mirror of
				https://github.com/RGBCube/serenity
				synced 2025-10-31 03:52:43 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			4990 lines
		
	
	
	
		
			202 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			4990 lines
		
	
	
	
		
			202 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | ||
|  * Copyright (c) 2020-2023, Andreas Kling <kling@serenityos.org>
 | ||
|  * Copyright (c) 2020-2023, Linus Groh <linusg@serenityos.org>
 | ||
|  * Copyright (c) 2021-2022, David Tuin <davidot@serenityos.org>
 | ||
|  *
 | ||
|  * SPDX-License-Identifier: BSD-2-Clause
 | ||
|  */
 | ||
| 
 | ||
| #include <AK/Demangle.h>
 | ||
| #include <AK/HashMap.h>
 | ||
| #include <AK/HashTable.h>
 | ||
| #include <AK/QuickSort.h>
 | ||
| #include <AK/ScopeGuard.h>
 | ||
| #include <AK/StringBuilder.h>
 | ||
| #include <AK/TemporaryChange.h>
 | ||
| #include <LibCrypto/BigInt/SignedBigInteger.h>
 | ||
| #include <LibJS/AST.h>
 | ||
| #include <LibJS/Heap/MarkedVector.h>
 | ||
| #include <LibJS/Interpreter.h>
 | ||
| #include <LibJS/Runtime/AbstractOperations.h>
 | ||
| #include <LibJS/Runtime/Accessor.h>
 | ||
| #include <LibJS/Runtime/Array.h>
 | ||
| #include <LibJS/Runtime/BigInt.h>
 | ||
| #include <LibJS/Runtime/ECMAScriptFunctionObject.h>
 | ||
| #include <LibJS/Runtime/Error.h>
 | ||
| #include <LibJS/Runtime/FunctionEnvironment.h>
 | ||
| #include <LibJS/Runtime/GlobalObject.h>
 | ||
| #include <LibJS/Runtime/IteratorOperations.h>
 | ||
| #include <LibJS/Runtime/NativeFunction.h>
 | ||
| #include <LibJS/Runtime/ObjectEnvironment.h>
 | ||
| #include <LibJS/Runtime/PrimitiveString.h>
 | ||
| #include <LibJS/Runtime/PromiseCapability.h>
 | ||
| #include <LibJS/Runtime/PromiseConstructor.h>
 | ||
| #include <LibJS/Runtime/Reference.h>
 | ||
| #include <LibJS/Runtime/RegExpObject.h>
 | ||
| #include <LibJS/Runtime/Shape.h>
 | ||
| #include <typeinfo>
 | ||
| 
 | ||
| namespace JS {
 | ||
| 
 | ||
| class InterpreterNodeScope {
 | ||
|     AK_MAKE_NONCOPYABLE(InterpreterNodeScope);
 | ||
|     AK_MAKE_NONMOVABLE(InterpreterNodeScope);
 | ||
| 
 | ||
| public:
 | ||
|     InterpreterNodeScope(Interpreter& interpreter, ASTNode const& node)
 | ||
|         : m_interpreter(interpreter)
 | ||
|         , m_chain_node { nullptr, node }
 | ||
|     {
 | ||
|         m_interpreter.vm().running_execution_context().current_node = &node;
 | ||
|         m_interpreter.push_ast_node(m_chain_node);
 | ||
|     }
 | ||
| 
 | ||
|     ~InterpreterNodeScope()
 | ||
|     {
 | ||
|         m_interpreter.pop_ast_node();
 | ||
|     }
 | ||
| 
 | ||
| private:
 | ||
|     Interpreter& m_interpreter;
 | ||
|     ExecutingASTNodeChain m_chain_node;
 | ||
| };
 | ||
| 
 | ||
| ASTNode::ASTNode(SourceRange source_range)
 | ||
|     : m_start_offset(source_range.start.offset)
 | ||
|     , m_source_code(source_range.code)
 | ||
|     , m_end_offset(source_range.end.offset)
 | ||
| {
 | ||
| }
 | ||
| 
 | ||
| SourceRange ASTNode::source_range() const
 | ||
| {
 | ||
|     return m_source_code->range_from_offsets(m_start_offset, m_end_offset);
 | ||
| }
 | ||
| 
 | ||
| DeprecatedString ASTNode::class_name() const
 | ||
| {
 | ||
|     // NOTE: We strip the "JS::" prefix.
 | ||
|     auto const* typename_ptr = typeid(*this).name();
 | ||
|     return demangle({ typename_ptr, strlen(typename_ptr) }).substring(4);
 | ||
| }
 | ||
| 
 | ||
| static void print_indent(int indent)
 | ||
| {
 | ||
|     out("{}", DeprecatedString::repeated(' ', indent * 2));
 | ||
| }
 | ||
| 
 | ||
| static void update_function_name(Value value, DeprecatedFlyString const& name)
 | ||
| {
 | ||
|     if (!value.is_function())
 | ||
|         return;
 | ||
|     auto& function = value.as_function();
 | ||
|     if (is<ECMAScriptFunctionObject>(function) && function.name().is_empty())
 | ||
|         static_cast<ECMAScriptFunctionObject&>(function).set_name(name);
 | ||
| }
 | ||
| 
 | ||
| static ThrowCompletionOr<DeprecatedString> get_function_property_name(PropertyKey key)
 | ||
| {
 | ||
|     if (key.is_symbol())
 | ||
|         return DeprecatedString::formatted("[{}]", key.as_symbol()->description().value_or(String {}));
 | ||
|     return key.to_string();
 | ||
| }
 | ||
| 
 | ||
| // 14.2.2 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-block-runtime-semantics-evaluation
 | ||
| // StatementList : StatementList StatementListItem
 | ||
| Completion ScopeNode::evaluate_statements(Interpreter& interpreter) const
 | ||
| {
 | ||
|     auto completion = normal_completion({});
 | ||
|     for (auto const& node : children()) {
 | ||
|         completion = node.execute(interpreter).update_empty(completion.value());
 | ||
|         if (completion.is_abrupt())
 | ||
|             break;
 | ||
|     }
 | ||
|     return completion;
 | ||
| }
 | ||
| 
 | ||
| // 14.13.4 Runtime Semantics: LabelledEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-labelledevaluation
 | ||
| // BreakableStatement : IterationStatement
 | ||
| static Completion labelled_evaluation(Interpreter& interpreter, IterationStatement const& statement, Vector<DeprecatedFlyString> const& label_set)
 | ||
| {
 | ||
|     // 1. Let stmtResult be Completion(LoopEvaluation of IterationStatement with argument labelSet).
 | ||
|     auto result = statement.loop_evaluation(interpreter, label_set);
 | ||
| 
 | ||
|     // 2. If stmtResult.[[Type]] is break, then
 | ||
|     if (result.type() == Completion::Type::Break) {
 | ||
|         // a. If stmtResult.[[Target]] is empty, then
 | ||
|         if (!result.target().has_value()) {
 | ||
|             // i. If stmtResult.[[Value]] is empty, set stmtResult to NormalCompletion(undefined).
 | ||
|             // ii. Else, set stmtResult to NormalCompletion(stmtResult.[[Value]]).
 | ||
|             result = normal_completion(result.value().value_or(js_undefined()));
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     // 3. Return ? stmtResult.
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // 14.13.4 Runtime Semantics: LabelledEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-labelledevaluation
 | ||
| // BreakableStatement : SwitchStatement
 | ||
| static Completion labelled_evaluation(Interpreter& interpreter, SwitchStatement const& statement, Vector<DeprecatedFlyString> const&)
 | ||
| {
 | ||
|     // 1. Let stmtResult be the result of evaluating SwitchStatement.
 | ||
|     auto result = statement.execute_impl(interpreter);
 | ||
| 
 | ||
|     // 2. If stmtResult.[[Type]] is break, then
 | ||
|     if (result.type() == Completion::Type::Break) {
 | ||
|         // a. If stmtResult.[[Target]] is empty, then
 | ||
|         if (!result.target().has_value()) {
 | ||
|             // i. If stmtResult.[[Value]] is empty, set stmtResult to NormalCompletion(undefined).
 | ||
|             // ii. Else, set stmtResult to NormalCompletion(stmtResult.[[Value]]).
 | ||
|             result = normal_completion(result.value().value_or(js_undefined()));
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     // 3. Return ? stmtResult.
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // 14.13.4 Runtime Semantics: LabelledEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-labelledevaluation
 | ||
| // LabelledStatement : LabelIdentifier : LabelledItem
 | ||
| static Completion labelled_evaluation(Interpreter& interpreter, LabelledStatement const& statement, Vector<DeprecatedFlyString> const& label_set)
 | ||
| {
 | ||
|     auto const& labelled_item = *statement.labelled_item();
 | ||
| 
 | ||
|     // 1. Let label be the StringValue of LabelIdentifier.
 | ||
|     auto const& label = statement.label();
 | ||
| 
 | ||
|     // 2. Let newLabelSet be the list-concatenation of labelSet and « label ».
 | ||
|     // Optimization: Avoid vector copy if possible.
 | ||
|     Optional<Vector<DeprecatedFlyString>> new_label_set;
 | ||
|     if (is<IterationStatement>(labelled_item) || is<SwitchStatement>(labelled_item) || is<LabelledStatement>(labelled_item)) {
 | ||
|         new_label_set = label_set;
 | ||
|         new_label_set->append(label);
 | ||
|     }
 | ||
| 
 | ||
|     // 3. Let stmtResult be Completion(LabelledEvaluation of LabelledItem with argument newLabelSet).
 | ||
|     Completion result;
 | ||
|     if (is<IterationStatement>(labelled_item))
 | ||
|         result = labelled_evaluation(interpreter, static_cast<IterationStatement const&>(labelled_item), *new_label_set);
 | ||
|     else if (is<SwitchStatement>(labelled_item))
 | ||
|         result = labelled_evaluation(interpreter, static_cast<SwitchStatement const&>(labelled_item), *new_label_set);
 | ||
|     else if (is<LabelledStatement>(labelled_item))
 | ||
|         result = labelled_evaluation(interpreter, static_cast<LabelledStatement const&>(labelled_item), *new_label_set);
 | ||
|     else
 | ||
|         result = labelled_item.execute(interpreter);
 | ||
| 
 | ||
|     // 4. If stmtResult.[[Type]] is break and SameValue(stmtResult.[[Target]], label) is true, then
 | ||
|     if (result.type() == Completion::Type::Break && result.target() == label) {
 | ||
|         // a. Set stmtResult to NormalCompletion(stmtResult.[[Value]]).
 | ||
|         result = normal_completion(result.value());
 | ||
|     }
 | ||
| 
 | ||
|     // 5. Return ? stmtResult.
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| // 14.13.3 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-labelled-statements-runtime-semantics-evaluation
 | ||
| Completion LabelledStatement::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // 1. Return ? LabelledEvaluation of this LabelledStatement with argument « ».
 | ||
|     return labelled_evaluation(interpreter, *this, {});
 | ||
| }
 | ||
| 
 | ||
| void LabelledStatement::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
| 
 | ||
|     print_indent(indent + 1);
 | ||
|     outln("(Label)");
 | ||
|     print_indent(indent + 2);
 | ||
|     outln("\"{}\"", m_label);
 | ||
| 
 | ||
|     print_indent(indent + 1);
 | ||
|     outln("(Labelled item)");
 | ||
|     m_labelled_item->dump(indent + 2);
 | ||
| }
 | ||
| 
 | ||
| // 10.2.1.3 Runtime Semantics: EvaluateBody, https://tc39.es/ecma262/#sec-runtime-semantics-evaluatebody
 | ||
| Completion FunctionBody::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // Note: Scoping should have already been set up by whoever is calling this FunctionBody.
 | ||
|     // 1. Return ? EvaluateFunctionBody of FunctionBody with arguments functionObject and argumentsList.
 | ||
|     return evaluate_statements(interpreter);
 | ||
| }
 | ||
| 
 | ||
| // 14.2.2 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-block-runtime-semantics-evaluation
 | ||
| Completion BlockStatement::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     auto& vm = interpreter.vm();
 | ||
| 
 | ||
|     Environment* old_environment { nullptr };
 | ||
| 
 | ||
|     // Optimization: We only need a new lexical environment if there are any lexical declarations. :^)
 | ||
|     if (!has_lexical_declarations())
 | ||
|         return evaluate_statements(interpreter);
 | ||
| 
 | ||
|     old_environment = vm.running_execution_context().lexical_environment;
 | ||
|     auto block_environment = new_declarative_environment(*old_environment);
 | ||
|     block_declaration_instantiation(interpreter, block_environment);
 | ||
|     vm.running_execution_context().lexical_environment = block_environment;
 | ||
| 
 | ||
|     // 5. Let blockValue be the result of evaluating StatementList.
 | ||
|     auto block_value = evaluate_statements(interpreter);
 | ||
| 
 | ||
|     // 6. Set blockValue to DisposeResources(blockEnv, blockValue).
 | ||
|     block_value = dispose_resources(vm, block_environment, block_value);
 | ||
| 
 | ||
|     vm.running_execution_context().lexical_environment = old_environment;
 | ||
| 
 | ||
|     return block_value;
 | ||
| }
 | ||
| 
 | ||
| Completion Program::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     return evaluate_statements(interpreter);
 | ||
| }
 | ||
| 
 | ||
| // 15.2.6 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-function-definitions-runtime-semantics-evaluation
 | ||
| Completion FunctionDeclaration::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
|     auto& vm = interpreter.vm();
 | ||
| 
 | ||
|     if (m_is_hoisted) {
 | ||
|         // Perform special annexB steps see step 3 of: https://tc39.es/ecma262/#sec-web-compat-functiondeclarationinstantiation
 | ||
| 
 | ||
|         // i. Let genv be the running execution context's VariableEnvironment.
 | ||
|         auto* variable_environment = interpreter.vm().running_execution_context().variable_environment;
 | ||
| 
 | ||
|         // ii. Let benv be the running execution context's LexicalEnvironment.
 | ||
|         auto* lexical_environment = interpreter.vm().running_execution_context().lexical_environment;
 | ||
| 
 | ||
|         // iii. Let fobj be ! benv.GetBindingValue(F, false).
 | ||
|         auto function_object = MUST(lexical_environment->get_binding_value(vm, name(), false));
 | ||
| 
 | ||
|         // iv. Perform ? genv.SetMutableBinding(F, fobj, false).
 | ||
|         TRY(variable_environment->set_mutable_binding(vm, name(), function_object, false));
 | ||
| 
 | ||
|         // v. Return unused.
 | ||
|         return Optional<Value> {};
 | ||
|     }
 | ||
| 
 | ||
|     // 1. Return unused.
 | ||
|     return Optional<Value> {};
 | ||
| }
 | ||
| 
 | ||
| // 15.2.6 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-function-definitions-runtime-semantics-evaluation
 | ||
| Completion FunctionExpression::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // 1. Return InstantiateOrdinaryFunctionExpression of FunctionExpression.
 | ||
|     return instantiate_ordinary_function_expression(interpreter, name());
 | ||
| }
 | ||
| 
 | ||
| // 15.2.5 Runtime Semantics: InstantiateOrdinaryFunctionExpression, https://tc39.es/ecma262/#sec-runtime-semantics-instantiateordinaryfunctionexpression
 | ||
| Value FunctionExpression::instantiate_ordinary_function_expression(Interpreter& interpreter, DeprecatedFlyString given_name) const
 | ||
| {
 | ||
|     auto& vm = interpreter.vm();
 | ||
|     auto& realm = *vm.current_realm();
 | ||
| 
 | ||
|     if (given_name.is_empty())
 | ||
|         given_name = "";
 | ||
|     auto has_own_name = !name().is_empty();
 | ||
| 
 | ||
|     auto const& used_name = has_own_name ? name() : given_name;
 | ||
|     auto environment = NonnullGCPtr { *interpreter.lexical_environment() };
 | ||
|     if (has_own_name) {
 | ||
|         VERIFY(environment);
 | ||
|         environment = new_declarative_environment(*environment);
 | ||
|         MUST(environment->create_immutable_binding(vm, name(), false));
 | ||
|     }
 | ||
| 
 | ||
|     auto* private_environment = vm.running_execution_context().private_environment;
 | ||
| 
 | ||
|     auto closure = ECMAScriptFunctionObject::create(realm, used_name, source_text(), body(), parameters(), function_length(), environment, private_environment, kind(), is_strict_mode(), might_need_arguments_object(), contains_direct_call_to_eval(), is_arrow_function());
 | ||
| 
 | ||
|     // FIXME: 6. Perform SetFunctionName(closure, name).
 | ||
|     // FIXME: 7. Perform MakeConstructor(closure).
 | ||
| 
 | ||
|     if (has_own_name)
 | ||
|         MUST(environment->initialize_binding(vm, name(), closure, Environment::InitializeBindingHint::Normal));
 | ||
| 
 | ||
|     return closure;
 | ||
| }
 | ||
| 
 | ||
| // 14.4.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-empty-statement-runtime-semantics-evaluation
 | ||
| Completion EmptyStatement::execute(Interpreter&) const
 | ||
| {
 | ||
|     // 1. Return empty.
 | ||
|     return Optional<Value> {};
 | ||
| }
 | ||
| 
 | ||
| // 14.5.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-expression-statement-runtime-semantics-evaluation
 | ||
| Completion ExpressionStatement::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // 1. Let exprRef be the result of evaluating Expression.
 | ||
|     // 2. Return ? GetValue(exprRef).
 | ||
|     return m_expression->execute(interpreter);
 | ||
| }
 | ||
| 
 | ||
| // TODO: This shouldn't exist. Refactor into EvaluateCall.
 | ||
| ThrowCompletionOr<CallExpression::ThisAndCallee> CallExpression::compute_this_and_callee(Interpreter& interpreter, Reference const& callee_reference) const
 | ||
| {
 | ||
|     auto& vm = interpreter.vm();
 | ||
|     if (callee_reference.is_property_reference()) {
 | ||
|         auto this_value = callee_reference.get_this_value();
 | ||
|         auto callee = TRY(callee_reference.get_value(vm));
 | ||
| 
 | ||
|         return ThisAndCallee { this_value, callee };
 | ||
|     }
 | ||
| 
 | ||
|     Value this_value = js_undefined();
 | ||
|     if (callee_reference.is_environment_reference()) {
 | ||
|         if (Object* base_object = callee_reference.base_environment().with_base_object(); base_object != nullptr)
 | ||
|             this_value = base_object;
 | ||
|     }
 | ||
| 
 | ||
|     // [[Call]] will handle that in non-strict mode the this value becomes the global object
 | ||
|     return ThisAndCallee {
 | ||
|         this_value,
 | ||
|         callee_reference.is_unresolvable()
 | ||
|             ? TRY(m_callee->execute(interpreter)).release_value()
 | ||
|             : TRY(callee_reference.get_value(vm))
 | ||
|     };
 | ||
| }
 | ||
| 
 | ||
| // 13.3.8.1 Runtime Semantics: ArgumentListEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-argumentlistevaluation
 | ||
| static ThrowCompletionOr<void> argument_list_evaluation(Interpreter& interpreter, ReadonlySpan<CallExpression::Argument> const arguments, MarkedVector<Value>& list)
 | ||
| {
 | ||
|     auto& vm = interpreter.vm();
 | ||
|     list.ensure_capacity(arguments.size());
 | ||
| 
 | ||
|     for (auto& argument : arguments) {
 | ||
|         auto value = TRY(argument.value->execute(interpreter)).release_value();
 | ||
|         if (argument.is_spread) {
 | ||
|             TRY(get_iterator_values(vm, value, [&](Value iterator_value) -> Optional<Completion> {
 | ||
|                 list.append(iterator_value);
 | ||
|                 return {};
 | ||
|             }));
 | ||
|         } else {
 | ||
|             list.append(value);
 | ||
|         }
 | ||
|     }
 | ||
|     return {};
 | ||
| }
 | ||
| 
 | ||
| // 13.3.5.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-new-operator-runtime-semantics-evaluation
 | ||
| // 13.3.5.1.1 EvaluateNew ( constructExpr, arguments ), https://tc39.es/ecma262/#sec-evaluatenew
 | ||
| Completion NewExpression::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
|     auto& vm = interpreter.vm();
 | ||
| 
 | ||
|     // 1. Let ref be the result of evaluating constructExpr.
 | ||
|     // 2. Let constructor be ? GetValue(ref).
 | ||
|     auto constructor = TRY(m_callee->execute(interpreter)).release_value();
 | ||
| 
 | ||
|     // 3. If arguments is empty, let argList be a new empty List.
 | ||
|     // 4. Else,
 | ||
|     //    a. Let argList be ? ArgumentListEvaluation of arguments.
 | ||
|     MarkedVector<Value> arg_list(vm.heap());
 | ||
|     TRY(argument_list_evaluation(interpreter, arguments(), arg_list));
 | ||
| 
 | ||
|     // 5. If IsConstructor(constructor) is false, throw a TypeError exception.
 | ||
|     if (!constructor.is_constructor())
 | ||
|         return throw_type_error_for_callee(interpreter, constructor, "constructor"sv);
 | ||
| 
 | ||
|     // 6. Return ? Construct(constructor, argList).
 | ||
|     return Value { TRY(construct(vm, constructor.as_function(), move(arg_list))) };
 | ||
| }
 | ||
| 
 | ||
| Optional<DeprecatedString> CallExpression::expression_string() const
 | ||
| {
 | ||
|     if (is<Identifier>(*m_callee))
 | ||
|         return static_cast<Identifier const&>(*m_callee).string();
 | ||
| 
 | ||
|     if (is<MemberExpression>(*m_callee))
 | ||
|         return static_cast<MemberExpression const&>(*m_callee).to_string_approximation();
 | ||
| 
 | ||
|     return {};
 | ||
| }
 | ||
| 
 | ||
| Completion CallExpression::throw_type_error_for_callee(Interpreter& interpreter, Value callee_value, StringView call_type) const
 | ||
| {
 | ||
|     auto& vm = interpreter.vm();
 | ||
| 
 | ||
|     if (auto expression_string = this->expression_string(); expression_string.has_value())
 | ||
|         return vm.throw_completion<TypeError>(ErrorType::IsNotAEvaluatedFrom, TRY_OR_THROW_OOM(vm, callee_value.to_string_without_side_effects()), call_type, expression_string.release_value());
 | ||
| 
 | ||
|     return vm.throw_completion<TypeError>(ErrorType::IsNotA, TRY_OR_THROW_OOM(vm, callee_value.to_string_without_side_effects()), call_type);
 | ||
| }
 | ||
| 
 | ||
| // 13.3.6.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-function-calls-runtime-semantics-evaluation
 | ||
| Completion CallExpression::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
|     auto& vm = interpreter.vm();
 | ||
|     auto& realm = *vm.current_realm();
 | ||
| 
 | ||
|     auto callee_reference = TRY(m_callee->to_reference(interpreter));
 | ||
| 
 | ||
|     auto [this_value, callee] = TRY(compute_this_and_callee(interpreter, callee_reference));
 | ||
| 
 | ||
|     VERIFY(!callee.is_empty());
 | ||
| 
 | ||
|     MarkedVector<Value> arg_list(vm.heap());
 | ||
|     TRY(argument_list_evaluation(interpreter, arguments(), arg_list));
 | ||
| 
 | ||
|     if (!callee.is_function())
 | ||
|         return throw_type_error_for_callee(interpreter, callee, "function"sv);
 | ||
| 
 | ||
|     auto& function = callee.as_function();
 | ||
| 
 | ||
|     if (&function == realm.intrinsics().eval_function()
 | ||
|         && callee_reference.is_environment_reference()
 | ||
|         && callee_reference.name().is_string()
 | ||
|         && callee_reference.name().as_string() == vm.names.eval.as_string()) {
 | ||
| 
 | ||
|         auto script_value = arg_list.size() == 0 ? js_undefined() : arg_list[0];
 | ||
|         return perform_eval(vm, script_value, vm.in_strict_mode() ? CallerMode::Strict : CallerMode::NonStrict, EvalMode::Direct);
 | ||
|     }
 | ||
| 
 | ||
|     return call(vm, function, this_value, move(arg_list));
 | ||
| }
 | ||
| 
 | ||
| // 13.3.7.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-super-keyword-runtime-semantics-evaluation
 | ||
| // SuperCall : super Arguments
 | ||
| Completion SuperCall::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
|     auto& vm = interpreter.vm();
 | ||
| 
 | ||
|     // 1. Let newTarget be GetNewTarget().
