mapping_entry(address - start - 1);
if (entry.block_index < executable.basic_blocks.size()) {
auto const& block = *executable.basic_blocks[entry.block_index];
if (entry.bytecode_offset < block.size()) {
auto iterator = Bytecode::InstructionStreamIterator { block.instruction_stream(), &executable, entry.bytecode_offset };
return iterator.source_range();
}
}
return {};
}
}