 | ||
|     auto new_target = vm.get_new_target();
 | ||
| 
 | ||
|     // 2. Assert: Type(newTarget) is Object.
 | ||
|     VERIFY(new_target.is_function());
 | ||
| 
 | ||
|     // 3. Let func be GetSuperConstructor().
 | ||
|     auto* func = get_super_constructor(interpreter.vm());
 | ||
| 
 | ||
|     // 4. Let argList be ? ArgumentListEvaluation of Arguments.
 | ||
|     MarkedVector<Value> arg_list(vm.heap());
 | ||
|     if (m_is_synthetic == IsPartOfSyntheticConstructor::Yes) {
 | ||
|         // NOTE: This is the case where we have a fake constructor(...args) { super(...args); } which
 | ||
|         //       shouldn't call @@iterator of %Array.prototype%.
 | ||
|         VERIFY(m_arguments.size() == 1);
 | ||
|         VERIFY(m_arguments[0].is_spread);
 | ||
|         auto const& argument = m_arguments[0];
 | ||
|         auto value = MUST(argument.value->execute(interpreter)).release_value();
 | ||
|         VERIFY(value.is_object() && is<Array>(value.as_object()));
 | ||
| 
 | ||
|         auto& array_value = static_cast<Array const&>(value.as_object());
 | ||
|         auto length = MUST(length_of_array_like(vm, array_value));
 | ||
|         for (size_t i = 0; i < length; ++i)
 | ||
|             arg_list.append(array_value.get_without_side_effects(PropertyKey { i }));
 | ||
|     } else {
 | ||
|         TRY(argument_list_evaluation(interpreter, m_arguments, arg_list));
 | ||
|     }
 | ||
| 
 | ||
|     // 5. If IsConstructor(func) is false, throw a TypeError exception.
 | ||
|     if (!func || !Value(func).is_constructor())
 | ||
|         return vm.throw_completion<TypeError>(ErrorType::NotAConstructor, "Super constructor");
 | ||
| 
 | ||
|     // 6. Let result be ? Construct(func, argList, newTarget).
 | ||
|     auto result = TRY(construct(vm, static_cast<FunctionObject&>(*func), move(arg_list), &new_target.as_function()));
 | ||
| 
 | ||
|     // 7. Let thisER be GetThisEnvironment().
 | ||
|     auto& this_er = verify_cast<FunctionEnvironment>(*get_this_environment(vm));
 | ||
| 
 | ||
|     // 8. Perform ? thisER.BindThisValue(result).
 | ||
|     TRY(this_er.bind_this_value(vm, result));
 | ||
| 
 | ||
|     // 9. Let F be thisER.[[FunctionObject]].
 | ||
|     // 10. Assert: F is an ECMAScript function object.
 | ||
|     // NOTE: This is implied by the strong C++ type.
 | ||
|     [[maybe_unused]] auto& f = this_er.function_object();
 | ||
| 
 | ||
|     // 11. Perform ? InitializeInstanceElements(result, F).
 | ||
|     TRY(result->initialize_instance_elements(f));
 | ||
| 
 | ||
|     // 12. Return result.
 | ||
|     return Value { result };
 | ||
| }
 | ||
| 
 | ||
| // 15.5.5 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-generator-function-definitions-runtime-semantics-evaluation
 | ||
| Completion YieldExpression::execute(Interpreter&) const
 | ||
| {
 | ||
|     // This should be transformed to a return.
 | ||
|     VERIFY_NOT_REACHED();
 | ||
| }
 | ||
| 
 | ||
| // 15.8.5 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-async-function-definitions-runtime-semantics-evaluation
 | ||
| Completion AwaitExpression::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
|     auto& vm = interpreter.vm();
 | ||
| 
 | ||
|     // 1. Let exprRef be the result of evaluating UnaryExpression.
 | ||
|     // 2. Let value be ? GetValue(exprRef).
 | ||
|     auto value = TRY(m_argument->execute(interpreter)).release_value();
 | ||
| 
 | ||
|     // 3. Return ? Await(value).
 | ||
|     return await(vm, value);
 | ||
| }
 | ||
| 
 | ||
| // 14.10.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-return-statement-runtime-semantics-evaluation
 | ||
| Completion ReturnStatement::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // ReturnStatement : return ;
 | ||
|     if (!m_argument) {
 | ||
|         // 1. Return Completion Record { [[Type]]: return, [[Value]]: undefined, [[Target]]: empty }.
 | ||
|         return { Completion::Type::Return, js_undefined(), {} };
 | ||
|     }
 | ||
| 
 | ||
|     // ReturnStatement : return Expression ;
 | ||
|     // 1. Let exprRef be the result of evaluating Expression.
 | ||
|     // 2. Let exprValue be ? GetValue(exprRef).
 | ||
|     auto value = TRY(m_argument->execute(interpreter));
 | ||
| 
 | ||
|     // NOTE: Generators are not supported in the AST interpreter
 | ||
|     // 3. If GetGeneratorKind() is async, set exprValue to ? Await(exprValue).
 | ||
| 
 | ||
|     // 4. Return Completion Record { [[Type]]: return, [[Value]]: exprValue, [[Target]]: empty }.
 | ||
|     return { Completion::Type::Return, value, {} };
 | ||
| }
 | ||
| 
 | ||
| // 14.6.2 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-if-statement-runtime-semantics-evaluation
 | ||
| Completion IfStatement::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // IfStatement : if ( Expression ) Statement else Statement
 | ||
|     // 1. Let exprRef be the result of evaluating Expression.
 | ||
|     // 2. Let exprValue be ToBoolean(? GetValue(exprRef)).
 | ||
|     auto predicate_result = TRY(m_predicate->execute(interpreter)).release_value();
 | ||
| 
 | ||
|     // 3. If exprValue is true, then
 | ||
|     if (predicate_result.to_boolean()) {
 | ||
|         // a. Let stmtCompletion be the result of evaluating the first Statement.
 | ||
|         // 5. Return ? UpdateEmpty(stmtCompletion, undefined).
 | ||
|         return m_consequent->execute(interpreter).update_empty(js_undefined());
 | ||
|     }
 | ||
| 
 | ||
|     // 4. Else,
 | ||
|     if (m_alternate) {
 | ||
|         // a. Let stmtCompletion be the result of evaluating the second Statement.
 | ||
|         // 5. Return ? UpdateEmpty(stmtCompletion, undefined).
 | ||
|         return m_alternate->execute(interpreter).update_empty(js_undefined());
 | ||
|     }
 | ||
| 
 | ||
|     // IfStatement : if ( Expression ) Statement
 | ||
|     // 3. If exprValue is false, then
 | ||
|     //    a. Return undefined.
 | ||
|     return js_undefined();
 | ||
| }
 | ||
| 
 | ||
| // 14.11.2 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-with-statement-runtime-semantics-evaluation
 | ||
| // WithStatement : with ( Expression ) Statement
 | ||
| Completion WithStatement::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
|     auto& vm = interpreter.vm();
 | ||
| 
 | ||
|     // 1. Let value be the result of evaluating Expression.
 | ||
|     auto value = TRY(m_object->execute(interpreter)).release_value();
 | ||
| 
 | ||
|     // 2. Let obj be ? ToObject(? GetValue(value)).
 | ||
|     auto* object = TRY(value.to_object(vm));
 | ||
| 
 | ||
|     // 3. Let oldEnv be the running execution context's LexicalEnvironment.
 | ||
|     auto* old_environment = vm.running_execution_context().lexical_environment;
 | ||
| 
 | ||
|     // 4. Let newEnv be NewObjectEnvironment(obj, true, oldEnv).
 | ||
|     auto new_environment = new_object_environment(*object, true, old_environment);
 | ||
| 
 | ||
|     // 5. Set the running execution context's LexicalEnvironment to newEnv.
 | ||
|     vm.running_execution_context().lexical_environment = new_environment;
 | ||
| 
 | ||
|     // 6. Let C be the result of evaluating Statement.
 | ||
|     auto result = m_body->execute(interpreter);
 | ||
| 
 | ||
|     // 7. Set the running execution context's LexicalEnvironment to oldEnv.
 | ||
|     vm.running_execution_context().lexical_environment = old_environment;
 | ||
| 
 | ||
|     // 8. Return ? UpdateEmpty(C, undefined).
 | ||
|     return result.update_empty(js_undefined());
 | ||
| }
 | ||
| 
 | ||
| // 14.7.1.1 LoopContinues ( completion, labelSet ), https://tc39.es/ecma262/#sec-loopcontinues
 | ||
| static bool loop_continues(Completion const& completion, Vector<DeprecatedFlyString> const& label_set)
 | ||
| {
 | ||
|     // 1. If completion.[[Type]] is normal, return true.
 | ||
|     if (completion.type() == Completion::Type::Normal)
 | ||
|         return true;
 | ||
| 
 | ||
|     // 2. If completion.[[Type]] is not continue, return false.
 | ||
|     if (completion.type() != Completion::Type::Continue)
 | ||
|         return false;
 | ||
| 
 | ||
|     // 3. If completion.[[Target]] is empty, return true.
 | ||
|     if (!completion.target().has_value())
 | ||
|         return true;
 | ||
| 
 | ||
|     // 4. If completion.[[Target]] is an element of labelSet, return true.
 | ||
|     if (label_set.contains_slow(*completion.target()))
 | ||
|         return true;
 | ||
| 
 | ||
|     // 5. Return false.
 | ||
|     return false;
 | ||
| }
 | ||
| 
 | ||
| // 14.1.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-statement-semantics-runtime-semantics-evaluation
 | ||
| // BreakableStatement : IterationStatement
 | ||
| Completion WhileStatement::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     // 1. Let newLabelSet be a new empty List.
 | ||
|     // 2. Return ? LabelledEvaluation of this BreakableStatement with argument newLabelSet.
 | ||
|     return labelled_evaluation(interpreter, *this, {});
 | ||
| }
 | ||
| 
 | ||
| // 14.7.3.2 Runtime Semantics: WhileLoopEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-whileloopevaluation
 | ||
| Completion WhileStatement::loop_evaluation(Interpreter& interpreter, Vector<DeprecatedFlyString> const& label_set) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // 1. Let V be undefined.
 | ||
|     auto last_value = js_undefined();
 | ||
| 
 | ||
|     // 2. Repeat,
 | ||
|     for (;;) {
 | ||
|         // a. Let exprRef be the result of evaluating Expression.
 | ||
|         // b. Let exprValue be ? GetValue(exprRef).
 | ||
|         auto test_result = TRY(m_test->execute(interpreter)).release_value();
 | ||
| 
 | ||
|         // c. If ToBoolean(exprValue) is false, return V.
 | ||
|         if (!test_result.to_boolean())
 | ||
|             return last_value;
 | ||
| 
 | ||
|         // d. Let stmtResult be the result of evaluating Statement.
 | ||
|         auto body_result = m_body->execute(interpreter);
 | ||
| 
 | ||
|         // e. If LoopContinues(stmtResult, labelSet) is false, return ? UpdateEmpty(stmtResult, V).
 | ||
|         if (!loop_continues(body_result, label_set))
 | ||
|             return body_result.update_empty(last_value);
 | ||
| 
 | ||
|         // f. If stmtResult.[[Value]] is not empty, set V to stmtResult.[[Value]].
 | ||
|         if (body_result.value().has_value())
 | ||
|             last_value = *body_result.value();
 | ||
|     }
 | ||
| 
 | ||
|     VERIFY_NOT_REACHED();
 | ||
| }
 | ||
| 
 | ||
| // 14.1.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-statement-semantics-runtime-semantics-evaluation
 | ||
| // BreakableStatement : IterationStatement
 | ||
| Completion DoWhileStatement::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     // 1. Let newLabelSet be a new empty List.
 | ||
|     // 2. Return ? LabelledEvaluation of this BreakableStatement with argument newLabelSet.
 | ||
|     return labelled_evaluation(interpreter, *this, {});
 | ||
| }
 | ||
| 
 | ||
| // 14.7.2.2 Runtime Semantics: DoWhileLoopEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-dowhileloopevaluation
 | ||
| Completion DoWhileStatement::loop_evaluation(Interpreter& interpreter, Vector<DeprecatedFlyString> const& label_set) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // 1. Let V be undefined.
 | ||
|     auto last_value = js_undefined();
 | ||
| 
 | ||
|     // 2. Repeat,
 | ||
|     for (;;) {
 | ||
|         // a. Let stmtResult be the result of evaluating Statement.
 | ||
|         auto body_result = m_body->execute(interpreter);
 | ||
| 
 | ||
|         // b. If LoopContinues(stmtResult, labelSet) is false, return ? UpdateEmpty(stmtResult, V).
 | ||
|         if (!loop_continues(body_result, label_set))
 | ||
|             return body_result.update_empty(last_value);
 | ||
| 
 | ||
|         // c. If stmtResult.[[Value]] is not empty, set V to stmtResult.[[Value]].
 | ||
|         if (body_result.value().has_value())
 | ||
|             last_value = *body_result.value();
 | ||
| 
 | ||
|         // d. Let exprRef be the result of evaluating Expression.
 | ||
|         // e. Let exprValue be ? GetValue(exprRef).
 | ||
|         auto test_result = TRY(m_test->execute(interpreter)).release_value();
 | ||
| 
 | ||
|         // f. If ToBoolean(exprValue) is false, return V.
 | ||
|         if (!test_result.to_boolean())
 | ||
|             return last_value;
 | ||
|     }
 | ||
| 
 | ||
|     VERIFY_NOT_REACHED();
 | ||
| }
 | ||
| 
 | ||
| // 14.1.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-statement-semantics-runtime-semantics-evaluation
 | ||
| // BreakableStatement : IterationStatement
 | ||
| Completion ForStatement::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     // 1. Let newLabelSet be a new empty List.
 | ||
|     // 2. Return ? LabelledEvaluation of this BreakableStatement with argument newLabelSet.
 | ||
|     return labelled_evaluation(interpreter, *this, {});
 | ||
| }
 | ||
| 
 | ||
| // 14.7.4.2 Runtime Semantics: ForLoopEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-forloopevaluation
 | ||
| Completion ForStatement::loop_evaluation(Interpreter& interpreter, Vector<DeprecatedFlyString> const& label_set) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
|     auto& vm = interpreter.vm();
 | ||
| 
 | ||
|     // Note we don't always set a new environment but to use RAII we must do this here.
 | ||
|     auto* old_environment = interpreter.lexical_environment();
 | ||
| 
 | ||
|     size_t per_iteration_bindings_size = 0;
 | ||
|     GCPtr<DeclarativeEnvironment> loop_env;
 | ||
| 
 | ||
|     if (m_init) {
 | ||
|         Declaration const* declaration = nullptr;
 | ||
| 
 | ||
|         if (is<VariableDeclaration>(*m_init) && static_cast<VariableDeclaration const&>(*m_init).declaration_kind() != DeclarationKind::Var)
 | ||
|             declaration = static_cast<VariableDeclaration const*>(m_init.ptr());
 | ||
|         else if (is<UsingDeclaration>(*m_init))
 | ||
|             declaration = static_cast<UsingDeclaration const*>(m_init.ptr());
 | ||
| 
 | ||
|         if (declaration) {
 | ||
|             loop_env = new_declarative_environment(*old_environment);
 | ||
|             auto is_const = declaration->is_constant_declaration();
 | ||
|             // NOTE: Due to the use of MUST with `create_immutable_binding` and `create_mutable_binding` below,
 | ||
|             //       an exception should not result from `for_each_bound_name`.
 | ||
|             MUST(declaration->for_each_bound_name([&](auto const& name) {
 | ||
|                 if (is_const) {
 | ||
|                     MUST(loop_env->create_immutable_binding(vm, name, true));
 | ||
|                 } else {
 | ||
|                     MUST(loop_env->create_mutable_binding(vm, name, false));
 | ||
|                     ++per_iteration_bindings_size;
 | ||
|                 }
 | ||
|             }));
 | ||
| 
 | ||
|             interpreter.vm().running_execution_context().lexical_environment = loop_env;
 | ||
|         }
 | ||
| 
 | ||
|         (void)TRY(m_init->execute(interpreter));
 | ||
|     }
 | ||
| 
 | ||
|     // 10. Let bodyResult be Completion(ForBodyEvaluation(the first Expression, the second Expression, Statement, perIterationLets, labelSet)).
 | ||
|     auto body_result = for_body_evaluation(interpreter, label_set, per_iteration_bindings_size);
 | ||
| 
 | ||
|     // 11. Set bodyResult to DisposeResources(loopEnv, bodyResult).
 | ||
|     if (loop_env)
 | ||
|         body_result = dispose_resources(vm, loop_env.ptr(), body_result);
 | ||
| 
 | ||
|     // 12. Set the running execution context's LexicalEnvironment to oldEnv.
 | ||
|     interpreter.vm().running_execution_context().lexical_environment = old_environment;
 | ||
| 
 | ||
|     // 13. Return ? bodyResult.
 | ||
|     return body_result;
 | ||
| }
 | ||
| 
 | ||
| // 14.7.4.3 ForBodyEvaluation ( test, increment, stmt, perIterationBindings, labelSet ), https://tc39.es/ecma262/#sec-forbodyevaluation
 | ||
| // 6.3.1.2 ForBodyEvaluation ( test, increment, stmt, perIterationBindings, labelSet ), https://tc39.es/proposal-explicit-resource-management/#sec-forbodyevaluation
 | ||
| Completion ForStatement::for_body_evaluation(JS::Interpreter& interpreter, Vector<DeprecatedFlyString> const& label_set, size_t per_iteration_bindings_size) const
 | ||
| {
 | ||
|     auto& vm = interpreter.vm();
 | ||
| 
 | ||
|     // 14.7.4.4 CreatePerIterationEnvironment ( perIterationBindings ), https://tc39.es/ecma262/#sec-createperiterationenvironment
 | ||
|     // NOTE: Our implementation of this AO is heavily dependent on DeclarativeEnvironment using a Vector with constant indices.
 | ||
|     //       For performance, we can take advantage of the fact that the declarations of the initialization statement are created
 | ||
|     //       in the same order each time CreatePerIterationEnvironment is invoked.
 | ||
|     auto create_per_iteration_environment = [&]() -> GCPtr<DeclarativeEnvironment> {
 | ||
|         // 1. If perIterationBindings has any elements, then
 | ||
|         if (per_iteration_bindings_size == 0) {
 | ||
|             // 2. Return unused.
 | ||
|             return nullptr;
 | ||
|         }
 | ||
| 
 | ||
|         // a. Let lastIterationEnv be the running execution context's LexicalEnvironment.
 | ||
|         auto* last_iteration_env = verify_cast<DeclarativeEnvironment>(interpreter.lexical_environment());
 | ||
| 
 | ||
|         // b. Let outer be lastIterationEnv.[[OuterEnv]].
 | ||
|         // c. Assert: outer is not null.
 | ||
|         VERIFY(last_iteration_env->outer_environment());
 | ||
| 
 | ||
|         // d. Let thisIterationEnv be NewDeclarativeEnvironment(outer).
 | ||
|         auto this_iteration_env = DeclarativeEnvironment::create_for_per_iteration_bindings({}, *last_iteration_env, per_iteration_bindings_size);
 | ||
| 
 | ||
|         // e. For each element bn of perIterationBindings, do
 | ||
|         //     i. Perform ! thisIterationEnv.CreateMutableBinding(bn, false).
 | ||
|         //     ii. Let lastValue be ? lastIterationEnv.GetBindingValue(bn, true).
 | ||
|         //     iii. Perform ! thisIterationEnv.InitializeBinding(bn, lastValue).
 | ||
|         //
 | ||
|         // NOTE: This is handled by DeclarativeEnvironment::create_for_per_iteration_bindings. Step e.ii indicates it may throw,
 | ||
|         //       but that is not possible. The potential for throwing was added to accommodate support for do-expressions in the
 | ||
|         //       initialization statement, but that idea was dropped: https://github.com/tc39/ecma262/issues/299#issuecomment-172950045
 | ||
| 
 | ||
|         // f. Set the running execution context's LexicalEnvironment to thisIterationEnv.
 | ||
|         interpreter.vm().running_execution_context().lexical_environment = this_iteration_env;
 | ||
| 
 | ||
|         // g. Return thisIterationEnv.
 | ||
|         return this_iteration_env;
 | ||
|     };
 | ||
| 
 | ||
|     // 1. Let V be undefined.
 | ||
|     auto last_value = js_undefined();
 | ||
| 
 | ||
|     // 2. Let thisIterationEnv be ? CreatePerIterationEnvironment(perIterationBindings).
 | ||
|     auto this_iteration_env = create_per_iteration_environment();
 | ||
| 
 | ||
|     // 3. Repeat,
 | ||
|     while (true) {
 | ||
|         // a. If test is not [empty], then
 | ||
|         if (m_test) {
 | ||
|             // i. Let testRef be the result of evaluating test.
 | ||
|             // ii. Let testValue be Completion(GetValue(testRef)).
 | ||
|             auto test_value = m_test->execute(interpreter);
 | ||
| 
 | ||
|             // iii. If testValue is an abrupt completion, then
 | ||
|             if (test_value.is_abrupt()) {
 | ||
|                 // 1. Return ? DisposeResources(thisIterationEnv, testValue).
 | ||
|                 return TRY(dispose_resources(vm, this_iteration_env, test_value));
 | ||
|             }
 | ||
|             // iv. Else,
 | ||
|             // 1. Set testValue to testValue.[[Value]].
 | ||
|             VERIFY(test_value.value().has_value());
 | ||
| 
 | ||
|             // iii. If ToBoolean(testValue) is false, return ? DisposeResources(thisIterationEnv, Completion(V)).
 | ||
|             if (!test_value.release_value().value().to_boolean())
 | ||
|                 return TRY(dispose_resources(vm, this_iteration_env, test_value));
 | ||
|         }
 | ||
| 
 | ||
|         // b. Let result be the result of evaluating stmt.
 | ||
|         auto result = m_body->execute(interpreter);
 | ||
| 
 | ||
|         // c. Perform ? DisposeResources(thisIterationEnv, result).
 | ||
|         TRY(dispose_resources(vm, this_iteration_env, result));
 | ||
| 
 | ||
|         // d. If LoopContinues(result, labelSet) is false, return ? UpdateEmpty(result, V).
 | ||
|         if (!loop_continues(result, label_set))
 | ||
|             return result.update_empty(last_value);
 | ||
| 
 | ||
|         // e. If result.[[Value]] is not empty, set V to result.[[Value]].
 | ||
|         if (result.value().has_value())
 | ||
|             last_value = *result.value();
 | ||
| 
 | ||
|         // f. Set thisIterationEnv to ? CreatePerIterationEnvironment(perIterationBindings).
 | ||
|         this_iteration_env = create_per_iteration_environment();
 | ||
| 
 | ||
|         // g. If increment is not [empty], then
 | ||
|         if (m_update) {
 | ||
|             // i. Let incRef be the result of evaluating increment.
 | ||
|             // ii. Let incrResult be Completion(GetValue(incrRef)).
 | ||
|             auto inc_ref = m_update->execute(interpreter);
 | ||
| 
 | ||
|             // ii. If incrResult is an abrupt completion, then
 | ||
|             if (inc_ref.is_abrupt()) {
 | ||
|                 // 1. Return ? DisposeResources(thisIterationEnv, incrResult).
 | ||
|                 return TRY(dispose_resources(vm, this_iteration_env, inc_ref));
 | ||
|             }
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     VERIFY_NOT_REACHED();
 | ||
| }
 | ||
| 
 | ||
| struct ForInOfHeadState {
 | ||
|     explicit ForInOfHeadState(Variant<NonnullRefPtr<ASTNode const>, NonnullRefPtr<BindingPattern const>> lhs)
 | ||
|     {
 | ||
|         lhs.visit(
 | ||
|             [&](NonnullRefPtr<ASTNode const>& ast_node) {
 | ||
|                 expression_lhs = ast_node.ptr();
 | ||
|             },
 | ||
|             [&](NonnullRefPtr<BindingPattern const>& pattern) {
 | ||
|                 pattern_lhs = pattern.ptr();
 | ||
|                 destructuring = true;
 | ||
|                 lhs_kind = Assignment;
 | ||
|             });
 | ||
|     }
 | ||
| 
 | ||
|     ASTNode const* expression_lhs = nullptr;
 | ||
|     BindingPattern const* pattern_lhs = nullptr;
 | ||
|     enum LhsKind {
 | ||
|         Assignment,
 | ||
|         VarBinding,
 | ||
|         LexicalBinding
 | ||
|     };
 | ||
|     LhsKind lhs_kind = Assignment;
 | ||
|     bool destructuring = false;
 | ||
| 
 | ||
|     Value rhs_value;
 | ||
| 
 | ||
|     // 14.7.5.7 ForIn/OfBodyEvaluation ( lhs, stmt, iteratorRecord, iterationKind, lhsKind, labelSet [ , iteratorKind ] ), https://tc39.es/ecma262/#sec-runtime-semantics-forin-div-ofbodyevaluation-lhs-stmt-iterator-lhskind-labelset
 | ||
|     // Note: This is only steps 6.g through 6.j of the method because we currently implement for-in without an iterator so to prevent duplicated code we do this part here.
 | ||
|     ThrowCompletionOr<void> execute_head(Interpreter& interpreter, Value next_value) const
 | ||
|     {
 | ||
|         VERIFY(!next_value.is_empty());
 | ||
| 
 | ||
|         auto& vm = interpreter.vm();
 | ||
| 
 | ||
|         Optional<Reference> lhs_reference;
 | ||
|         GCPtr<Environment> iteration_environment;
 | ||
| 
 | ||
|         // g. If lhsKind is either assignment or varBinding, then
 | ||
|         if (lhs_kind == Assignment || lhs_kind == VarBinding) {
 | ||
|             if (!destructuring) {
 | ||
|                 VERIFY(expression_lhs);
 | ||
|                 if (is<VariableDeclaration>(*expression_lhs)) {
 | ||
|                     auto& declaration = static_cast<VariableDeclaration const&>(*expression_lhs);
 | ||
|                     VERIFY(declaration.declarations().first().target().has<NonnullRefPtr<Identifier const>>());
 | ||
|                     lhs_reference = TRY(declaration.declarations().first().target().get<NonnullRefPtr<Identifier const>>()->to_reference(interpreter));
 | ||
|                 } else if (is<UsingDeclaration>(*expression_lhs)) {
 | ||
|                     auto& declaration = static_cast<UsingDeclaration const&>(*expression_lhs);
 | ||
|                     VERIFY(declaration.declarations().first().target().has<NonnullRefPtr<Identifier const>>());
 | ||
|                     lhs_reference = TRY(declaration.declarations().first().target().get<NonnullRefPtr<Identifier const>>()->to_reference(interpreter));
 | ||
|                 } else {
 | ||
|                     VERIFY(is<Identifier>(*expression_lhs) || is<MemberExpression>(*expression_lhs) || is<CallExpression>(*expression_lhs));
 | ||
|                     auto& expression = static_cast<Expression const&>(*expression_lhs);
 | ||
|                     lhs_reference = TRY(expression.to_reference(interpreter));
 | ||
|                 }
 | ||
|             }
 | ||
|         }
 | ||
|         // h. Else,
 | ||
|         else {
 | ||
|             VERIFY(expression_lhs && (is<VariableDeclaration>(*expression_lhs) || is<UsingDeclaration>(*expression_lhs)));
 | ||
|             iteration_environment = new_declarative_environment(*interpreter.lexical_environment());
 | ||
| 
 | ||
|             auto& for_declaration = static_cast<Declaration const&>(*expression_lhs);
 | ||
|             DeprecatedFlyString first_name;
 | ||
| 
 | ||
|             // 14.7.5.4 Runtime Semantics: ForDeclarationBindingInstantiation, https://tc39.es/ecma262/#sec-runtime-semantics-fordeclarationbindinginstantiation
 | ||
|             // 1. For each element name of the BoundNames of ForBinding, do
 | ||
|             // NOTE: Due to the use of MUST with `create_immutable_binding` and `create_mutable_binding` below,
 | ||
|             //       an exception should not result from `for_each_bound_name`.
 | ||
|             MUST(for_declaration.for_each_bound_name([&](auto const& name) {
 | ||
|                 if (first_name.is_empty())
 | ||
|                     first_name = name;
 | ||
| 
 | ||
|                 // a. If IsConstantDeclaration of LetOrConst is true, then
 | ||
|                 if (for_declaration.is_constant_declaration()) {
 | ||
|                     // i. Perform ! environment.CreateImmutableBinding(name, true).
 | ||
|                     MUST(iteration_environment->create_immutable_binding(vm, name, true));
 | ||
|                 }
 | ||
|                 // b. Else,
 | ||
|                 else {
 | ||
|                     // i. Perform ! environment.CreateMutableBinding(name, false).
 | ||
|                     MUST(iteration_environment->create_mutable_binding(vm, name, false));
 | ||
|                 }
 | ||
|             }));
 | ||
|             interpreter.vm().running_execution_context().lexical_environment = iteration_environment;
 | ||
| 
 | ||
|             if (!destructuring) {
 | ||
|                 VERIFY(!first_name.is_empty());
 | ||
|                 lhs_reference = MUST(interpreter.vm().resolve_binding(first_name));
 | ||
|             }
 | ||
|         }
 | ||
| 
 | ||
|         // i. If destructuring is false, then
 | ||
|         if (!destructuring) {
 | ||
|             VERIFY(lhs_reference.has_value());
 | ||
|             if (lhs_kind == LexicalBinding) {
 | ||
|                 // 2. If IsUsingDeclaration of lhs is true, then
 | ||
|                 if (is<UsingDeclaration>(expression_lhs)) {
 | ||
|                     // a. Let status be Completion(InitializeReferencedBinding(lhsRef, nextValue, sync-dispose)).
 | ||
|                     return lhs_reference->initialize_referenced_binding(vm, next_value, Environment::InitializeBindingHint::SyncDispose);
 | ||
|                 }
 | ||
|                 // 3. Else,
 | ||
|                 else {
 | ||
|                     // a. Let status be Completion(InitializeReferencedBinding(lhsRef, nextValue, normal)).
 | ||
|                     return lhs_reference->initialize_referenced_binding(vm, next_value, Environment::InitializeBindingHint::Normal);
 | ||
|                 }
 | ||
|             } else {
 | ||
|                 return lhs_reference->put_value(vm, next_value);
 | ||
|             }
 | ||
|         }
 | ||
| 
 | ||
|         // j. Else,
 | ||
|         if (lhs_kind == Assignment) {
 | ||
|             VERIFY(pattern_lhs);
 | ||
|             return interpreter.vm().destructuring_assignment_evaluation(*pattern_lhs, next_value);
 | ||
|         }
 | ||
|         VERIFY(expression_lhs && is<VariableDeclaration>(*expression_lhs));
 | ||
|         auto& for_declaration = static_cast<VariableDeclaration const&>(*expression_lhs);
 | ||
|         auto& binding_pattern = for_declaration.declarations().first().target().get<NonnullRefPtr<BindingPattern const>>();
 | ||
|         VERIFY(lhs_kind == VarBinding || iteration_environment);
 | ||
| 
 | ||
|         // At this point iteration_environment is undefined if lhs_kind == VarBinding which means this does both
 | ||
|         // branch j.ii and j.iii because ForBindingInitialization is just a forwarding call to BindingInitialization.
 | ||
|         return interpreter.vm().binding_initialization(binding_pattern, next_value, iteration_environment);
 | ||
|     }
 | ||
| };
 | ||
| 
 | ||
| // 14.7.5.5 Runtime Semantics: ForInOfLoopEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-forinofloopevaluation
 | ||
| // 14.7.5.6 ForIn/OfHeadEvaluation ( uninitializedBoundNames, expr, iterationKind ), https://tc39.es/ecma262/#sec-runtime-semantics-forinofheadevaluation
 | ||
| // This method combines ForInOfLoopEvaluation and ForIn/OfHeadEvaluation for similar reason as ForIn/OfBodyEvaluation, to prevent code duplication.
 | ||
| // For the same reason we also skip step 6 and 7 of ForIn/OfHeadEvaluation as this is done by the appropriate for loop type.
 | ||
| static ThrowCompletionOr<ForInOfHeadState> for_in_of_head_execute(Interpreter& interpreter, Variant<NonnullRefPtr<ASTNode const>, NonnullRefPtr<BindingPattern const>> lhs, Expression const& rhs)
 | ||
| {
 | ||
|     auto& vm = interpreter.vm();
 | ||
| 
 | ||
|     ForInOfHeadState state(lhs);
 | ||
|     if (auto* ast_ptr = lhs.get_pointer<NonnullRefPtr<ASTNode const>>(); ast_ptr && is<Declaration>(ast_ptr->ptr())) {
 | ||
|         // Runtime Semantics: ForInOfLoopEvaluation, for any of:
 | ||
|         //  ForInOfStatement : for ( var ForBinding in Expression ) Statement
 | ||
|         //  ForInOfStatement : for ( ForDeclaration in Expression ) Statement
 | ||
|         //  ForInOfStatement : for ( var ForBinding of AssignmentExpression ) Statement
 | ||
|         //  ForInOfStatement : for ( ForDeclaration of AssignmentExpression ) Statement
 | ||
| 
 | ||
|         // 14.7.5.6 ForIn/OfHeadEvaluation ( uninitializedBoundNames, expr, iterationKind ), https://tc39.es/ecma262/#sec-runtime-semantics-forinofheadevaluation
 | ||
|         Environment* new_environment = nullptr;
 | ||
| 
 | ||
|         if (is<VariableDeclaration>(ast_ptr->ptr())) {
 | ||
|             auto& variable_declaration = static_cast<VariableDeclaration const&>(*(*ast_ptr));
 | ||
|             VERIFY(variable_declaration.declarations().size() == 1);
 | ||
|             state.destructuring = variable_declaration.declarations().first().target().has<NonnullRefPtr<BindingPattern const>>();
 | ||
|             if (variable_declaration.declaration_kind() == DeclarationKind::Var) {
 | ||
|                 state.lhs_kind = ForInOfHeadState::VarBinding;
 | ||
|                 auto& variable = variable_declaration.declarations().first();
 | ||
|                 // B.3.5 Initializers in ForIn Statement Heads, https://tc39.es/ecma262/#sec-initializers-in-forin-statement-heads
 | ||
|                 if (variable.init()) {
 | ||
|                     VERIFY(variable.target().has<NonnullRefPtr<Identifier const>>());
 | ||
|                     auto& binding_id = variable.target().get<NonnullRefPtr<Identifier const>>()->string();
 | ||
|                     auto reference = TRY(interpreter.vm().resolve_binding(binding_id));
 | ||
|                     auto result = TRY(interpreter.vm().named_evaluation_if_anonymous_function(*variable.init(), binding_id));
 | ||
|                     TRY(reference.put_value(vm, result));
 | ||
|                 }
 | ||
|             } else {
 | ||
|                 state.lhs_kind = ForInOfHeadState::LexicalBinding;
 | ||
|                 new_environment = new_declarative_environment(*interpreter.lexical_environment());
 | ||
|                 // NOTE: Due to the use of MUST with `create_mutable_binding` below, an exception should not result from `for_each_bound_name`.
 | ||
|                 MUST(variable_declaration.for_each_bound_name([&](auto const& name) {
 | ||
|                     MUST(new_environment->create_mutable_binding(vm, name, false));
 | ||
|                 }));
 | ||
|             }
 | ||
|         } else {
 | ||
|             VERIFY(is<UsingDeclaration>(ast_ptr->ptr()));
 | ||
|             auto& declaration = static_cast<UsingDeclaration const&>(*(*ast_ptr));
 | ||
|             state.lhs_kind = ForInOfHeadState::LexicalBinding;
 | ||
|             new_environment = new_declarative_environment(*interpreter.lexical_environment());
 | ||
|             // NOTE: Due to the use of MUST with `create_mutable_binding` below, an exception should not result from `for_each_bound_name`.
 | ||
|             MUST(declaration.for_each_bound_name([&](auto const& name) {
 | ||
|                 MUST(new_environment->create_mutable_binding(vm, name, false));
 | ||
|             }));
 | ||
|         }
 | ||
| 
 | ||
|         if (new_environment) {
 | ||
|             // 2.d Set the running execution context's LexicalEnvironment to newEnv.
 | ||
|             TemporaryChange<Environment*> scope_change(interpreter.vm().running_execution_context().lexical_environment, new_environment);
 | ||
| 
 | ||
|             // 3. Let exprRef be the result of evaluating expr.
 | ||
|             // 5. Let exprValue be ? GetValue(exprRef).
 | ||
|             state.rhs_value = TRY(rhs.execute(interpreter)).release_value();
 | ||
| 
 | ||
|             // Note that since a reference stores its environment it doesn't matter we only reset
 | ||
|             // this after step 5. (Also we have no way of separating these steps at this point)
 | ||
|             // 4. Set the running execution context's LexicalEnvironment to oldEnv.
 | ||
|         } else {
 | ||
|             // 3. Let exprRef be the result of evaluating expr.
 | ||
|             // 5. Let exprValue be ? GetValue(exprRef).
 | ||
|             state.rhs_value = TRY(rhs.execute(interpreter)).release_value();
 | ||
|         }
 | ||
| 
 | ||
|         return state;
 | ||
|     }
 | ||
| 
 | ||
|     // Runtime Semantics: ForInOfLoopEvaluation, for any of:
 | ||
|     //  ForInOfStatement : for ( LeftHandSideExpression in Expression ) Statement
 | ||
|     //  ForInOfStatement : for ( LeftHandSideExpression of AssignmentExpression ) Statement
 | ||
| 
 | ||
|     // 14.7.5.6 ForIn/OfHeadEvaluation ( uninitializedBoundNames, expr, iterationKind ), https://tc39.es/ecma262/#sec-runtime-semantics-forinofheadevaluation
 | ||
| 
 | ||
|     // We can skip step 1, 2 and 4 here (on top of already skipping step 6 and 7).
 | ||
|     // 3. Let exprRef be the result of evaluating expr.
 | ||
|     // 5. Let exprValue be ? GetValue(exprRef).
 | ||
|     state.rhs_value = TRY(rhs.execute(interpreter)).release_value();
 | ||
|     return state;
 | ||
| }
 | ||
| 
 | ||
| // 14.1.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-statement-semantics-runtime-semantics-evaluation
 | ||
| // BreakableStatement : IterationStatement
 | ||
| Completion ForInStatement::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     // 1. Let newLabelSet be a new empty List.
 | ||
|     // 2. Return ? LabelledEvaluation of this BreakableStatement with argument newLabelSet.
 | ||
|     return labelled_evaluation(interpreter, *this, {});
 | ||
| }
 | ||
| 
 | ||
| // 14.7.5.5 Runtime Semantics: ForInOfLoopEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-forinofloopevaluation
 | ||
| Completion ForInStatement::loop_evaluation(Interpreter& interpreter, Vector<DeprecatedFlyString> const& label_set) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
|     auto& vm = interpreter.vm();
 | ||
| 
 | ||
|     auto for_in_head_state = TRY(for_in_of_head_execute(interpreter, m_lhs, *m_rhs));
 | ||
| 
 | ||
|     auto rhs_result = for_in_head_state.rhs_value;
 | ||
| 
 | ||
|     // 14.7.5.6 ForIn/OfHeadEvaluation ( uninitializedBoundNames, expr, iterationKind ), https://tc39.es/ecma262/#sec-runtime-semantics-forinofheadevaluation
 | ||
| 
 | ||
|     // a. If exprValue is undefined or null, then
 | ||
|     if (rhs_result.is_nullish()) {
 | ||
|         // i. Return Completion Record { [[Type]]: break, [[Value]]: empty, [[Target]]: empty }.
 | ||
|         return { Completion::Type::Break, {}, {} };
 | ||
|     }
 | ||
| 
 | ||
|     // b. Let obj be ! ToObject(exprValue).
 | ||
|     auto* object = MUST(rhs_result.to_object(vm));
 | ||
| 
 | ||
|     // 14.7.5.7 ForIn/OfBodyEvaluation ( lhs, stmt, iteratorRecord, iterationKind, lhsKind, labelSet [ , iteratorKind ] ), https://tc39.es/ecma262/#sec-runtime-semantics-forin-div-ofbodyevaluation-lhs-stmt-iterator-lhskind-labelset
 | ||
| 
 | ||
|     // 2. Let oldEnv be the running execution context's LexicalEnvironment.
 | ||
|     Environment* old_environment = interpreter.lexical_environment();
 | ||
|     auto restore_scope = ScopeGuard([&] {
 | ||
|         vm.running_execution_context().lexical_environment = old_environment;
 | ||
|     });
 | ||
| 
 | ||
|     // 3. Let V be undefined.
 | ||
|     auto last_value = js_undefined();
 | ||
| 
 | ||
|     auto result = object->enumerate_object_properties([&](auto value) -> Optional<Completion> {
 | ||
|         TRY(for_in_head_state.execute_head(interpreter, value));
 | ||
| 
 | ||
|         // l. Let result be the result of evaluating stmt.
 | ||
|         auto result = m_body->execute(interpreter);
 | ||
| 
 | ||
|         // NOTE: Because of optimizations we only create a new lexical environment if there are bindings
 | ||
|         //       so we should only dispose if that is the case.
 | ||
|         if (vm.running_execution_context().lexical_environment != old_environment) {
 | ||
|             VERIFY(is<DeclarativeEnvironment>(vm.running_execution_context().lexical_environment));
 | ||
|             // m. Set result to DisposeResources(iterationEnv, result).
 | ||
|             result = dispose_resources(vm, static_cast<DeclarativeEnvironment*>(vm.running_execution_context().lexical_environment), result);
 | ||
|         }
 | ||
| 
 | ||
|         // n. Set the running execution context's LexicalEnvironment to oldEnv.
 | ||
|         vm.running_execution_context().lexical_environment = old_environment;
 | ||
| 
 | ||
|         // o. If LoopContinues(result, labelSet) is false, then
 | ||
|         if (!loop_continues(result, label_set)) {
 | ||
|             // 1. Return UpdateEmpty(result, V).
 | ||
|             return result.update_empty(last_value);
 | ||
|         }
 | ||
| 
 | ||
|         // p. If result.[[Value]] is not empty, set V to result.[[Value]].
 | ||
|         if (result.value().has_value())
 | ||
|             last_value = *result.value();
 | ||
| 
 | ||
|         return {};
 | ||
|     });
 | ||
| 
 | ||
|     return result.value_or(last_value);
 | ||
| }
 | ||
| 
 | ||
| // 14.1.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-statement-semantics-runtime-semantics-evaluation
 | ||
| // BreakableStatement : IterationStatement
 | ||
| Completion ForOfStatement::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     // 1. Let newLabelSet be a new empty List.
 | ||
|     // 2. Return ? LabelledEvaluation of this BreakableStatement with argument newLabelSet.
 | ||
|     return labelled_evaluation(interpreter, *this, {});
 | ||
| }
 | ||
| 
 | ||
| // 14.7.5.5 Runtime Semantics: ForInOfLoopEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-forinofloopevaluation
 | ||
| Completion ForOfStatement::loop_evaluation(Interpreter& interpreter, Vector<DeprecatedFlyString> const& label_set) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
|     auto& vm = interpreter.vm();
 | ||
| 
 | ||
|     auto for_of_head_state = TRY(for_in_of_head_execute(interpreter, m_lhs, m_rhs));
 | ||
| 
 | ||
|     auto rhs_result = for_of_head_state.rhs_value;
 | ||
| 
 | ||
|     // 14.7.5.7 ForIn/OfBodyEvaluation ( lhs, stmt, iteratorRecord, iterationKind, lhsKind, labelSet [ , iteratorKind ] ), https://tc39.es/ecma262/#sec-runtime-semantics-forin-div-ofbodyevaluation-lhs-stmt-iterator-lhskind-labelset
 | ||
|     // We use get_iterator_values which behaves like ForIn/OfBodyEvaluation with iteratorKind iterate.
 | ||
| 
 | ||
|     // 2. Let oldEnv be the running execution context's LexicalEnvironment.
 | ||
|     Environment* old_environment = interpreter.lexical_environment();
 | ||
|     auto restore_scope = ScopeGuard([&] {
 | ||
|         vm.running_execution_context().lexical_environment = old_environment;
 | ||
|     });
 | ||
| 
 | ||
|     // 3. Let V be undefined.
 | ||
|     auto last_value = js_undefined();
 | ||
| 
 | ||
|     Optional<Completion> status;
 | ||
| 
 | ||
|     (void)TRY(get_iterator_values(vm, rhs_result, [&](Value value) -> Optional<Completion> {
 | ||
|         TRY(for_of_head_state.execute_head(interpreter, value));
 | ||
| 
 | ||
|         // l. Let result be the result of evaluating stmt.
 | ||
|         auto result = m_body->execute(interpreter);
 | ||
| 
 | ||
|         if (vm.running_execution_context().lexical_environment != old_environment) {
 | ||
|             VERIFY(is<DeclarativeEnvironment>(vm.running_execution_context().lexical_environment));
 | ||
|             result = dispose_resources(vm, static_cast<DeclarativeEnvironment*>(vm.running_execution_context().lexical_environment), result);
 | ||
|         }
 | ||
| 
 | ||
|         // m. Set the running execution context's LexicalEnvironment to oldEnv.
 | ||
|         vm.running_execution_context().lexical_environment = old_environment;
 | ||
| 
 | ||
|         // n. If LoopContinues(result, labelSet) is false, then
 | ||
|         if (!loop_continues(result, label_set)) {
 | ||
|             // 2. Set status to UpdateEmpty(result, V).
 | ||
|             status = result.update_empty(last_value);
 | ||
| 
 | ||
|             // 4. Return ? IteratorClose(iteratorRecord, status).
 | ||
|             // NOTE: This is done by returning a completion from the callback.
 | ||
|             return status;
 | ||
|         }
 | ||
| 
 | ||
|         // o. If result.[[Value]] is not empty, set V to result.[[Value]].
 | ||
|         if (result.value().has_value())
 | ||
|             last_value = *result.value();
 | ||
| 
 | ||
|         return {};
 | ||
|     }));
 | ||
| 
 | ||
|     // Return `status` set during step n.2. in the callback, or...
 | ||
|     // e. If done is true, return V.
 | ||
|     return status.value_or(last_value);
 | ||
| }
 | ||
| 
 | ||
| // 14.1.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-statement-semantics-runtime-semantics-evaluation
 | ||
| // BreakableStatement : IterationStatement
 | ||
| Completion ForAwaitOfStatement::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     // 1. Let newLabelSet be a new empty List.
 | ||
|     // 2. Return ? LabelledEvaluation of this BreakableStatement with argument newLabelSet.
 | ||
|     return labelled_evaluation(interpreter, *this, {});
 | ||
| }
 | ||
| 
 | ||
| // 14.7.5.5 Runtime Semantics: ForInOfLoopEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-forinofloopevaluation
 | ||
| Completion ForAwaitOfStatement::loop_evaluation(Interpreter& interpreter, Vector<DeprecatedFlyString> const& label_set) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
|     auto& vm = interpreter.vm();
 | ||
| 
 | ||
|     // 14.7.5.6 ForIn/OfHeadEvaluation ( uninitializedBoundNames, expr, iterationKind ), https://tc39.es/ecma262/#sec-runtime-semantics-forinofheadevaluation
 | ||
|     // Note: Performs only steps 1 through 5.
 | ||
|     auto for_of_head_state = TRY(for_in_of_head_execute(interpreter, m_lhs, m_rhs));
 | ||
| 
 | ||
|     auto rhs_result = for_of_head_state.rhs_value;
 | ||
| 
 | ||
|     // NOTE: Perform step 7 from ForIn/OfHeadEvaluation. And since this is always async we only have to do step 7.d.
 | ||
|     // d. Return ? GetIterator(exprValue, iteratorHint).
 | ||
|     auto iterator = TRY(get_iterator(vm, rhs_result, IteratorHint::Async));
 | ||
| 
 | ||
|     // 14.7.5.7 ForIn/OfBodyEvaluation ( lhs, stmt, iteratorRecord, iterationKind, lhsKind, labelSet [ , iteratorKind ] ), https://tc39.es/ecma262/#sec-runtime-semantics-forin-div-ofbodyevaluation-lhs-stmt-iterator-lhskind-labelset
 | ||
|     // NOTE: Here iteratorKind is always async.
 | ||
|     // 2. Let oldEnv be the running execution context's LexicalEnvironment.
 | ||
|     Environment* old_environment = interpreter.lexical_environment();
 | ||
|     auto restore_scope = ScopeGuard([&] {
 | ||
|         vm.running_execution_context().lexical_environment = old_environment;
 | ||
|     });
 | ||
|     // 3. Let V be undefined.
 | ||
|     auto last_value = js_undefined();
 | ||
| 
 | ||
|     // NOTE: Step 4 and 5 are just extracting properties from the head which is done already in for_in_of_head_execute.
 | ||
|     //       And these are only used in step 6.g through 6.k which is done with for_of_head_state.execute_head.
 | ||
| 
 | ||
|     // 6. Repeat,
 | ||
|     while (true) {
 | ||
|         // a. Let nextResult be ? Call(iteratorRecord.[[NextMethod]], iteratorRecord.[[Iterator]]).
 | ||
|         auto next_result = TRY(call(vm, iterator.next_method, iterator.iterator));
 | ||
| 
 | ||
|         // b. If iteratorKind is async, set nextResult to ? Await(nextResult).
 | ||
|         next_result = TRY(await(vm, next_result));
 | ||
| 
 | ||
|         // c. If Type(nextResult) is not Object, throw a TypeError exception.
 | ||
|         if (!next_result.is_object())
 | ||
|             return vm.throw_completion<TypeError>(ErrorType::IterableNextBadReturn);
 | ||
| 
 | ||
|         // d. Let done be ? IteratorComplete(nextResult).
 | ||
|         auto done = TRY(iterator_complete(vm, next_result.as_object()));
 | ||
| 
 | ||
|         // e. If done is true, return V.
 | ||
|         if (done)
 | ||
|             return last_value;
 | ||
| 
 | ||
|         // f. Let nextValue be ? IteratorValue(nextResult).
 | ||
|         auto next_value = TRY(iterator_value(vm, next_result.as_object()));
 | ||
| 
 | ||
|         // NOTE: This performs steps g. through to k.
 | ||
|         TRY(for_of_head_state.execute_head(interpreter, next_value));
 | ||
| 
 | ||
|         // l. Let result be the result of evaluating stmt.
 | ||
|         auto result = m_body->execute(interpreter);
 | ||
| 
 | ||
|         // m. Set the running execution context's LexicalEnvironment to oldEnv.
 | ||
|         interpreter.vm().running_execution_context().lexical_environment = old_environment;
 | ||
| 
 | ||
|         // n. If LoopContinues(result, labelSet) is false, then
 | ||
|         if (!loop_continues(result, label_set)) {
 | ||
|             // 2. Set status to UpdateEmpty(result, V).
 | ||
|             auto status = result.update_empty(last_value);
 | ||
| 
 | ||
|             // 3. If iteratorKind is async, return ? AsyncIteratorClose(iteratorRecord, status).
 | ||
|             return async_iterator_close(vm, iterator, move(status));
 | ||
|         }
 | ||
| 
 | ||
|         // o. If result.[[Value]] is not empty, set V to result.[[Value]].
 | ||
|         if (result.value().has_value())
 | ||
|             last_value = *result.value();
 | ||
|     }
 | ||
| 
 | ||
|     VERIFY_NOT_REACHED();
 | ||
| }
 | ||
| 
 | ||
| // 13.6.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-exp-operator-runtime-semantics-evaluation
 | ||
| // 13.7.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-multiplicative-operators-runtime-semantics-evaluation
 | ||
| // 13.8.1.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-addition-operator-plus-runtime-semantics-evaluation
 | ||
| // 13.8.2.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-subtraction-operator-minus-runtime-semantics-evaluation
 | ||
| // 13.9.1.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-left-shift-operator-runtime-semantics-evaluation
 | ||
| // 13.9.2.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-signed-right-shift-operator-runtime-semantics-evaluation
 | ||
| // 13.9.3.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-unsigned-right-shift-operator-runtime-semantics-evaluation
 | ||
| // 13.10.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-relational-operators-runtime-semantics-evaluation
 | ||
| // 13.11.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-equality-operators-runtime-semantics-evaluation
 | ||
| Completion BinaryExpression::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
|     auto& vm = interpreter.vm();
 | ||
| 
 | ||
|     // Special case in which we cannot execute the lhs.  RelationalExpression : PrivateIdentifier in ShiftExpression
 | ||
|     //  RelationalExpression : PrivateIdentifier in ShiftExpression, https://tc39.es/ecma262/#sec-relational-operators-runtime-semantics-evaluation
 | ||
|     if (m_op == BinaryOp::In && is<PrivateIdentifier>(*m_lhs)) {
 | ||
|         auto& private_identifier = static_cast<PrivateIdentifier const&>(*m_lhs).string();
 | ||
| 
 | ||
|         auto rhs_result = TRY(m_rhs->execute(interpreter)).release_value();
 | ||
|         if (!rhs_result.is_object())
 | ||
|             return interpreter.vm().throw_completion<TypeError>(ErrorType::InOperatorWithObject);
 | ||
|         auto* private_environment = interpreter.vm().running_execution_context().private_environment;
 | ||
|         VERIFY(private_environment);
 | ||
|         auto private_name = private_environment->resolve_private_identifier(private_identifier);
 | ||
|         return Value(rhs_result.as_object().private_element_find(private_name) != nullptr);
 | ||
|     }
 | ||
| 
 | ||
|     auto lhs_result = TRY(m_lhs->execute(interpreter)).release_value();
 | ||
|     auto rhs_result = TRY(m_rhs->execute(interpreter)).release_value();
 | ||
| 
 | ||
|     switch (m_op) {
 | ||
|     case BinaryOp::Addition:
 | ||
|         return TRY(add(vm, lhs_result, rhs_result));
 | ||
|     case BinaryOp::Subtraction:
 | ||
|         return TRY(sub(vm, lhs_result, rhs_result));
 | ||
|     case BinaryOp::Multiplication:
 | ||
|         return TRY(mul(vm, lhs_result, rhs_result));
 | ||
|     case BinaryOp::Division:
 | ||
|         return TRY(div(vm, lhs_result, rhs_result));
 | ||
|     case BinaryOp::Modulo:
 | ||
|         return TRY(mod(vm, lhs_result, rhs_result));
 | ||
|     case BinaryOp::Exponentiation:
 | ||
|         return TRY(exp(vm, lhs_result, rhs_result));
 | ||
|     case BinaryOp::StrictlyEquals:
 | ||
|         return Value(is_strictly_equal(lhs_result, rhs_result));
 | ||
|     case BinaryOp::StrictlyInequals:
 | ||
|         return Value(!is_strictly_equal(lhs_result, rhs_result));
 | ||
|     case BinaryOp::LooselyEquals:
 | ||
|         return Value(TRY(is_loosely_equal(vm, lhs_result, rhs_result)));
 | ||
|     case BinaryOp::LooselyInequals:
 | ||
|         return Value(!TRY(is_loosely_equal(vm, lhs_result, rhs_result)));
 | ||
|     case BinaryOp::GreaterThan:
 | ||
|         return TRY(greater_than(vm, lhs_result, rhs_result));
 | ||
|     case BinaryOp::GreaterThanEquals:
 | ||
|         return TRY(greater_than_equals(vm, lhs_result, rhs_result));
 | ||
|     case BinaryOp::LessThan:
 | ||
|         return TRY(less_than(vm, lhs_result, rhs_result));
 | ||
|     case BinaryOp::LessThanEquals:
 | ||
|         return TRY(less_than_equals(vm, lhs_result, rhs_result));
 | ||
|     case BinaryOp::BitwiseAnd:
 | ||
|         return TRY(bitwise_and(vm, lhs_result, rhs_result));
 | ||
|     case BinaryOp::BitwiseOr:
 | ||
|         return TRY(bitwise_or(vm, lhs_result, rhs_result));
 | ||
|     case BinaryOp::BitwiseXor:
 | ||
|         return TRY(bitwise_xor(vm, lhs_result, rhs_result));
 | ||
|     case BinaryOp::LeftShift:
 | ||
|         return TRY(left_shift(vm, lhs_result, rhs_result));
 | ||
|     case BinaryOp::RightShift:
 | ||
|         return TRY(right_shift(vm, lhs_result, rhs_result));
 | ||
|     case BinaryOp::UnsignedRightShift:
 | ||
|         return TRY(unsigned_right_shift(vm, lhs_result, rhs_result));
 | ||
|     case BinaryOp::In:
 | ||
|         return TRY(in(vm, lhs_result, rhs_result));
 | ||
|     case BinaryOp::InstanceOf:
 | ||
|         return TRY(instance_of(vm, lhs_result, rhs_result));
 | ||
|     }
 | ||
| 
 | ||
|     VERIFY_NOT_REACHED();
 | ||
| }
 | ||
| 
 | ||
| // 13.13.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-binary-logical-operators-runtime-semantics-evaluation
 | ||
| Completion LogicalExpression::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // 1. Let lref be the result of evaluating <Expression>.
 | ||
|     // 2. Let lval be ? GetValue(lref).
 | ||
|     auto lhs_result = TRY(m_lhs->execute(interpreter)).release_value();
 | ||
| 
 | ||
|     switch (m_op) {
 | ||
|     // LogicalANDExpression : LogicalANDExpression && BitwiseORExpression
 | ||
|     case LogicalOp::And:
 | ||
|         // 3. Let lbool be ToBoolean(lval).
 | ||
|         // 4. If lbool is false, return lval.
 | ||
|         if (!lhs_result.to_boolean())
 | ||
|             return lhs_result;
 | ||
| 
 | ||
|         // 5. Let rref be the result of evaluating BitwiseORExpression.
 | ||
|         // 6. Return ? GetValue(rref).
 | ||
|         return m_rhs->execute(interpreter);
 | ||
| 
 | ||
|     // LogicalORExpression : LogicalORExpression || LogicalANDExpression
 | ||
|     case LogicalOp::Or:
 | ||
|         // 3. Let lbool be ToBoolean(lval).
 | ||
|         // 4. If lbool is true, return lval.
 | ||
|         if (lhs_result.to_boolean())
 | ||
|             return lhs_result;
 | ||
| 
 | ||
|         // 5. Let rref be the result of evaluating LogicalANDExpression.
 | ||
|         // 6. Return ? GetValue(rref).
 | ||
|         return m_rhs->execute(interpreter);
 | ||
| 
 | ||
|     // CoalesceExpression : CoalesceExpressionHead ?? BitwiseORExpression
 | ||
|     case LogicalOp::NullishCoalescing:
 | ||
|         // 3. If lval is undefined or null, then
 | ||
|         if (lhs_result.is_nullish()) {
 | ||
|             // a. Let rref be the result of evaluating BitwiseORExpression.
 | ||
|             // b. Return ? GetValue(rref).
 | ||
|             return m_rhs->execute(interpreter);
 | ||
|         }
 | ||
| 
 | ||
|         // 4. Otherwise, return lval.
 | ||
|         return lhs_result;
 | ||
|     }
 | ||
| 
 | ||
|     VERIFY_NOT_REACHED();
 | ||
| }
 | ||
| 
 | ||
| ThrowCompletionOr<Reference> Expression::to_reference(Interpreter&) const
 | ||
| {
 | ||
|     return Reference {};
 | ||
| }
 | ||
| 
 | ||
| ThrowCompletionOr<Reference> Identifier::to_reference(Interpreter& interpreter) const
 | ||
| {
 | ||
|     if (m_cached_environment_coordinate.is_valid()) {
 | ||
|         Environment* environment = nullptr;
 | ||
|         if (m_cached_environment_coordinate.index == EnvironmentCoordinate::global_marker) {
 | ||
|             environment = &interpreter.vm().current_realm()->global_environment();
 | ||
|         } else {
 | ||
|             environment = interpreter.vm().running_execution_context().lexical_environment;
 | ||
|             for (size_t i = 0; i < m_cached_environment_coordinate.hops; ++i)
 | ||
|                 environment = environment->outer_environment();
 | ||
|             VERIFY(environment);
 | ||
|             VERIFY(environment->is_declarative_environment());
 | ||
|         }
 | ||
|         if (!environment->is_permanently_screwed_by_eval()) {
 | ||
|             return Reference { *environment, string(), interpreter.vm().in_strict_mode(), m_cached_environment_coordinate };
 | ||
|         }
 | ||
|         m_cached_environment_coordinate = {};
 | ||
|     }
 | ||
| 
 | ||
|     auto reference = TRY(interpreter.vm().resolve_binding(string()));
 | ||
|     if (reference.environment_coordinate().has_value())
 | ||
|         m_cached_environment_coordinate = reference.environment_coordinate().value();
 | ||
|     return reference;
 | ||
| }
 | ||
| 
 | ||
| ThrowCompletionOr<Reference> MemberExpression::to_reference(Interpreter& interpreter) const
 | ||
| {
 | ||
|     auto& vm = interpreter.vm();
 | ||
| 
 | ||
|     // 13.3.7.1 Runtime Semantics: Evaluation
 | ||
|     // SuperProperty : super [ Expression ]
 | ||
|     // SuperProperty : super . IdentifierName
 | ||
|     // https://tc39.es/ecma262/#sec-super-keyword-runtime-semantics-evaluation
 | ||
|     if (is<SuperExpression>(object())) {
 | ||
|         // 1. Let env be GetThisEnvironment().
 | ||
|         auto environment = get_this_environment(vm);
 | ||
| 
 | ||
|         // 2. Let actualThis be ? env.GetThisBinding().
 | ||
|         auto actual_this = TRY(environment->get_this_binding(vm));
 | ||
| 
 | ||
|         PropertyKey property_key;
 | ||
| 
 | ||
|         if (is_computed()) {
 | ||
|             // SuperProperty : super [ Expression ]
 | ||
| 
 | ||
|             // 3. Let propertyNameReference be the result of evaluating Expression.
 | ||
|             // 4. Let propertyNameValue be ? GetValue(propertyNameReference).
 | ||
|             auto property_name_value = TRY(m_property->execute(interpreter)).release_value();
 | ||
| 
 | ||
|             // 5. Let propertyKey be ? ToPropertyKey(propertyNameValue).
 | ||
|             property_key = TRY(property_name_value.to_property_key(vm));
 | ||
|         } else {
 | ||
|             // SuperProperty : super . IdentifierName
 | ||
| 
 | ||
|             // 3. Let propertyKey be StringValue of IdentifierName.
 | ||
|             VERIFY(is<Identifier>(property()));
 | ||
|             property_key = static_cast<Identifier const&>(property()).string();
 | ||
|         }
 | ||
| 
 | ||
|         // 6. If the source text matched by this SuperProperty is strict mode code, let strict be true; else let strict be false.
 | ||
|         bool strict = interpreter.vm().in_strict_mode();
 | ||
| 
 | ||
|         // 7. Return ? MakeSuperPropertyReference(actualThis, propertyKey, strict).
 | ||
|         return TRY(make_super_property_reference(vm, actual_this, property_key, strict));
 | ||
|     }
 | ||
| 
 | ||
|     auto base_reference = TRY(m_object->to_reference(interpreter));
 | ||
| 
 | ||
|     Value base_value;
 | ||
| 
 | ||
|     if (base_reference.is_valid_reference())
 | ||
|         base_value = TRY(base_reference.get_value(vm));
 | ||
|     else
 | ||
|         base_value = TRY(m_object->execute(interpreter)).release_value();
 | ||
| 
 | ||
|     VERIFY(!base_value.is_empty());
 | ||
| 
 | ||
|     // From here on equivalent to
 | ||
|     // 13.3.4 EvaluatePropertyAccessWithIdentifierKey ( baseValue, identifierName, strict ), https://tc39.es/ecma262/#sec-evaluate-property-access-with-identifier-key
 | ||
|     PropertyKey property_key;
 | ||
|     if (is_computed()) {
 | ||
|         // Weird order which I can't quite find from the specs.
 | ||
|         auto value = TRY(m_property->execute(interpreter)).release_value();
 | ||
|         VERIFY(!value.is_empty());
 | ||
| 
 | ||
|         TRY(require_object_coercible(vm, base_value));
 | ||
| 
 | ||
|         property_key = TRY(value.to_property_key(vm));
 | ||
|     } else if (is<PrivateIdentifier>(*m_property)) {
 | ||
|         auto& private_identifier = static_cast<PrivateIdentifier const&>(*m_property);
 | ||
|         return make_private_reference(interpreter.vm(), base_value, private_identifier.string());
 | ||
|     } else {
 | ||
|         property_key = verify_cast<Identifier>(*m_property).string();
 | ||
|         TRY(require_object_coercible(vm, base_value));
 | ||
|     }
 | ||
|     if (!property_key.is_valid())
 | ||
|         return Reference {};
 | ||
| 
 | ||
|     auto strict = interpreter.vm().in_strict_mode();
 | ||
|     return Reference { base_value, move(property_key), {}, strict };
 | ||
| }
 | ||
| 
 | ||
| // 13.5.1.2 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-delete-operator-runtime-semantics-evaluation
 | ||
| // 13.5.2.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-void-operator-runtime-semantics-evaluation
 | ||
| // 13.5.3.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-typeof-operator-runtime-semantics-evaluation
 | ||
| // 13.5.4.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-unary-plus-operator-runtime-semantics-evaluation
 | ||
| // 13.5.5.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-unary-minus-operator-runtime-semantics-evaluation
 | ||
| // 13.5.6.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-bitwise-not-operator-runtime-semantics-evaluation
 | ||
| // 13.5.7.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-logical-not-operator-runtime-semantics-evaluation
 | ||
| Completion UnaryExpression::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
|     auto& vm = interpreter.vm();
 | ||
| 
 | ||
|     if (m_op == UnaryOp::Delete) {
 | ||
|         auto reference = TRY(m_lhs->to_reference(interpreter));
 | ||
|         return Value(TRY(reference.delete_(vm)));
 | ||
|     }
 | ||
| 
 | ||
|     Value lhs_result;
 | ||
|     if (m_op == UnaryOp::Typeof && is<Identifier>(*m_lhs)) {
 | ||
|         auto reference = TRY(m_lhs->to_reference(interpreter));
 | ||
| 
 | ||
|         if (reference.is_unresolvable())
 | ||
|             lhs_result = js_undefined();
 | ||
|         else
 | ||
|             lhs_result = TRY(reference.get_value(vm));
 | ||
|         VERIFY(!lhs_result.is_empty());
 | ||
|     } else {
 | ||
|         // 1. Let expr be the result of evaluating UnaryExpression.
 | ||
|         lhs_result = TRY(m_lhs->execute(interpreter)).release_value();
 | ||
|     }
 | ||
| 
 | ||
|     switch (m_op) {
 | ||
|     case UnaryOp::BitwiseNot:
 | ||
|         return TRY(bitwise_not(vm, lhs_result));
 | ||
|     case UnaryOp::Not:
 | ||
|         return Value(!lhs_result.to_boolean());
 | ||
|     case UnaryOp::Plus:
 | ||
|         return TRY(unary_plus(vm, lhs_result));
 | ||
|     case UnaryOp::Minus:
 | ||
|         return TRY(unary_minus(vm, lhs_result));
 | ||
|     case UnaryOp::Typeof:
 | ||
|         return Value { MUST_OR_THROW_OOM(PrimitiveString::create(vm, lhs_result.typeof())) };
 | ||
|     case UnaryOp::Void:
 | ||
|         return js_undefined();
 | ||
|     case UnaryOp::Delete:
 | ||
|         VERIFY_NOT_REACHED();
 | ||
|     }
 | ||
| 
 | ||
|     VERIFY_NOT_REACHED();
 | ||
| }
 | ||
| 
 | ||
| Completion SuperExpression::execute(Interpreter&) const
 | ||
| {
 | ||
|     // The semantics for SuperExpression are handled in CallExpression and SuperCall.
 | ||
|     VERIFY_NOT_REACHED();
 | ||
| }
 | ||
| 
 | ||
| Completion ClassElement::execute(Interpreter&) const
 | ||
| {
 | ||
|     // Note: The semantics of class element are handled in class_element_evaluation
 | ||
|     VERIFY_NOT_REACHED();
 | ||
| }
 | ||
| 
 | ||
| static ThrowCompletionOr<ClassElementName> class_key_to_property_name(Interpreter& interpreter, Expression const& key)
 | ||
| {
 | ||
|     auto& vm = interpreter.vm();
 | ||
| 
 | ||
|     if (is<PrivateIdentifier>(key)) {
 | ||
|         auto& private_identifier = static_cast<PrivateIdentifier const&>(key);
 | ||
|         auto* private_environment = interpreter.vm().running_execution_context().private_environment;
 | ||
|         VERIFY(private_environment);
 | ||
|         return ClassElementName { private_environment->resolve_private_identifier(private_identifier.string()) };
 | ||
|     }
 | ||
| 
 | ||
|     auto prop_key = TRY(key.execute(interpreter)).release_value();
 | ||
| 
 | ||
|     if (prop_key.is_object())
 | ||
|         prop_key = TRY(prop_key.to_primitive(vm, Value::PreferredType::String));
 | ||
| 
 | ||
|     auto property_key = TRY(PropertyKey::from_value(vm, prop_key));
 | ||
|     return ClassElementName { property_key };
 | ||
| }
 | ||
| 
 | ||
| // 15.4.5 Runtime Semantics: MethodDefinitionEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-methoddefinitionevaluation
 | ||
| ThrowCompletionOr<ClassElement::ClassValue> ClassMethod::class_element_evaluation(Interpreter& interpreter, Object& target) const
 | ||
| {
 | ||
|     auto property_key_or_private_name = TRY(class_key_to_property_name(interpreter, *m_key));
 | ||
| 
 | ||
|     auto method_value = TRY(m_function->execute(interpreter)).release_value();
 | ||
| 
 | ||
|     auto function_handle = make_handle(&method_value.as_function());
 | ||
| 
 | ||
|     auto& method_function = static_cast<ECMAScriptFunctionObject&>(method_value.as_function());
 | ||
|     method_function.make_method(target);
 | ||
| 
 | ||
|     auto set_function_name = [&](DeprecatedString prefix = "") {
 | ||
|         auto name = property_key_or_private_name.visit(
 | ||
|             [&](PropertyKey const& property_key) -> DeprecatedString {
 | ||
|                 if (property_key.is_symbol()) {
 | ||
|                     auto description = property_key.as_symbol()->description();
 | ||
|                     if (!description.has_value() || description->is_empty())
 | ||
|                         return "";
 | ||
|                     return DeprecatedString::formatted("[{}]", *description);
 | ||
|                 } else {
 | ||
|                     return property_key.to_string();
 | ||
|                 }
 | ||
|             },
 | ||
|             [&](PrivateName const& private_name) -> DeprecatedString {
 | ||
|                 return private_name.description;
 | ||
|             });
 | ||
| 
 | ||
|         update_function_name(method_value, DeprecatedString::formatted("{}{}{}", prefix, prefix.is_empty() ? "" : " ", name));
 | ||
|     };
 | ||
| 
 | ||
|     if (property_key_or_private_name.has<PropertyKey>()) {
 | ||
|         auto& property_key = property_key_or_private_name.get<PropertyKey>();
 | ||
|         switch (kind()) {
 | ||
|         case ClassMethod::Kind::Method:
 | ||
|             set_function_name();
 | ||
|             TRY(target.define_property_or_throw(property_key, { .value = method_value, .writable = true, .enumerable = false, .configurable = true }));
 | ||
|             break;
 | ||
|         case ClassMethod::Kind::Getter:
 | ||
|             set_function_name("get");
 | ||
|             TRY(target.define_property_or_throw(property_key, { .get = &method_function, .enumerable = true, .configurable = true }));
 | ||
|             break;
 | ||
|         case ClassMethod::Kind::Setter:
 | ||
|             set_function_name("set");
 | ||
|             TRY(target.define_property_or_throw(property_key, { .set = &method_function, .enumerable = true, .configurable = true }));
 | ||
|             break;
 | ||
|         default:
 | ||
|             VERIFY_NOT_REACHED();
 | ||
|         }
 | ||
| 
 | ||
|         return ClassValue { normal_completion({}) };
 | ||
|     } else {
 | ||
|         auto& private_name = property_key_or_private_name.get<PrivateName>();
 | ||
|         switch (kind()) {
 | ||
|         case Kind::Method:
 | ||
|             set_function_name();
 | ||
|             return ClassValue { PrivateElement { private_name, PrivateElement::Kind::Method, method_value } };
 | ||
|         case Kind::Getter:
 | ||
|             set_function_name("get");
 | ||
|             return ClassValue { PrivateElement { private_name, PrivateElement::Kind::Accessor, Accessor::create(interpreter.vm(), &method_function, nullptr) } };
 | ||
|         case Kind::Setter:
 | ||
|             set_function_name("set");
 | ||
|             return ClassValue { PrivateElement { private_name, PrivateElement::Kind::Accessor, Accessor::create(interpreter.vm(), nullptr, &method_function) } };
 | ||
|         default:
 | ||
|             VERIFY_NOT_REACHED();
 | ||
|         }
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| // We use this class to mimic  Initializer : = AssignmentExpression of
 | ||
| // 10.2.1.3 Runtime Semantics: EvaluateBody, https://tc39.es/ecma262/#sec-runtime-semantics-evaluatebody
 | ||
| class ClassFieldInitializerStatement : public Statement {
 | ||
| public:
 | ||
|     ClassFieldInitializerStatement(SourceRange source_range, NonnullRefPtr<Expression const> expression, DeprecatedFlyString field_name)
 | ||
|         : Statement(source_range)
 | ||
|         , m_expression(move(expression))
 | ||
|         , m_class_field_identifier_name(move(field_name))
 | ||
|     {
 | ||
|     }
 | ||
| 
 | ||
|     Completion execute(Interpreter& interpreter) const override
 | ||
|     {
 | ||
|         // 1. Assert: argumentsList is empty.
 | ||
|         VERIFY(interpreter.vm().argument_count() == 0);
 | ||
| 
 | ||
|         // 2. Assert: functionObject.[[ClassFieldInitializerName]] is not empty.
 | ||
|         VERIFY(!m_class_field_identifier_name.is_empty());
 | ||
| 
 | ||
|         // 3. If IsAnonymousFunctionDefinition(AssignmentExpression) is true, then
 | ||
|         //    a. Let value be ? NamedEvaluation of Initializer with argument functionObject.[[ClassFieldInitializerName]].
 | ||
|         // 4. Else,
 | ||
|         //    a. Let rhs be the result of evaluating AssignmentExpression.
 | ||
|         //    b. Let value be ? GetValue(rhs).
 | ||
|         auto value = TRY(interpreter.vm().named_evaluation_if_anonymous_function(m_expression, m_class_field_identifier_name));
 | ||
| 
 | ||
|         // 5. Return Completion Record { [[Type]]: return, [[Value]]: value, [[Target]]: empty }.
 | ||
|         return { Completion::Type::Return, value, {} };
 | ||
|     }
 | ||
| 
 | ||
|     void dump(int) const override
 | ||
|     {
 | ||
|         // This should not be dumped as it is never part of an actual AST.
 | ||
|         VERIFY_NOT_REACHED();
 | ||
|     }
 | ||
| 
 | ||
| private:
 | ||
|     NonnullRefPtr<Expression const> m_expression;
 | ||
|     DeprecatedFlyString m_class_field_identifier_name; // [[ClassFieldIdentifierName]]
 | ||
| };
 | ||
| 
 | ||
| // 15.7.10 Runtime Semantics: ClassFieldDefinitionEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-classfielddefinitionevaluation
 | ||
| ThrowCompletionOr<ClassElement::ClassValue> ClassField::class_element_evaluation(Interpreter& interpreter, Object& target) const
 | ||
| {
 | ||
|     auto& vm = interpreter.vm();
 | ||
|     auto& realm = *vm.current_realm();
 | ||
| 
 | ||
|     auto property_key_or_private_name = TRY(class_key_to_property_name(interpreter, *m_key));
 | ||
|     Handle<ECMAScriptFunctionObject> initializer {};
 | ||
|     if (m_initializer) {
 | ||
|         auto copy_initializer = m_initializer;
 | ||
|         auto name = property_key_or_private_name.visit(
 | ||
|             [&](PropertyKey const& property_key) -> DeprecatedString {
 | ||
|                 return property_key.is_number() ? property_key.to_string() : property_key.to_string_or_symbol().to_display_string();
 | ||
|             },
 | ||
|             [&](PrivateName const& private_name) -> DeprecatedString {
 | ||
|                 return private_name.description;
 | ||
|             });
 | ||
| 
 | ||
|         // FIXME: A potential optimization is not creating the functions here since these are never directly accessible.
 | ||
|         auto function_code = create_ast_node<ClassFieldInitializerStatement>(m_initializer->source_range(), copy_initializer.release_nonnull(), name);
 | ||
|         initializer = make_handle(*ECMAScriptFunctionObject::create(realm, DeprecatedString::empty(), DeprecatedString::empty(), *function_code, {}, 0, interpreter.lexical_environment(), interpreter.vm().running_execution_context().private_environment, FunctionKind::Normal, true, false, m_contains_direct_call_to_eval, false, property_key_or_private_name));
 | ||
|         initializer->make_method(target);
 | ||
|     }
 | ||
| 
 | ||
|     return ClassValue {
 | ||
|         ClassFieldDefinition {
 | ||
|             move(property_key_or_private_name),
 | ||
|             move(initializer),
 | ||
|         }
 | ||
|     };
 | ||
| }
 | ||
| 
 | ||
| static Optional<DeprecatedFlyString> nullopt_or_private_identifier_description(Expression const& expression)
 | ||
| {
 | ||
|     if (is<PrivateIdentifier>(expression))
 | ||
|         return static_cast<PrivateIdentifier const&>(expression).string();
 | ||
|     return {};
 | ||
| }
 | ||
| 
 | ||
| Optional<DeprecatedFlyString> ClassField::private_bound_identifier() const
 | ||
| {
 | ||
|     return nullopt_or_private_identifier_description(*m_key);
 | ||
| }
 | ||
| 
 | ||
| Optional<DeprecatedFlyString> ClassMethod::private_bound_identifier() const
 | ||
| {
 | ||
|     return nullopt_or_private_identifier_description(*m_key);
 | ||
| }
 | ||
| 
 | ||
| // 15.7.11 Runtime Semantics: ClassStaticBlockDefinitionEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-classstaticblockdefinitionevaluation
 | ||
| ThrowCompletionOr<ClassElement::ClassValue> StaticInitializer::class_element_evaluation(Interpreter& interpreter, Object& home_object) const
 | ||
| {
 | ||
|     auto& vm = interpreter.vm();
 | ||
|     auto& realm = *vm.current_realm();
 | ||
| 
 | ||
|     // 1. Let lex be the running execution context's LexicalEnvironment.
 | ||
|     auto* lexical_environment = interpreter.vm().running_execution_context().lexical_environment;
 | ||
| 
 | ||
|     // 2. Let privateEnv be the running execution context's PrivateEnvironment.
 | ||
|     auto* private_environment = interpreter.vm().running_execution_context().private_environment;
 | ||
| 
 | ||
|     // 3. Let sourceText be the empty sequence of Unicode code points.
 | ||
|     // 4. Let formalParameters be an instance of the production FormalParameters : [empty] .
 | ||
|     // 5. Let bodyFunction be OrdinaryFunctionCreate(%Function.prototype%, sourceText, formalParameters, ClassStaticBlockBody, non-lexical-this, lex, privateEnv).
 | ||
|     // Note: The function bodyFunction is never directly accessible to ECMAScript code.
 | ||
|     auto body_function = ECMAScriptFunctionObject::create(realm, DeprecatedString::empty(), DeprecatedString::empty(), *m_function_body, {}, 0, lexical_environment, private_environment, FunctionKind::Normal, true, false, m_contains_direct_call_to_eval, false);
 | ||
| 
 | ||
|     // 6. Perform MakeMethod(bodyFunction, homeObject).
 | ||
|     body_function->make_method(home_object);
 | ||
| 
 | ||
|     // 7. Return the ClassStaticBlockDefinition Record { [[BodyFunction]]: bodyFunction }.
 | ||
|     return ClassValue { normal_completion(body_function) };
 | ||
| }
 | ||
| 
 | ||
| // 15.7.16 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-class-definitions-runtime-semantics-evaluation
 | ||
| // ClassExpression : class BindingIdentifier ClassTail
 | ||
| Completion ClassExpression::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // 1. Let className be StringValue of BindingIdentifier.
 | ||
|     // 2. Let value be ? ClassDefinitionEvaluation of ClassTail with arguments className and className.
 | ||
|     auto* value = TRY(class_definition_evaluation(interpreter, m_name, m_name.is_null() ? "" : m_name));
 | ||
| 
 | ||
|     // 3. Set value.[[SourceText]] to the source text matched by ClassExpression.
 | ||
|     value->set_source_text(m_source_text);
 | ||
| 
 | ||
|     // 4. Return value.
 | ||
|     return Value { value };
 | ||
| }
 | ||
| 
 | ||
| // 15.7.15 Runtime Semantics: BindingClassDeclarationEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-bindingclassdeclarationevaluation
 | ||
| static ThrowCompletionOr<Value> binding_class_declaration_evaluation(Interpreter& interpreter, ClassExpression const& class_expression)
 | ||
| {
 | ||
|     auto& vm = interpreter.vm();
 | ||
| 
 | ||
|     // ClassDeclaration : class ClassTail
 | ||
|     if (!class_expression.has_name()) {
 | ||
|         // 1. Let value be ? ClassDefinitionEvaluation of ClassTail with arguments undefined and "default".
 | ||
|         auto value = TRY(class_expression.class_definition_evaluation(interpreter, {}, "default"));
 | ||
| 
 | ||
|         // 2. Set value.[[SourceText]] to the source text matched by ClassDeclaration.
 | ||
|         value->set_source_text(class_expression.source_text());
 | ||
| 
 | ||
|         // 3. Return value.
 | ||
|         return value;
 | ||
|     }
 | ||
| 
 | ||
|     // ClassDeclaration : class BindingIdentifier ClassTail
 | ||
| 
 | ||
|     // 1. Let className be StringValue of BindingIdentifier.
 | ||
|     auto class_name = class_expression.name();
 | ||
|     VERIFY(!class_name.is_empty());
 | ||
| 
 | ||
|     // 2. Let value be ? ClassDefinitionEvaluation of ClassTail with arguments className and className.
 | ||
|     auto value = TRY(class_expression.class_definition_evaluation(interpreter, class_name, class_name));
 | ||
| 
 | ||
|     // 3. Set value.[[SourceText]] to the source text matched by ClassDeclaration.
 | ||
|     value->set_source_text(class_expression.source_text());
 | ||
| 
 | ||
|     // 4. Let env be the running execution context's LexicalEnvironment.
 | ||
|     auto* env = interpreter.lexical_environment();
 | ||
| 
 | ||
|     // 5. Perform ? InitializeBoundName(className, value, env).
 | ||
|     TRY(initialize_bound_name(vm, class_name, value, env));
 | ||
| 
 | ||
|     // 6. Return value.
 | ||
|     return value;
 | ||
| }
 | ||
| 
 | ||
| // 15.7.16 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-class-definitions-runtime-semantics-evaluation
 | ||
| // ClassDeclaration : class BindingIdentifier ClassTail
 | ||
| Completion ClassDeclaration::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // 1. Perform ? BindingClassDeclarationEvaluation of this ClassDeclaration.
 | ||
|     (void)TRY(binding_class_declaration_evaluation(interpreter, m_class_expression));
 | ||
| 
 | ||
|     // 2. Return empty.
 | ||
|     return Optional<Value> {};
 | ||
| }
 | ||
| 
 | ||
| // 15.7.14 Runtime Semantics: ClassDefinitionEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-classdefinitionevaluation
 | ||
| ThrowCompletionOr<ECMAScriptFunctionObject*> ClassExpression::class_definition_evaluation(Interpreter& interpreter, DeprecatedFlyString const& binding_name, DeprecatedFlyString const& class_name) const
 | ||
| {
 | ||
|     auto& vm = interpreter.vm();
 | ||
|     auto& realm = *vm.current_realm();
 | ||
| 
 | ||
|     auto* environment = vm.lexical_environment();
 | ||
|     VERIFY(environment);
 | ||
|     auto class_environment = new_declarative_environment(*environment);
 | ||
| 
 | ||
|     // We might not set the lexical environment but we always want to restore it eventually.
 | ||
|     ArmedScopeGuard restore_environment = [&] {
 | ||
|         vm.running_execution_context().lexical_environment = environment;
 | ||
|     };
 | ||
| 
 | ||
|     if (!binding_name.is_null())
 | ||
|         MUST(class_environment->create_immutable_binding(vm, binding_name, true));
 | ||
| 
 | ||
|     auto* outer_private_environment = vm.running_execution_context().private_environment;
 | ||
|     auto class_private_environment = new_private_environment(vm, outer_private_environment);
 | ||
| 
 | ||
|     for (auto const& element : m_elements) {
 | ||
|         auto opt_private_name = element.private_bound_identifier();
 | ||
|         if (opt_private_name.has_value())
 | ||
|             class_private_environment->add_private_name({}, opt_private_name.release_value());
 | ||
|     }
 | ||
| 
 | ||
|     auto* proto_parent = realm.intrinsics().object_prototype();
 | ||
|     auto* constructor_parent = realm.intrinsics().function_prototype();
 | ||
| 
 | ||
|     if (!m_super_class.is_null()) {
 | ||
|         vm.running_execution_context().lexical_environment = class_environment;
 | ||
| 
 | ||
|         // Note: Since our execute does evaluation and GetValue in once we must check for a valid reference first
 | ||
| 
 | ||
|         Value super_class;
 | ||
| 
 | ||
|         auto reference = TRY(m_super_class->to_reference(interpreter));
 | ||
|         if (reference.is_valid_reference()) {
 | ||
|             super_class = TRY(reference.get_value(vm));
 | ||
|         } else {
 | ||
|             super_class = TRY(m_super_class->execute(interpreter)).release_value();
 | ||
|         }
 | ||
|         vm.running_execution_context().lexical_environment = environment;
 | ||
| 
 | ||
|         if (super_class.is_null()) {
 | ||
|             proto_parent = nullptr;
 | ||
|         } else if (!super_class.is_constructor()) {
 | ||
|             return vm.throw_completion<TypeError>(ErrorType::ClassExtendsValueNotAConstructorOrNull, TRY_OR_THROW_OOM(vm, super_class.to_string_without_side_effects()));
 | ||
|         } else {
 | ||
|             auto super_class_prototype = TRY(super_class.get(vm, vm.names.prototype));
 | ||
|             if (!super_class_prototype.is_null() && !super_class_prototype.is_object())
 | ||
|                 return vm.throw_completion<TypeError>(ErrorType::ClassExtendsValueInvalidPrototype, TRY_OR_THROW_OOM(vm, super_class_prototype.to_string_without_side_effects()));
 | ||
| 
 | ||
|             if (super_class_prototype.is_null())
 | ||
|                 proto_parent = nullptr;
 | ||
|             else
 | ||
|                 proto_parent = &super_class_prototype.as_object();
 | ||
| 
 | ||
|             constructor_parent = &super_class.as_object();
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     auto prototype = Object::create(realm, proto_parent);
 | ||
|     VERIFY(prototype);
 | ||
| 
 | ||
|     vm.running_execution_context().lexical_environment = class_environment;
 | ||
|     vm.running_execution_context().private_environment = class_private_environment;
 | ||
|     ScopeGuard restore_private_environment = [&] {
 | ||
|         vm.running_execution_context().private_environment = outer_private_environment;
 | ||
|     };
 | ||
| 
 | ||
|     // FIXME: Step 14.a is done in the parser. By using a synthetic super(...args) which does not call @@iterator of %Array.prototype%
 | ||
|     auto class_constructor_value = TRY(m_constructor->execute(interpreter)).release_value();
 | ||
| 
 | ||
|     update_function_name(class_constructor_value, class_name);
 | ||
| 
 | ||
|     VERIFY(class_constructor_value.is_function() && is<ECMAScriptFunctionObject>(class_constructor_value.as_function()));
 | ||
|     auto* class_constructor = static_cast<ECMAScriptFunctionObject*>(&class_constructor_value.as_function());
 | ||
|     class_constructor->set_home_object(prototype);
 | ||
|     class_constructor->set_is_class_constructor();
 | ||
|     class_constructor->define_direct_property(vm.names.prototype, prototype, Attribute::Writable);
 | ||
|     TRY(class_constructor->internal_set_prototype_of(constructor_parent));
 | ||
| 
 | ||
|     if (!m_super_class.is_null())
 | ||
|         class_constructor->set_constructor_kind(ECMAScriptFunctionObject::ConstructorKind::Derived);
 | ||
| 
 | ||
|     prototype->define_direct_property(vm.names.constructor, class_constructor, Attribute::Writable | Attribute::Configurable);
 | ||
| 
 | ||
|     using StaticElement = Variant<ClassFieldDefinition, Handle<ECMAScriptFunctionObject>>;
 | ||
| 
 | ||
|     Vector<PrivateElement> static_private_methods;
 | ||
|     Vector<PrivateElement> instance_private_methods;
 | ||
|     Vector<ClassFieldDefinition> instance_fields;
 | ||
|     Vector<StaticElement> static_elements;
 | ||
| 
 | ||
|     for (auto const& element : m_elements) {
 | ||
|         // Note: All ClassElementEvaluation start with evaluating the name (or we fake it).
 | ||
|         auto element_value = TRY(element.class_element_evaluation(interpreter, element.is_static() ? *class_constructor : *prototype));
 | ||
| 
 | ||
|         if (element_value.has<PrivateElement>()) {
 | ||
|             auto& container = element.is_static() ? static_private_methods : instance_private_methods;
 | ||
| 
 | ||
|             auto& private_element = element_value.get<PrivateElement>();
 | ||
| 
 | ||
|             auto added_to_existing = false;
 | ||
|             // FIXME: We can skip this loop in most cases.
 | ||
|             for (auto& existing : container) {
 | ||
|                 if (existing.key == private_element.key) {
 | ||
|                     VERIFY(existing.kind == PrivateElement::Kind::Accessor);
 | ||
|                     VERIFY(private_element.kind == PrivateElement::Kind::Accessor);
 | ||
|                     auto& accessor = private_element.value.as_accessor();
 | ||
|                     if (!accessor.getter())
 | ||
|                         existing.value.as_accessor().set_setter(accessor.setter());
 | ||
|                     else
 | ||
|                         existing.value.as_accessor().set_getter(accessor.getter());
 | ||
|                     added_to_existing = true;
 | ||
|                 }
 | ||
|             }
 | ||
| 
 | ||
|             if (!added_to_existing)
 | ||
|                 container.append(move(element_value.get<PrivateElement>()));
 | ||
|         } else if (auto* class_field_definition_ptr = element_value.get_pointer<ClassFieldDefinition>()) {
 | ||
|             if (element.is_static())
 | ||
|                 static_elements.append(move(*class_field_definition_ptr));
 | ||
|             else
 | ||
|                 instance_fields.append(move(*class_field_definition_ptr));
 | ||
|         } else if (element.class_element_kind() == ClassElement::ElementKind::StaticInitializer) {
 | ||
|             // We use Completion to hold the ClassStaticBlockDefinition Record.
 | ||
|             VERIFY(element_value.has<Completion>() && element_value.get<Completion>().value().has_value());
 | ||
|             auto& element_object = element_value.get<Completion>().value()->as_object();
 | ||
|             VERIFY(is<ECMAScriptFunctionObject>(element_object));
 | ||
|             static_elements.append(make_handle(static_cast<ECMAScriptFunctionObject*>(&element_object)));
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     vm.running_execution_context().lexical_environment = environment;
 | ||
|     restore_environment.disarm();
 | ||
| 
 | ||
|     if (!binding_name.is_null())
 | ||
|         MUST(class_environment->initialize_binding(vm, binding_name, class_constructor, Environment::InitializeBindingHint::Normal));
 | ||
| 
 | ||
|     for (auto& field : instance_fields)
 | ||
|         class_constructor->add_field(field);
 | ||
| 
 | ||
|     for (auto& private_method : instance_private_methods)
 | ||
|         class_constructor->add_private_method(private_method);
 | ||
| 
 | ||
|     for (auto& method : static_private_methods)
 | ||
|         TRY(class_constructor->private_method_or_accessor_add(move(method)));
 | ||
| 
 | ||
|     for (auto& element : static_elements) {
 | ||
|         TRY(element.visit(
 | ||
|             [&](ClassFieldDefinition& field) -> ThrowCompletionOr<void> {
 | ||
|                 return TRY(class_constructor->define_field(field));
 | ||
|             },
 | ||
|             [&](Handle<ECMAScriptFunctionObject> static_block_function) -> ThrowCompletionOr<void> {
 | ||
|                 VERIFY(!static_block_function.is_null());
 | ||
|                 // We discard any value returned here.
 | ||
|                 TRY(call(vm, *static_block_function.cell(), class_constructor_value));
 | ||
|                 return {};
 | ||
|             }));
 | ||
|     }
 | ||
| 
 | ||
|     return class_constructor;
 | ||
| }
 | ||
| 
 | ||
| void ASTNode::dump(int indent) const
 | ||
| {
 | ||
|     print_indent(indent);
 | ||
|     outln("{}", class_name());
 | ||
| }
 | ||
| 
 | ||
| void ScopeNode::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
|     if (!m_lexical_declarations.is_empty()) {
 | ||
|         print_indent(indent + 1);
 | ||
|         outln("(Lexical declarations)");
 | ||
|         for (auto& declaration : m_lexical_declarations)
 | ||
|             declaration.dump(indent + 2);
 | ||
|     }
 | ||
| 
 | ||
|     if (!m_var_declarations.is_empty()) {
 | ||
|         print_indent(indent + 1);
 | ||
|         outln("(Variable declarations)");
 | ||
|         for (auto& declaration : m_var_declarations)
 | ||
|             declaration.dump(indent + 2);
 | ||
|     }
 | ||
| 
 | ||
|     if (!m_functions_hoistable_with_annexB_extension.is_empty()) {
 | ||
|         print_indent(indent + 1);
 | ||
|         outln("(Hoisted functions via annexB extension)");
 | ||
|         for (auto& declaration : m_functions_hoistable_with_annexB_extension)
 | ||
|             declaration.dump(indent + 2);
 | ||
|     }
 | ||
| 
 | ||
|     if (!m_children.is_empty()) {
 | ||
|         print_indent(indent + 1);
 | ||
|         outln("(Children)");
 | ||
|         for (auto& child : children())
 | ||
|             child.dump(indent + 2);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void BinaryExpression::dump(int indent) const
 | ||
| {
 | ||
|     char const* op_string = nullptr;
 | ||
|     switch (m_op) {
 | ||
|     case BinaryOp::Addition:
 | ||
|         op_string = "+";
 | ||
|         break;
 | ||
|     case BinaryOp::Subtraction:
 | ||
|         op_string = "-";
 | ||
|         break;
 | ||
|     case BinaryOp::Multiplication:
 | ||
|         op_string = "*";
 | ||
|         break;
 | ||
|     case BinaryOp::Division:
 | ||
|         op_string = "/";
 | ||
|         break;
 | ||
|     case BinaryOp::Modulo:
 | ||
|         op_string = "%";
 | ||
|         break;
 | ||
|     case BinaryOp::Exponentiation:
 | ||
|         op_string = "**";
 | ||
|         break;
 | ||
|     case BinaryOp::StrictlyEquals:
 | ||
|         op_string = "===";
 | ||
|         break;
 | ||
|     case BinaryOp::StrictlyInequals:
 | ||
|         op_string = "!==";
 | ||
|         break;
 | ||
|     case BinaryOp::LooselyEquals:
 | ||
|         op_string = "==";
 | ||
|         break;
 | ||
|     case BinaryOp::LooselyInequals:
 | ||
|         op_string = "!=";
 | ||
|         break;
 | ||
|     case BinaryOp::GreaterThan:
 | ||
|         op_string = ">";
 | ||
|         break;
 | ||
|     case BinaryOp::GreaterThanEquals:
 | ||
|         op_string = ">=";
 | ||
|         break;
 | ||
|     case BinaryOp::LessThan:
 | ||
|         op_string = "<";
 | ||
|         break;
 | ||
|     case BinaryOp::LessThanEquals:
 | ||
|         op_string = "<=";
 | ||
|         break;
 | ||
|     case BinaryOp::BitwiseAnd:
 | ||
|         op_string = "&";
 | ||
|         break;
 | ||
|     case BinaryOp::BitwiseOr:
 | ||
|         op_string = "|";
 | ||
|         break;
 | ||
|     case BinaryOp::BitwiseXor:
 | ||
|         op_string = "^";
 | ||
|         break;
 | ||
|     case BinaryOp::LeftShift:
 | ||
|         op_string = "<<";
 | ||
|         break;
 | ||
|     case BinaryOp::RightShift:
 | ||
|         op_string = ">>";
 | ||
|         break;
 | ||
|     case BinaryOp::UnsignedRightShift:
 | ||
|         op_string = ">>>";
 | ||
|         break;
 | ||
|     case BinaryOp::In:
 | ||
|         op_string = "in";
 | ||
|         break;
 | ||
|     case BinaryOp::InstanceOf:
 | ||
|         op_string = "instanceof";
 | ||
|         break;
 | ||
|     }
 | ||
| 
 | ||
|     print_indent(indent);
 | ||
|     outln("{}", class_name());
 | ||
|     m_lhs->dump(indent + 1);
 | ||
|     print_indent(indent + 1);
 | ||
|     outln("{}", op_string);
 | ||
|     m_rhs->dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| void LogicalExpression::dump(int indent) const
 | ||
| {
 | ||
|     char const* op_string = nullptr;
 | ||
|     switch (m_op) {
 | ||
|     case LogicalOp::And:
 | ||
|         op_string = "&&";
 | ||
|         break;
 | ||
|     case LogicalOp::Or:
 | ||
|         op_string = "||";
 | ||
|         break;
 | ||
|     case LogicalOp::NullishCoalescing:
 | ||
|         op_string = "??";
 | ||
|         break;
 | ||
|     }
 | ||
| 
 | ||
|     print_indent(indent);
 | ||
|     outln("{}", class_name());
 | ||
|     m_lhs->dump(indent + 1);
 | ||
|     print_indent(indent + 1);
 | ||
|     outln("{}", op_string);
 | ||
|     m_rhs->dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| void UnaryExpression::dump(int indent) const
 | ||
| {
 | ||
|     char const* op_string = nullptr;
 | ||
|     switch (m_op) {
 | ||
|     case UnaryOp::BitwiseNot:
 | ||
|         op_string = "~";
 | ||
|         break;
 | ||
|     case UnaryOp::Not:
 | ||
|         op_string = "!";
 | ||
|         break;
 | ||
|     case UnaryOp::Plus:
 | ||
|         op_string = "+";
 | ||
|         break;
 | ||
|     case UnaryOp::Minus:
 | ||
|         op_string = "-";
 | ||
|         break;
 | ||
|     case UnaryOp::Typeof:
 | ||
|         op_string = "typeof ";
 | ||
|         break;
 | ||
|     case UnaryOp::Void:
 | ||
|         op_string = "void ";
 | ||
|         break;
 | ||
|     case UnaryOp::Delete:
 | ||
|         op_string = "delete ";
 | ||
|         break;
 | ||
|     }
 | ||
| 
 | ||
|     print_indent(indent);
 | ||
|     outln("{}", class_name());
 | ||
|     print_indent(indent + 1);
 | ||
|     outln("{}", op_string);
 | ||
|     m_lhs->dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| void CallExpression::dump(int indent) const
 | ||
| {
 | ||
|     print_indent(indent);
 | ||
|     if (is<NewExpression>(*this))
 | ||
|         outln("CallExpression [new]");
 | ||
|     else
 | ||
|         outln("CallExpression");
 | ||
|     m_callee->dump(indent + 1);
 | ||
|     for (auto& argument : arguments())
 | ||
|         argument.value->dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| void SuperCall::dump(int indent) const
 | ||
| {
 | ||
|     print_indent(indent);
 | ||
|     outln("SuperCall");
 | ||
|     for (auto& argument : m_arguments)
 | ||
|         argument.value->dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| void ClassDeclaration::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
|     m_class_expression->dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| ThrowCompletionOr<void> ClassDeclaration::for_each_bound_name(ThrowCompletionOrVoidCallback<DeprecatedFlyString const&>&& callback) const
 | ||
| {
 | ||
|     if (m_class_expression->name().is_empty())
 | ||
|         return {};
 | ||
| 
 | ||
|     return callback(m_class_expression->name());
 | ||
| }
 | ||
| 
 | ||
| void ClassExpression::dump(int indent) const
 | ||
| {
 | ||
|     print_indent(indent);
 | ||
|     outln("ClassExpression: \"{}\"", m_name);
 | ||
| 
 | ||
|     print_indent(indent);
 | ||
|     outln("(Constructor)");
 | ||
|     m_constructor->dump(indent + 1);
 | ||
| 
 | ||
|     if (!m_super_class.is_null()) {
 | ||
|         print_indent(indent);
 | ||
|         outln("(Super Class)");
 | ||
|         m_super_class->dump(indent + 1);
 | ||
|     }
 | ||
| 
 | ||
|     print_indent(indent);
 | ||
|     outln("(Elements)");
 | ||
|     for (auto& method : m_elements)
 | ||
|         method.dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| void ClassMethod::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
| 
 | ||
|     print_indent(indent);
 | ||
|     outln("(Key)");
 | ||
|     m_key->dump(indent + 1);
 | ||
| 
 | ||
|     char const* kind_string = nullptr;
 | ||
|     switch (m_kind) {
 | ||
|     case Kind::Method:
 | ||
|         kind_string = "Method";
 | ||
|         break;
 | ||
|     case Kind::Getter:
 | ||
|         kind_string = "Getter";
 | ||
|         break;
 | ||
|     case Kind::Setter:
 | ||
|         kind_string = "Setter";
 | ||
|         break;
 | ||
|     }
 | ||
|     print_indent(indent);
 | ||
|     outln("Kind: {}", kind_string);
 | ||
| 
 | ||
|     print_indent(indent);
 | ||
|     outln("Static: {}", is_static());
 | ||
| 
 | ||
|     print_indent(indent);
 | ||
|     outln("(Function)");
 | ||
|     m_function->dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| void ClassField::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
|     print_indent(indent);
 | ||
|     outln("(Key)");
 | ||
|     m_key->dump(indent + 1);
 | ||
| 
 | ||
|     print_indent(indent);
 | ||
|     outln("Static: {}", is_static());
 | ||
| 
 | ||
|     if (m_initializer) {
 | ||
|         print_indent(indent);
 | ||
|         outln("(Initializer)");
 | ||
|         m_initializer->dump(indent + 1);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void StaticInitializer::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
|     m_function_body->dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| void StringLiteral::dump(int indent) const
 | ||
| {
 | ||
|     print_indent(indent);
 | ||
|     outln("StringLiteral \"{}\"", m_value);
 | ||
| }
 | ||
| 
 | ||
| void SuperExpression::dump(int indent) const
 | ||
| {
 | ||
|     print_indent(indent);
 | ||
|     outln("super");
 | ||
| }
 | ||
| 
 | ||
| void NumericLiteral::dump(int indent) const
 | ||
| {
 | ||
|     print_indent(indent);
 | ||
|     outln("NumericLiteral {}", m_value);
 | ||
| }
 | ||
| 
 | ||
| void BigIntLiteral::dump(int indent) const
 | ||
| {
 | ||
|     print_indent(indent);
 | ||
|     outln("BigIntLiteral {}", m_value);
 | ||
| }
 | ||
| 
 | ||
| void BooleanLiteral::dump(int indent) const
 | ||
| {
 | ||
|     print_indent(indent);
 | ||
|     outln("BooleanLiteral {}", m_value);
 | ||
| }
 | ||
| 
 | ||
| void NullLiteral::dump(int indent) const
 | ||
| {
 | ||
|     print_indent(indent);
 | ||
|     outln("null");
 | ||
| }
 | ||
| 
 | ||
| bool BindingPattern::contains_expression() const
 | ||
| {
 | ||
|     for (auto& entry : entries) {
 | ||
|         if (entry.initializer)
 | ||
|             return true;
 | ||
|         if (auto binding_ptr = entry.alias.get_pointer<NonnullRefPtr<BindingPattern const>>(); binding_ptr && (*binding_ptr)->contains_expression())
 | ||
|             return true;
 | ||
|     }
 | ||
|     return false;
 | ||
| }
 | ||
| 
 | ||
| ThrowCompletionOr<void> BindingPattern::for_each_bound_name(ThrowCompletionOrVoidCallback<DeprecatedFlyString const&>&& callback) const
 | ||
| {
 | ||
|     for (auto const& entry : entries) {
 | ||
|         auto const& alias = entry.alias;
 | ||
|         if (alias.has<NonnullRefPtr<Identifier const>>()) {
 | ||
|             TRY(callback(alias.get<NonnullRefPtr<Identifier const>>()->string()));
 | ||
|         } else if (alias.has<NonnullRefPtr<BindingPattern const>>()) {
 | ||
|             TRY(alias.get<NonnullRefPtr<BindingPattern const>>()->for_each_bound_name(forward<decltype(callback)>(callback)));
 | ||
|         } else {
 | ||
|             auto const& name = entry.name;
 | ||
|             if (name.has<NonnullRefPtr<Identifier const>>())
 | ||
|                 TRY(callback(name.get<NonnullRefPtr<Identifier const>>()->string()));
 | ||
|         }
 | ||
|     }
 | ||
|     return {};
 | ||
| }
 | ||
| 
 | ||
| void BindingPattern::dump(int indent) const
 | ||
| {
 | ||
|     print_indent(indent);
 | ||
|     outln("BindingPattern {}", kind == Kind::Array ? "Array" : "Object");
 | ||
| 
 | ||
|     for (auto& entry : entries) {
 | ||
|         print_indent(indent + 1);
 | ||
|         outln("(Property)");
 | ||
| 
 | ||
|         if (kind == Kind::Object) {
 | ||
|             print_indent(indent + 2);
 | ||
|             outln("(Identifier)");
 | ||
|             if (entry.name.has<NonnullRefPtr<Identifier const>>()) {
 | ||
|                 entry.name.get<NonnullRefPtr<Identifier const>>()->dump(indent + 3);
 | ||
|             } else {
 | ||
|                 entry.name.get<NonnullRefPtr<Expression const>>()->dump(indent + 3);
 | ||
|             }
 | ||
|         } else if (entry.is_elision()) {
 | ||
|             print_indent(indent + 2);
 | ||
|             outln("(Elision)");
 | ||
|             continue;
 | ||
|         }
 | ||
| 
 | ||
|         print_indent(indent + 2);
 | ||
|         outln("(Pattern{})", entry.is_rest ? " rest=true" : "");
 | ||
|         if (entry.alias.has<NonnullRefPtr<Identifier const>>()) {
 | ||
|             entry.alias.get<NonnullRefPtr<Identifier const>>()->dump(indent + 3);
 | ||
|         } else if (entry.alias.has<NonnullRefPtr<BindingPattern const>>()) {
 | ||
|             entry.alias.get<NonnullRefPtr<BindingPattern const>>()->dump(indent + 3);
 | ||
|         } else if (entry.alias.has<NonnullRefPtr<MemberExpression const>>()) {
 | ||
|             entry.alias.get<NonnullRefPtr<MemberExpression const>>()->dump(indent + 3);
 | ||
|         } else {
 | ||
|             print_indent(indent + 3);
 | ||
|             outln("<empty>");
 | ||
|         }
 | ||
| 
 | ||
|         if (entry.initializer) {
 | ||
|             print_indent(indent + 2);
 | ||
|             outln("(Initializer)");
 | ||
|             entry.initializer->dump(indent + 3);
 | ||
|         }
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void FunctionNode::dump(int indent, DeprecatedString const& class_name) const
 | ||
| {
 | ||
|     print_indent(indent);
 | ||
|     auto is_async = m_kind == FunctionKind::Async || m_kind == FunctionKind::AsyncGenerator;
 | ||
|     auto is_generator = m_kind == FunctionKind::Generator || m_kind == FunctionKind::AsyncGenerator;
 | ||
|     outln("{}{}{} '{}'", class_name, is_async ? " async" : "", is_generator ? "*" : "", name());
 | ||
|     if (m_contains_direct_call_to_eval) {
 | ||
|         print_indent(indent + 1);
 | ||
|         outln("\033[31;1m(direct eval)\033[0m");
 | ||
|     }
 | ||
|     if (!m_parameters.is_empty()) {
 | ||
|         print_indent(indent + 1);
 | ||
|         outln("(Parameters)");
 | ||
| 
 | ||
|         for (auto& parameter : m_parameters) {
 | ||
|             print_indent(indent + 2);
 | ||
|             if (parameter.is_rest)
 | ||
|                 out("...");
 | ||
|             parameter.binding.visit(
 | ||
|                 [&](DeprecatedFlyString const& name) {
 | ||
|                     outln("{}", name);
 | ||
|                 },
 | ||
|                 [&](BindingPattern const& pattern) {
 | ||
|                     pattern.dump(indent + 2);
 | ||
|                 });
 | ||
|             if (parameter.default_value)
 | ||
|                 parameter.default_value->dump(indent + 3);
 | ||
|         }
 | ||
|     }
 | ||
|     print_indent(indent + 1);
 | ||
|     outln("(Body)");
 | ||
|     body().dump(indent + 2);
 | ||
| }
 | ||
| 
 | ||
| void FunctionDeclaration::dump(int indent) const
 | ||
| {
 | ||
|     FunctionNode::dump(indent, class_name());
 | ||
| }
 | ||
| 
 | ||
| ThrowCompletionOr<void> FunctionDeclaration::for_each_bound_name(ThrowCompletionOrVoidCallback<DeprecatedFlyString const&>&& callback) const
 | ||
| {
 | ||
|     if (name().is_empty())
 | ||
|         return {};
 | ||
|     return callback(name());
 | ||
| }
 | ||
| 
 | ||
| void FunctionExpression::dump(int indent) const
 | ||
| {
 | ||
|     FunctionNode::dump(indent, class_name());
 | ||
| }
 | ||
| 
 | ||
| void YieldExpression::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
|     if (argument())
 | ||
|         argument()->dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| void AwaitExpression::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
|     m_argument->dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| void ReturnStatement::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
|     if (argument())
 | ||
|         argument()->dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| void IfStatement::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
| 
 | ||
|     print_indent(indent);
 | ||
|     outln("If");
 | ||
|     predicate().dump(indent + 1);
 | ||
|     consequent().dump(indent + 1);
 | ||
|     if (alternate()) {
 | ||
|         print_indent(indent);
 | ||
|         outln("Else");
 | ||
|         alternate()->dump(indent + 1);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void WhileStatement::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
| 
 | ||
|     print_indent(indent);
 | ||
|     outln("While");
 | ||
|     test().dump(indent + 1);
 | ||
|     body().dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| void WithStatement::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
| 
 | ||
|     print_indent(indent + 1);
 | ||
|     outln("Object");
 | ||
|     object().dump(indent + 2);
 | ||
|     print_indent(indent + 1);
 | ||
|     outln("Body");
 | ||
|     body().dump(indent + 2);
 | ||
| }
 | ||
| 
 | ||
| void DoWhileStatement::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
| 
 | ||
|     print_indent(indent);
 | ||
|     outln("DoWhile");
 | ||
|     test().dump(indent + 1);
 | ||
|     body().dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| void ForStatement::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
| 
 | ||
|     print_indent(indent);
 | ||
|     outln("For");
 | ||
|     if (init())
 | ||
|         init()->dump(indent + 1);
 | ||
|     if (test())
 | ||
|         test()->dump(indent + 1);
 | ||
|     if (update())
 | ||
|         update()->dump(indent + 1);
 | ||
|     body().dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| void ForInStatement::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
| 
 | ||
|     print_indent(indent);
 | ||
|     outln("ForIn");
 | ||
|     lhs().visit([&](auto& lhs) { lhs->dump(indent + 1); });
 | ||
|     rhs().dump(indent + 1);
 | ||
|     body().dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| void ForOfStatement::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
| 
 | ||
|     print_indent(indent);
 | ||
|     outln("ForOf");
 | ||
|     lhs().visit([&](auto& lhs) { lhs->dump(indent + 1); });
 | ||
|     rhs().dump(indent + 1);
 | ||
|     body().dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| void ForAwaitOfStatement::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
| 
 | ||
|     print_indent(indent);
 | ||
|     outln("ForAwaitOf");
 | ||
|     m_lhs.visit([&](auto& lhs) { lhs->dump(indent + 1); });
 | ||
|     m_rhs->dump(indent + 1);
 | ||
|     m_body->dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| // 13.1.3 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-identifiers-runtime-semantics-evaluation
 | ||
| Completion Identifier::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
|     auto& vm = interpreter.vm();
 | ||
| 
 | ||
|     // 1. Return ? ResolveBinding(StringValue of Identifier).
 | ||
|     // OPTIMIZATION: We call Identifier::to_reference() here, which acts as a caching layer around ResolveBinding.
 | ||
|     auto reference = TRY(to_reference(interpreter));
 | ||
| 
 | ||
|     // NOTE: The spec wants us to return the reference directly; this is not possible with ASTNode::execute() (short of letting it return a variant).
 | ||
|     // So, instead of calling GetValue at the call site, we do it here.
 | ||
|     return TRY(reference.get_value(vm));
 | ||
| }
 | ||
| 
 | ||
| void Identifier::dump(int indent) const
 | ||
| {
 | ||
|     print_indent(indent);
 | ||
|     outln("Identifier \"{}\"", m_string);
 | ||
| }
 | ||
| 
 | ||
| Completion PrivateIdentifier::execute(Interpreter&) const
 | ||
| {
 | ||
|     // Note: This should be handled by either the member expression this is part of
 | ||
|     //       or the binary expression in the case of `#foo in bar`.
 | ||
|     VERIFY_NOT_REACHED();
 | ||
| }
 | ||
| 
 | ||
| void PrivateIdentifier::dump(int indent) const
 | ||
| {
 | ||
|     print_indent(indent);
 | ||
|     outln("PrivateIdentifier \"{}\"", m_string);
 | ||
| }
 | ||
| 
 | ||
| void SpreadExpression::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
|     m_target->dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| Completion SpreadExpression::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
|     return m_target->execute(interpreter);
 | ||
| }
 | ||
| 
 | ||
| // 13.2.1.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-this-keyword-runtime-semantics-evaluation
 | ||
| Completion ThisExpression::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
|     auto& vm = interpreter.vm();
 | ||
| 
 | ||
|     // 1. Return ? ResolveThisBinding().
 | ||
|     return vm.resolve_this_binding();
 | ||
| }
 | ||
| 
 | ||
| void ThisExpression::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
| }
 | ||
| 
 | ||
| // 13.15.2 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-assignment-operators-runtime-semantics-evaluation
 | ||
| Completion AssignmentExpression::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
|     auto& vm = interpreter.vm();
 | ||
| 
 | ||
|     if (m_op == AssignmentOp::Assignment) {
 | ||
|         // AssignmentExpression : LeftHandSideExpression = AssignmentExpression
 | ||
|         return m_lhs.visit(
 | ||
|             // 1. If LeftHandSideExpression is neither an ObjectLiteral nor an ArrayLiteral, then
 | ||
|             [&](NonnullRefPtr<Expression const> const& lhs) -> ThrowCompletionOr<Value> {
 | ||
|                 // a. Let lref be the result of evaluating LeftHandSideExpression.
 | ||
|                 // b. ReturnIfAbrupt(lref).
 | ||
|                 auto reference = TRY(lhs->to_reference(interpreter));
 | ||
| 
 | ||
|                 Value rhs_result;
 | ||
| 
 | ||
|                 // c. If IsAnonymousFunctionDefinition(AssignmentExpression) and IsIdentifierRef of LeftHandSideExpression are both true, then
 | ||
|                 if (lhs->is_identifier()) {
 | ||
|                     // i. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.[[ReferencedName]].
 | ||
|                     auto& identifier_name = static_cast<Identifier const&>(*lhs).string();
 | ||
|                     rhs_result = TRY(vm.named_evaluation_if_anonymous_function(m_rhs, identifier_name));
 | ||
|                 }
 | ||
|                 // d. Else,
 | ||
|                 else {
 | ||
|                     // i. Let rref be the result of evaluating AssignmentExpression.
 | ||
|                     // ii. Let rval be ? GetValue(rref).
 | ||
|                     rhs_result = TRY(m_rhs->execute(interpreter)).release_value();
 | ||
|                 }
 | ||
| 
 | ||
|                 // e. Perform ? PutValue(lref, rval).
 | ||
|                 TRY(reference.put_value(vm, rhs_result));
 | ||
| 
 | ||
|                 // f. Return rval.
 | ||
|                 return rhs_result;
 | ||
|             },
 | ||
|             // 2. Let assignmentPattern be the AssignmentPattern that is covered by LeftHandSideExpression.
 | ||
|             [&](NonnullRefPtr<BindingPattern const> const& pattern) -> ThrowCompletionOr<Value> {
 | ||
|                 // 3. Let rref be the result of evaluating AssignmentExpression.
 | ||
|                 // 4. Let rval be ? GetValue(rref).
 | ||
|                 auto rhs_result = TRY(m_rhs->execute(interpreter)).release_value();
 | ||
| 
 | ||
|                 // 5. Perform ? DestructuringAssignmentEvaluation of assignmentPattern with argument rval.
 | ||
|                 TRY(vm.destructuring_assignment_evaluation(pattern, rhs_result));
 | ||
| 
 | ||
|                 // 6. Return rval.
 | ||
|                 return rhs_result;
 | ||
|             });
 | ||
|     }
 | ||
|     VERIFY(m_lhs.has<NonnullRefPtr<Expression const>>());
 | ||
| 
 | ||
|     // 1. Let lref be the result of evaluating LeftHandSideExpression.
 | ||
|     auto& lhs_expression = *m_lhs.get<NonnullRefPtr<Expression const>>();
 | ||
|     auto reference = TRY(lhs_expression.to_reference(interpreter));
 | ||
| 
 | ||
|     // 2. Let lval be ? GetValue(lref).
 | ||
|     auto lhs_result = TRY(reference.get_value(vm));
 | ||
| 
 | ||
|     //  AssignmentExpression : LeftHandSideExpression {&&=, ||=, ??=} AssignmentExpression
 | ||
|     if (m_op == AssignmentOp::AndAssignment || m_op == AssignmentOp::OrAssignment || m_op == AssignmentOp::NullishAssignment) {
 | ||
|         switch (m_op) {
 | ||
|         // AssignmentExpression : LeftHandSideExpression &&= AssignmentExpression
 | ||
|         case AssignmentOp::AndAssignment:
 | ||
|             // 3. Let lbool be ToBoolean(lval).
 | ||
|             // 4. If lbool is false, return lval.
 | ||
|             if (!lhs_result.to_boolean())
 | ||
|                 return lhs_result;
 | ||
|             break;
 | ||
| 
 | ||
|         // AssignmentExpression : LeftHandSideExpression ||= AssignmentExpression
 | ||
|         case AssignmentOp::OrAssignment:
 | ||
|             // 3. Let lbool be ToBoolean(lval).
 | ||
|             // 4. If lbool is true, return lval.
 | ||
|             if (lhs_result.to_boolean())
 | ||
|                 return lhs_result;
 | ||
|             break;
 | ||
| 
 | ||
|         // AssignmentExpression : LeftHandSideExpression ??= AssignmentExpression
 | ||
|         case AssignmentOp::NullishAssignment:
 | ||
|             // 3. If lval is neither undefined nor null, return lval.
 | ||
|             if (!lhs_result.is_nullish())
 | ||
|                 return lhs_result;
 | ||
|             break;
 | ||
| 
 | ||
|         default:
 | ||
|             VERIFY_NOT_REACHED();
 | ||
|         }
 | ||
| 
 | ||
|         Value rhs_result;
 | ||
| 
 | ||
|         // 5. If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of LeftHandSideExpression is true, then
 | ||
|         if (lhs_expression.is_identifier()) {
 | ||
|             // a. Let rval be ? NamedEvaluation of AssignmentExpression with argument lref.[[ReferencedName]].
 | ||
|             auto& identifier_name = static_cast<Identifier const&>(lhs_expression).string();
 | ||
|             rhs_result = TRY(interpreter.vm().named_evaluation_if_anonymous_function(m_rhs, identifier_name));
 | ||
|         }
 | ||
|         // 6. Else,
 | ||
|         else {
 | ||
|             // a. Let rref be the result of evaluating AssignmentExpression.
 | ||
|             // b. Let rval be ? GetValue(rref).
 | ||
|             rhs_result = TRY(m_rhs->execute(interpreter)).release_value();
 | ||
|         }
 | ||
| 
 | ||
|         // 7. Perform ? PutValue(lref, rval).
 | ||
|         TRY(reference.put_value(vm, rhs_result));
 | ||
| 
 | ||
|         // 8. Return rval.
 | ||
|         return rhs_result;
 | ||
|     }
 | ||
| 
 | ||
|     // AssignmentExpression : LeftHandSideExpression AssignmentOperator AssignmentExpression
 | ||
| 
 | ||
|     // 3. Let rref be the result of evaluating AssignmentExpression.
 | ||
|     // 4. Let rval be ? GetValue(rref).
 | ||
|     auto rhs_result = TRY(m_rhs->execute(interpreter)).release_value();
 | ||
| 
 | ||
|     // 5. Let assignmentOpText be the source text matched by AssignmentOperator.
 | ||
|     // 6. Let opText be the sequence of Unicode code points associated with assignmentOpText in the following table:
 | ||
|     // 7. Let r be ? ApplyStringOrNumericBinaryOperator(lval, opText, rval).
 | ||
|     switch (m_op) {
 | ||
|     case AssignmentOp::AdditionAssignment:
 | ||
|         rhs_result = TRY(add(vm, lhs_result, rhs_result));
 | ||
|         break;
 | ||
|     case AssignmentOp::SubtractionAssignment:
 | ||
|         rhs_result = TRY(sub(vm, lhs_result, rhs_result));
 | ||
|         break;
 | ||
|     case AssignmentOp::MultiplicationAssignment:
 | ||
|         rhs_result = TRY(mul(vm, lhs_result, rhs_result));
 | ||
|         break;
 | ||
|     case AssignmentOp::DivisionAssignment:
 | ||
|         rhs_result = TRY(div(vm, lhs_result, rhs_result));
 | ||
|         break;
 | ||
|     case AssignmentOp::ModuloAssignment:
 | ||
|         rhs_result = TRY(mod(vm, lhs_result, rhs_result));
 | ||
|         break;
 | ||
|     case AssignmentOp::ExponentiationAssignment:
 | ||
|         rhs_result = TRY(exp(vm, lhs_result, rhs_result));
 | ||
|         break;
 | ||
|     case AssignmentOp::BitwiseAndAssignment:
 | ||
|         rhs_result = TRY(bitwise_and(vm, lhs_result, rhs_result));
 | ||
|         break;
 | ||
|     case AssignmentOp::BitwiseOrAssignment:
 | ||
|         rhs_result = TRY(bitwise_or(vm, lhs_result, rhs_result));
 | ||
|         break;
 | ||
|     case AssignmentOp::BitwiseXorAssignment:
 | ||
|         rhs_result = TRY(bitwise_xor(vm, lhs_result, rhs_result));
 | ||
|         break;
 | ||
|     case AssignmentOp::LeftShiftAssignment:
 | ||
|         rhs_result = TRY(left_shift(vm, lhs_result, rhs_result));
 | ||
|         break;
 | ||
|     case AssignmentOp::RightShiftAssignment:
 | ||
|         rhs_result = TRY(right_shift(vm, lhs_result, rhs_result));
 | ||
|         break;
 | ||
|     case AssignmentOp::UnsignedRightShiftAssignment:
 | ||
|         rhs_result = TRY(unsigned_right_shift(vm, lhs_result, rhs_result));
 | ||
|         break;
 | ||
|     case AssignmentOp::Assignment:
 | ||
|     case AssignmentOp::AndAssignment:
 | ||
|     case AssignmentOp::OrAssignment:
 | ||
|     case AssignmentOp::NullishAssignment:
 | ||
|         VERIFY_NOT_REACHED();
 | ||
|     }
 | ||
| 
 | ||
|     // 8. Perform ? PutValue(lref, r).
 | ||
|     TRY(reference.put_value(vm, rhs_result));
 | ||
| 
 | ||
|     // 9. Return r.
 | ||
|     return rhs_result;
 | ||
| }
 | ||
| 
 | ||
| // 13.4.2.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-postfix-increment-operator-runtime-semantics-evaluation
 | ||
| // 13.4.3.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-postfix-decrement-operator-runtime-semantics-evaluation
 | ||
| // 13.4.4.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-prefix-increment-operator-runtime-semantics-evaluation
 | ||
| // 13.4.5.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-prefix-decrement-operator-runtime-semantics-evaluation
 | ||
| Completion UpdateExpression::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
|     auto& vm = interpreter.vm();
 | ||
| 
 | ||
|     // 1. Let expr be the result of evaluating <Expression>.
 | ||
|     auto reference = TRY(m_argument->to_reference(interpreter));
 | ||
| 
 | ||
|     // 2. Let oldValue be ? ToNumeric(? GetValue(expr)).
 | ||
|     auto old_value = TRY(reference.get_value(vm));
 | ||
|     old_value = TRY(old_value.to_numeric(vm));
 | ||
| 
 | ||
|     Value new_value;
 | ||
|     switch (m_op) {
 | ||
|     case UpdateOp::Increment:
 | ||
|         // 3. If Type(oldValue) is Number, then
 | ||
|         if (old_value.is_number()) {
 | ||
|             // a. Let newValue be Number::add(oldValue, 1𝔽).
 | ||
|             new_value = Value(old_value.as_double() + 1);
 | ||
|         }
 | ||
|         // 4. Else,
 | ||
|         else {
 | ||
|             // a. Assert: Type(oldValue) is BigInt.
 | ||
|             // b. Let newValue be BigInt::add(oldValue, 1ℤ).
 | ||
|             new_value = BigInt::create(vm, old_value.as_bigint().big_integer().plus(Crypto::SignedBigInteger { 1 }));
 | ||
|         }
 | ||
|         break;
 | ||
|     case UpdateOp::Decrement:
 | ||
|         // 3. If Type(oldValue) is Number, then
 | ||
|         if (old_value.is_number()) {
 | ||
|             // a. Let newValue be Number::subtract(oldValue, 1𝔽).
 | ||
|             new_value = Value(old_value.as_double() - 1);
 | ||
|         }
 | ||
|         // 4. Else,
 | ||
|         else {
 | ||
|             // a. Assert: Type(oldValue) is BigInt.
 | ||
|             // b. Let newValue be BigInt::subtract(oldValue, 1ℤ).
 | ||
|             new_value = BigInt::create(vm, old_value.as_bigint().big_integer().minus(Crypto::SignedBigInteger { 1 }));
 | ||
|         }
 | ||
|         break;
 | ||
|     default:
 | ||
|         VERIFY_NOT_REACHED();
 | ||
|     }
 | ||
| 
 | ||
|     // 5. Perform ? PutValue(expr, newValue).
 | ||
|     TRY(reference.put_value(vm, new_value));
 | ||
| 
 | ||
|     // 6. Return newValue.
 | ||
|     // 6. Return oldValue.
 | ||
|     return m_prefixed ? new_value : old_value;
 | ||
| }
 | ||
| 
 | ||
| void AssignmentExpression::dump(int indent) const
 | ||
| {
 | ||
|     char const* op_string = nullptr;
 | ||
|     switch (m_op) {
 | ||
|     case AssignmentOp::Assignment:
 | ||
|         op_string = "=";
 | ||
|         break;
 | ||
|     case AssignmentOp::AdditionAssignment:
 | ||
|         op_string = "+=";
 | ||
|         break;
 | ||
|     case AssignmentOp::SubtractionAssignment:
 | ||
|         op_string = "-=";
 | ||
|         break;
 | ||
|     case AssignmentOp::MultiplicationAssignment:
 | ||
|         op_string = "*=";
 | ||
|         break;
 | ||
|     case AssignmentOp::DivisionAssignment:
 | ||
|         op_string = "/=";
 | ||
|         break;
 | ||
|     case AssignmentOp::ModuloAssignment:
 | ||
|         op_string = "%=";
 | ||
|         break;
 | ||
|     case AssignmentOp::ExponentiationAssignment:
 | ||
|         op_string = "**=";
 | ||
|         break;
 | ||
|     case AssignmentOp::BitwiseAndAssignment:
 | ||
|         op_string = "&=";
 | ||
|         break;
 | ||
|     case AssignmentOp::BitwiseOrAssignment:
 | ||
|         op_string = "|=";
 | ||
|         break;
 | ||
|     case AssignmentOp::BitwiseXorAssignment:
 | ||
|         op_string = "^=";
 | ||
|         break;
 | ||
|     case AssignmentOp::LeftShiftAssignment:
 | ||
|         op_string = "<<=";
 | ||
|         break;
 | ||
|     case AssignmentOp::RightShiftAssignment:
 | ||
|         op_string = ">>=";
 | ||
|         break;
 | ||
|     case AssignmentOp::UnsignedRightShiftAssignment:
 | ||
|         op_string = ">>>=";
 | ||
|         break;
 | ||
|     case AssignmentOp::AndAssignment:
 | ||
|         op_string = "&&=";
 | ||
|         break;
 | ||
|     case AssignmentOp::OrAssignment:
 | ||
|         op_string = "||=";
 | ||
|         break;
 | ||
|     case AssignmentOp::NullishAssignment:
 | ||
|         op_string = "\?\?=";
 | ||
|         break;
 | ||
|     }
 | ||
| 
 | ||
|     ASTNode::dump(indent);
 | ||
|     print_indent(indent + 1);
 | ||
|     outln("{}", op_string);
 | ||
|     m_lhs.visit([&](auto& lhs) { lhs->dump(indent + 1); });
 | ||
|     m_rhs->dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| void UpdateExpression::dump(int indent) const
 | ||
| {
 | ||
|     char const* op_string = nullptr;
 | ||
|     switch (m_op) {
 | ||
|     case UpdateOp::Increment:
 | ||
|         op_string = "++";
 | ||
|         break;
 | ||
|     case UpdateOp::Decrement:
 | ||
|         op_string = "--";
 | ||
|         break;
 | ||
|     }
 | ||
| 
 | ||
|     ASTNode::dump(indent);
 | ||
|     if (m_prefixed) {
 | ||
|         print_indent(indent + 1);
 | ||
|         outln("{}", op_string);
 | ||
|     }
 | ||
|     m_argument->dump(indent + 1);
 | ||
|     if (!m_prefixed) {
 | ||
|         print_indent(indent + 1);
 | ||
|         outln("{}", op_string);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| // 14.3.1.2 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-let-and-const-declarations-runtime-semantics-evaluation
 | ||
| // 14.3.2.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-variable-statement-runtime-semantics-evaluation
 | ||
| Completion VariableDeclaration::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
|     auto& vm = interpreter.vm();
 | ||
| 
 | ||
|     for (auto& declarator : m_declarations) {
 | ||
|         if (auto* init = declarator.init()) {
 | ||
|             TRY(declarator.target().visit(
 | ||
|                 [&](NonnullRefPtr<Identifier const> const& id) -> ThrowCompletionOr<void> {
 | ||
|                     auto reference = TRY(id->to_reference(interpreter));
 | ||
|                     auto initializer_result = TRY(interpreter.vm().named_evaluation_if_anonymous_function(*init, id->string()));
 | ||
|                     VERIFY(!initializer_result.is_empty());
 | ||
| 
 | ||
|                     if (m_declaration_kind == DeclarationKind::Var)
 | ||
|                         return reference.put_value(vm, initializer_result);
 | ||
|                     else
 | ||
|                         return reference.initialize_referenced_binding(vm, initializer_result);
 | ||
|                 },
 | ||
|                 [&](NonnullRefPtr<BindingPattern const> const& pattern) -> ThrowCompletionOr<void> {
 | ||
|                     auto initializer_result = TRY(init->execute(interpreter)).release_value();
 | ||
| 
 | ||
|                     Environment* environment = m_declaration_kind == DeclarationKind::Var ? nullptr : interpreter.lexical_environment();
 | ||
| 
 | ||
|                     return vm.binding_initialization(pattern, initializer_result, environment);
 | ||
|                 }));
 | ||
|         } else if (m_declaration_kind != DeclarationKind::Var) {
 | ||
|             VERIFY(declarator.target().has<NonnullRefPtr<Identifier const>>());
 | ||
|             auto& identifier = declarator.target().get<NonnullRefPtr<Identifier const>>();
 | ||
|             auto reference = TRY(identifier->to_reference(interpreter));
 | ||
|             TRY(reference.initialize_referenced_binding(vm, js_undefined()));
 | ||
|         }
 | ||
|     }
 | ||
|     return normal_completion({});
 | ||
| }
 | ||
| 
 | ||
| Completion VariableDeclarator::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // NOTE: VariableDeclarator execution is handled by VariableDeclaration.
 | ||
|     VERIFY_NOT_REACHED();
 | ||
| }
 | ||
| 
 | ||
| ThrowCompletionOr<void> VariableDeclaration::for_each_bound_name(ThrowCompletionOrVoidCallback<DeprecatedFlyString const&>&& callback) const
 | ||
| {
 | ||
|     for (auto const& entry : declarations()) {
 | ||
|         TRY(entry.target().visit(
 | ||
|             [&](NonnullRefPtr<Identifier const> const& id) {
 | ||
|                 return callback(id->string());
 | ||
|             },
 | ||
|             [&](NonnullRefPtr<BindingPattern const> const& binding) {
 | ||
|                 return binding->for_each_bound_name([&](auto const& name) {
 | ||
|                     return callback(name);
 | ||
|                 });
 | ||
|             }));
 | ||
|     }
 | ||
| 
 | ||
|     return {};
 | ||
| }
 | ||
| 
 | ||
| void VariableDeclaration::dump(int indent) const
 | ||
| {
 | ||
|     char const* declaration_kind_string = nullptr;
 | ||
|     switch (m_declaration_kind) {
 | ||
|     case DeclarationKind::Let:
 | ||
|         declaration_kind_string = "Let";
 | ||
|         break;
 | ||
|     case DeclarationKind::Var:
 | ||
|         declaration_kind_string = "Var";
 | ||
|         break;
 | ||
|     case DeclarationKind::Const:
 | ||
|         declaration_kind_string = "Const";
 | ||
|         break;
 | ||
|     }
 | ||
| 
 | ||
|     ASTNode::dump(indent);
 | ||
|     print_indent(indent + 1);
 | ||
|     outln("{}", declaration_kind_string);
 | ||
| 
 | ||
|     for (auto& declarator : m_declarations)
 | ||
|         declarator.dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| // 6.2.1.2 Runtime Semantics: Evaluation, https://tc39.es/proposal-explicit-resource-management/#sec-let-and-const-declarations-runtime-semantics-evaluation
 | ||
| Completion UsingDeclaration::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     // 1. Let next be BindingEvaluation of BindingList with parameter sync-dispose.
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
|     auto& vm = interpreter.vm();
 | ||
| 
 | ||
|     for (auto& declarator : m_declarations) {
 | ||
|         VERIFY(declarator.target().has<NonnullRefPtr<Identifier const>>());
 | ||
|         VERIFY(declarator.init());
 | ||
| 
 | ||
|         auto& id = declarator.target().get<NonnullRefPtr<Identifier const>>();
 | ||
| 
 | ||
|         // 2. ReturnIfAbrupt(next).
 | ||
|         auto reference = TRY(id->to_reference(interpreter));
 | ||
|         auto initializer_result = TRY(interpreter.vm().named_evaluation_if_anonymous_function(*declarator.init(), id->string()));
 | ||
|         VERIFY(!initializer_result.is_empty());
 | ||
|         TRY(reference.initialize_referenced_binding(vm, initializer_result, Environment::InitializeBindingHint::SyncDispose));
 | ||
|     }
 | ||
| 
 | ||
|     // 3. Return empty.
 | ||
|     return normal_completion({});
 | ||
| }
 | ||
| 
 | ||
| ThrowCompletionOr<void> UsingDeclaration::for_each_bound_name(ThrowCompletionOrVoidCallback<DeprecatedFlyString const&>&& callback) const
 | ||
| {
 | ||
|     for (auto const& entry : m_declarations) {
 | ||
|         VERIFY(entry.target().has<NonnullRefPtr<Identifier const>>());
 | ||
|         TRY(callback(entry.target().get<NonnullRefPtr<Identifier const>>()->string()));
 | ||
|     }
 | ||
| 
 | ||
|     return {};
 | ||
| }
 | ||
| 
 | ||
| void UsingDeclaration::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
|     print_indent(indent + 1);
 | ||
|     for (auto& declarator : m_declarations)
 | ||
|         declarator.dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| void VariableDeclarator::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
|     m_target.visit([indent](auto const& value) { value->dump(indent + 1); });
 | ||
|     if (m_init)
 | ||
|         m_init->dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| void ObjectProperty::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
| 
 | ||
|     if (m_property_type == Type::Spread) {
 | ||
|         print_indent(indent + 1);
 | ||
|         outln("...Spreading");
 | ||
|         m_key->dump(indent + 1);
 | ||
|     } else {
 | ||
|         m_key->dump(indent + 1);
 | ||
|         m_value->dump(indent + 1);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void ObjectExpression::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
|     for (auto& property : m_properties) {
 | ||
|         property.dump(indent + 1);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void ExpressionStatement::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
|     m_expression->dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| Completion ObjectProperty::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // NOTE: ObjectProperty execution is handled by ObjectExpression.
 | ||
|     VERIFY_NOT_REACHED();
 | ||
| }
 | ||
| 
 | ||
| // 13.2.5.4 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-object-initializer-runtime-semantics-evaluation
 | ||
| Completion ObjectExpression::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
|     auto& vm = interpreter.vm();
 | ||
|     auto& realm = *vm.current_realm();
 | ||
| 
 | ||
|     // 1. Let obj be OrdinaryObjectCreate(%Object.prototype%).
 | ||
|     auto object = Object::create(realm, realm.intrinsics().object_prototype());
 | ||
| 
 | ||
|     // 2. Perform ? PropertyDefinitionEvaluation of PropertyDefinitionList with argument obj.
 | ||
|     for (auto& property : m_properties) {
 | ||
|         auto key = TRY(property.key().execute(interpreter)).release_value();
 | ||
| 
 | ||
|         // PropertyDefinition : ... AssignmentExpression
 | ||
|         if (property.type() == ObjectProperty::Type::Spread) {
 | ||
|             // 4. Perform ? CopyDataProperties(object, fromValue, excludedNames).
 | ||
|             TRY(object->copy_data_properties(vm, key, {}));
 | ||
| 
 | ||
|             // 5. Return unused.
 | ||
|             continue;
 | ||
|         }
 | ||
| 
 | ||
|         auto value = TRY(property.value().execute(interpreter)).release_value();
 | ||
| 
 | ||
|         // 8. If isProtoSetter is true, then
 | ||
|         if (property.type() == ObjectProperty::Type::ProtoSetter) {
 | ||
|             // a. If Type(propValue) is either Object or Null, then
 | ||
|             if (value.is_object() || value.is_null()) {
 | ||
|                 // i. Perform ! object.[[SetPrototypeOf]](propValue).
 | ||
|                 MUST(object->internal_set_prototype_of(value.is_object() ? &value.as_object() : nullptr));
 | ||
|             }
 | ||
|             // b. Return unused.
 | ||
|             continue;
 | ||
|         }
 | ||
| 
 | ||
|         auto property_key = TRY(PropertyKey::from_value(vm, key));
 | ||
| 
 | ||
|         if (property.is_method()) {
 | ||
|             VERIFY(value.is_function());
 | ||
|             static_cast<ECMAScriptFunctionObject&>(value.as_function()).set_home_object(object);
 | ||
| 
 | ||
|             auto name = MUST(get_function_property_name(property_key));
 | ||
|             if (property.type() == ObjectProperty::Type::Getter) {
 | ||
|                 name = DeprecatedString::formatted("get {}", name);
 | ||
|             } else if (property.type() == ObjectProperty::Type::Setter) {
 | ||
|                 name = DeprecatedString::formatted("set {}", name);
 | ||
|             }
 | ||
| 
 | ||
|             update_function_name(value, name);
 | ||
|         }
 | ||
| 
 | ||
|         switch (property.type()) {
 | ||
|         case ObjectProperty::Type::Getter:
 | ||
|             VERIFY(value.is_function());
 | ||
|             object->define_direct_accessor(property_key, &value.as_function(), nullptr, Attribute::Configurable | Attribute::Enumerable);
 | ||
|             break;
 | ||
|         case ObjectProperty::Type::Setter:
 | ||
|             VERIFY(value.is_function());
 | ||
|             object->define_direct_accessor(property_key, nullptr, &value.as_function(), Attribute::Configurable | Attribute::Enumerable);
 | ||
|             break;
 | ||
|         case ObjectProperty::Type::KeyValue:
 | ||
|             object->define_direct_property(property_key, value, default_attributes);
 | ||
|             break;
 | ||
|         case ObjectProperty::Type::Spread:
 | ||
|         default:
 | ||
|             VERIFY_NOT_REACHED();
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     // 3. Return obj.
 | ||
|     return Value { object };
 | ||
| }
 | ||
| 
 | ||
| void MemberExpression::dump(int indent) const
 | ||
| {
 | ||
|     print_indent(indent);
 | ||
|     outln("{}(computed={})", class_name(), is_computed());
 | ||
|     m_object->dump(indent + 1);
 | ||
|     m_property->dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| DeprecatedString MemberExpression::to_string_approximation() const
 | ||
| {
 | ||
|     DeprecatedString object_string = "<object>";
 | ||
|     if (is<Identifier>(*m_object))
 | ||
|         object_string = static_cast<Identifier const&>(*m_object).string();
 | ||
|     if (is_computed())
 | ||
|         return DeprecatedString::formatted("{}[<computed>]", object_string);
 | ||
|     return DeprecatedString::formatted("{}.{}", object_string, verify_cast<Identifier>(*m_property).string());
 | ||
| }
 | ||
| 
 | ||
| // 13.3.2.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-property-accessors-runtime-semantics-evaluation
 | ||
| Completion MemberExpression::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
|     auto& vm = interpreter.vm();
 | ||
| 
 | ||
|     auto reference = TRY(to_reference(interpreter));
 | ||
|     return TRY(reference.get_value(vm));
 | ||
| }
 | ||
| 
 | ||
| bool MemberExpression::ends_in_private_name() const
 | ||
| {
 | ||
|     if (is_computed())
 | ||
|         return false;
 | ||
|     if (is<PrivateIdentifier>(*m_property))
 | ||
|         return true;
 | ||
|     if (is<MemberExpression>(*m_property))
 | ||
|         return static_cast<MemberExpression const&>(*m_property).ends_in_private_name();
 | ||
|     return false;
 | ||
| }
 | ||
| 
 | ||
| void OptionalChain::dump(int indent) const
 | ||
| {
 | ||
|     print_indent(indent);
 | ||
|     outln("{}", class_name());
 | ||
|     m_base->dump(indent + 1);
 | ||
|     for (auto& reference : m_references) {
 | ||
|         reference.visit(
 | ||
|             [&](Call const& call) {
 | ||
|                 print_indent(indent + 1);
 | ||
|                 outln("Call({})", call.mode == Mode::Optional ? "Optional" : "Not Optional");
 | ||
|                 for (auto& argument : call.arguments)
 | ||
|                     argument.value->dump(indent + 2);
 | ||
|             },
 | ||
|             [&](ComputedReference const& ref) {
 | ||
|                 print_indent(indent + 1);
 | ||
|                 outln("ComputedReference({})", ref.mode == Mode::Optional ? "Optional" : "Not Optional");
 | ||
|                 ref.expression->dump(indent + 2);
 | ||
|             },
 | ||
|             [&](MemberReference const& ref) {
 | ||
|                 print_indent(indent + 1);
 | ||
|                 outln("MemberReference({})", ref.mode == Mode::Optional ? "Optional" : "Not Optional");
 | ||
|                 ref.identifier->dump(indent + 2);
 | ||
|             },
 | ||
|             [&](PrivateMemberReference const& ref) {
 | ||
|                 print_indent(indent + 1);
 | ||
|                 outln("PrivateMemberReference({})", ref.mode == Mode::Optional ? "Optional" : "Not Optional");
 | ||
|                 ref.private_identifier->dump(indent + 2);
 | ||
|             });
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| ThrowCompletionOr<OptionalChain::ReferenceAndValue> OptionalChain::to_reference_and_value(Interpreter& interpreter) const
 | ||
| {
 | ||
|     auto& vm = interpreter.vm();
 | ||
| 
 | ||
|     auto base_reference = TRY(m_base->to_reference(interpreter));
 | ||
|     auto base = base_reference.is_unresolvable()
 | ||
|         ? TRY(m_base->execute(interpreter)).release_value()
 | ||
|         : TRY(base_reference.get_value(vm));
 | ||
| 
 | ||
|     for (auto& reference : m_references) {
 | ||
|         auto is_optional = reference.visit([](auto& ref) { return ref.mode; }) == Mode::Optional;
 | ||
|         if (is_optional && base.is_nullish())
 | ||
|             return ReferenceAndValue { {}, js_undefined() };
 | ||
| 
 | ||
|         auto expression = reference.visit(
 | ||
|             [&](Call const& call) -> NonnullRefPtr<Expression const> {
 | ||
|                 return CallExpression::create(source_range(),
 | ||
|                     create_ast_node<SyntheticReferenceExpression>(source_range(), base_reference, base),
 | ||
|                     call.arguments);
 | ||
|             },
 | ||
|             [&](ComputedReference const& ref) -> NonnullRefPtr<Expression const> {
 | ||
|                 return create_ast_node<MemberExpression>(source_range(),
 | ||
|                     create_ast_node<SyntheticReferenceExpression>(source_range(), base_reference, base),
 | ||
|                     ref.expression,
 | ||
|                     true);
 | ||
|             },
 | ||
|             [&](MemberReference const& ref) -> NonnullRefPtr<Expression const> {
 | ||
|                 return create_ast_node<MemberExpression>(source_range(),
 | ||
|                     create_ast_node<SyntheticReferenceExpression>(source_range(), base_reference, base),
 | ||
|                     ref.identifier,
 | ||
|                     false);
 | ||
|             },
 | ||
|             [&](PrivateMemberReference const& ref) -> NonnullRefPtr<Expression const> {
 | ||
|                 return create_ast_node<MemberExpression>(source_range(),
 | ||
|                     create_ast_node<SyntheticReferenceExpression>(source_range(), base_reference, base),
 | ||
|                     ref.private_identifier,
 | ||
|                     false);
 | ||
|             });
 | ||
|         if (is<CallExpression>(*expression)) {
 | ||
|             base_reference = JS::Reference {};
 | ||
|             base = TRY(expression->execute(interpreter)).release_value();
 | ||
|         } else {
 | ||
|             base_reference = TRY(expression->to_reference(interpreter));
 | ||
|             base = TRY(base_reference.get_value(vm));
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     return ReferenceAndValue { move(base_reference), base };
 | ||
| }
 | ||
| 
 | ||
| // 13.3.9.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-optional-chaining-evaluation
 | ||
| Completion OptionalChain::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
|     return TRY(to_reference_and_value(interpreter)).value;
 | ||
| }
 | ||
| 
 | ||
| ThrowCompletionOr<JS::Reference> OptionalChain::to_reference(Interpreter& interpreter) const
 | ||
| {
 | ||
|     return TRY(to_reference_and_value(interpreter)).reference;
 | ||
| }
 | ||
| 
 | ||
| void MetaProperty::dump(int indent) const
 | ||
| {
 | ||
|     DeprecatedString name;
 | ||
|     if (m_type == MetaProperty::Type::NewTarget)
 | ||
|         name = "new.target";
 | ||
|     else if (m_type == MetaProperty::Type::ImportMeta)
 | ||
|         name = "import.meta";
 | ||
|     else
 | ||
|         VERIFY_NOT_REACHED();
 | ||
|     print_indent(indent);
 | ||
|     outln("{} {}", class_name(), name);
 | ||
| }
 | ||
| 
 | ||
| // 13.3.12.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-meta-properties-runtime-semantics-evaluation
 | ||
| Completion MetaProperty::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
|     auto& vm = interpreter.vm();
 | ||
|     auto& realm = *vm.current_realm();
 | ||
| 
 | ||
|     // NewTarget : new . target
 | ||
|     if (m_type == MetaProperty::Type::NewTarget) {
 | ||
|         // 1. Return GetNewTarget().
 | ||
|         return interpreter.vm().get_new_target();
 | ||
|     }
 | ||
| 
 | ||
|     // ImportMeta : import . meta
 | ||
|     if (m_type == MetaProperty::Type::ImportMeta) {
 | ||
|         // 1. Let module be GetActiveScriptOrModule().
 | ||
|         auto script_or_module = interpreter.vm().get_active_script_or_module();
 | ||
| 
 | ||
|         // 2. Assert: module is a Source Text Module Record.
 | ||
|         VERIFY(script_or_module.has<NonnullGCPtr<Module>>());
 | ||
|         VERIFY(script_or_module.get<NonnullGCPtr<Module>>());
 | ||
|         VERIFY(is<SourceTextModule>(*script_or_module.get<NonnullGCPtr<Module>>()));
 | ||
|         auto& module = static_cast<SourceTextModule&>(*script_or_module.get<NonnullGCPtr<Module>>());
 | ||
| 
 | ||
|         // 3. Let importMeta be module.[[ImportMeta]].
 | ||
|         auto* import_meta = module.import_meta();
 | ||
| 
 | ||
|         // 4. If importMeta is empty, then
 | ||
|         if (import_meta == nullptr) {
 | ||
|             // a. Set importMeta to OrdinaryObjectCreate(null).
 | ||
|             import_meta = Object::create(realm, nullptr);
 | ||
| 
 | ||
|             // b. Let importMetaValues be HostGetImportMetaProperties(module).
 | ||
|             auto import_meta_values = interpreter.vm().host_get_import_meta_properties(module);
 | ||
| 
 | ||
|             // c. For each Record { [[Key]], [[Value]] } p of importMetaValues, do
 | ||
|             for (auto& entry : import_meta_values) {
 | ||
|                 // i. Perform ! CreateDataPropertyOrThrow(importMeta, p.[[Key]], p.[[Value]]).
 | ||
|                 MUST(import_meta->create_data_property_or_throw(entry.key, entry.value));
 | ||
|             }
 | ||
| 
 | ||
|             // d. Perform HostFinalizeImportMeta(importMeta, module).
 | ||
|             interpreter.vm().host_finalize_import_meta(import_meta, module);
 | ||
| 
 | ||
|             // e. Set module.[[ImportMeta]] to importMeta.
 | ||
|             module.set_import_meta({}, import_meta);
 | ||
| 
 | ||
|             // f. Return importMeta.
 | ||
|             return Value { import_meta };
 | ||
|         }
 | ||
|         // 5. Else,
 | ||
|         else {
 | ||
|             // a. Assert: Type(importMeta) is Object.
 | ||
|             // Note: This is always true by the type.
 | ||
| 
 | ||
|             // b. Return importMeta.
 | ||
|             return Value { import_meta };
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     VERIFY_NOT_REACHED();
 | ||
| }
 | ||
| 
 | ||
| void ImportCall::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
|     print_indent(indent);
 | ||
|     outln("(Specifier)");
 | ||
|     m_specifier->dump(indent + 1);
 | ||
|     if (m_options) {
 | ||
|         outln("(Options)");
 | ||
|         m_options->dump(indent + 1);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| // 13.3.10.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-import-call-runtime-semantics-evaluation
 | ||
| // Also includes assertions from proposal: https://tc39.es/proposal-import-assertions/#sec-import-call-runtime-semantics-evaluation
 | ||
| Completion ImportCall::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
|     auto& vm = interpreter.vm();
 | ||
|     auto& realm = *vm.current_realm();
 | ||
| 
 | ||
|     // 2.1.1.1 EvaluateImportCall ( specifierExpression [ , optionsExpression ] ), https://tc39.es/proposal-import-assertions/#sec-evaluate-import-call
 | ||
|     //  1. Let referencingScriptOrModule be GetActiveScriptOrModule().
 | ||
|     auto referencing_script_or_module = vm.get_active_script_or_module();
 | ||
| 
 | ||
|     // 2. Let specifierRef be the result of evaluating specifierExpression.
 | ||
|     // 3. Let specifier be ? GetValue(specifierRef).
 | ||
|     auto specifier = TRY(m_specifier->execute(interpreter));
 | ||
| 
 | ||
|     auto options_value = js_undefined();
 | ||
|     // 4. If optionsExpression is present, then
 | ||
|     if (m_options) {
 | ||
|         // a. Let optionsRef be the result of evaluating optionsExpression.
 | ||
|         // b. Let options be ? GetValue(optionsRef).
 | ||
|         options_value = TRY(m_options->execute(interpreter)).release_value();
 | ||
|     }
 | ||
|     // 5. Else,
 | ||
|     // a. Let options be undefined.
 | ||
|     // Note: options_value is undefined by default.
 | ||
| 
 | ||
|     // 6. Let promiseCapability be ! NewPromiseCapability(%Promise%).
 | ||
|     auto promise_capability = MUST(new_promise_capability(vm, realm.intrinsics().promise_constructor()));
 | ||
| 
 | ||
|     // 7. Let specifierString be Completion(ToString(specifier)).
 | ||
|     // 8. IfAbruptRejectPromise(specifierString, promiseCapability).
 | ||
|     auto specifier_string = TRY_OR_REJECT_WITH_VALUE(vm, promise_capability, specifier->to_deprecated_string(vm));
 | ||
| 
 | ||
|     // 9. Let assertions be a new empty List.
 | ||
|     Vector<ModuleRequest::Assertion> assertions;
 | ||
| 
 | ||
|     // 10. If options is not undefined, then
 | ||
|     if (!options_value.is_undefined()) {
 | ||
|         // a. If Type(options) is not Object,
 | ||
|         if (!options_value.is_object()) {
 | ||
|             auto error = TypeError::create(realm, TRY_OR_THROW_OOM(vm, String::formatted(ErrorType::NotAnObject.message(), "ImportOptions")));
 | ||
|             // i. Perform ! Call(promiseCapability.[[Reject]], undefined, « a newly created TypeError object »).
 | ||
|             MUST(call(vm, *promise_capability->reject(), js_undefined(), error));
 | ||
| 
 | ||
|             // ii. Return promiseCapability.[[Promise]].
 | ||
|             return Value { promise_capability->promise() };
 | ||
|         }
 | ||
| 
 | ||
|         // b. Let assertionsObj be Get(options, "assert").
 | ||
|         // c. IfAbruptRejectPromise(assertionsObj, promiseCapability).
 | ||
|         auto assertion_object = TRY_OR_REJECT_WITH_VALUE(vm, promise_capability, options_value.get(vm, vm.names.assert));
 | ||
| 
 | ||
|         // d. If assertionsObj is not undefined,
 | ||
|         if (!assertion_object.is_undefined()) {
 | ||
|             // i. If Type(assertionsObj) is not Object,
 | ||
|             if (!assertion_object.is_object()) {
 | ||
|                 auto error = TypeError::create(realm, TRY_OR_THROW_OOM(vm, String::formatted(ErrorType::NotAnObject.message(), "ImportOptionsAssertions")));
 | ||
|                 // 1. Perform ! Call(promiseCapability.[[Reject]], undefined, « a newly created TypeError object »).
 | ||
|                 MUST(call(vm, *promise_capability->reject(), js_undefined(), error));
 | ||
| 
 | ||
|                 // 2. Return promiseCapability.[[Promise]].
 | ||
|                 return Value { promise_capability->promise() };
 | ||
|             }
 | ||
| 
 | ||
|             // ii. Let keys be EnumerableOwnPropertyNames(assertionsObj, key).
 | ||
|             // iii. IfAbruptRejectPromise(keys, promiseCapability).
 | ||
|             auto keys = TRY_OR_REJECT_WITH_VALUE(vm, promise_capability, assertion_object.as_object().enumerable_own_property_names(Object::PropertyKind::Key));
 | ||
| 
 | ||
|             // iv. Let supportedAssertions be ! HostGetSupportedImportAssertions().
 | ||
|             auto supported_assertions = vm.host_get_supported_import_assertions();
 | ||
| 
 | ||
|             // v. For each String key of keys,
 | ||
|             for (auto const& key : keys) {
 | ||
|                 auto property_key = MUST(key.to_property_key(vm));
 | ||
| 
 | ||
|                 // 1. Let value be Get(assertionsObj, key).
 | ||
|                 // 2. IfAbruptRejectPromise(value, promiseCapability).
 | ||
|                 auto value = TRY_OR_REJECT_WITH_VALUE(vm, promise_capability, assertion_object.get(vm, property_key));
 | ||
| 
 | ||
|                 // 3. If Type(value) is not String, then
 | ||
|                 if (!value.is_string()) {
 | ||
|                     auto error = TypeError::create(realm, TRY_OR_THROW_OOM(vm, String::formatted(ErrorType::NotAString.message(), "Import Assertion option value")));
 | ||
|                     // a. Perform ! Call(promiseCapability.[[Reject]], undefined, « a newly created TypeError object »).
 | ||
|                     MUST(call(vm, *promise_capability->reject(), js_undefined(), error));
 | ||
| 
 | ||
|                     // b. Return promiseCapability.[[Promise]].
 | ||
|                     return Value { promise_capability->promise() };
 | ||
|                 }
 | ||
| 
 | ||
|                 // 4. If supportedAssertions contains key, then
 | ||
|                 if (supported_assertions.contains_slow(property_key.to_string())) {
 | ||
|                     // a. Append { [[Key]]: key, [[Value]]: value } to assertions.
 | ||
|                     assertions.empend(property_key.to_string(), TRY(value.as_string().deprecated_string()));
 | ||
|                 }
 | ||
|             }
 | ||
|         }
 | ||
|         // e. Sort assertions by the code point order of the [[Key]] of each element. NOTE: This sorting is observable only in that hosts are prohibited from distinguishing among assertions by the order they occur in.
 | ||
|         // Note: This is done when constructing the ModuleRequest.
 | ||
|     }
 | ||
| 
 | ||
|     // 11. Let moduleRequest be a new ModuleRequest Record { [[Specifier]]: specifierString, [[Assertions]]: assertions }.
 | ||
|     ModuleRequest request { specifier_string, assertions };
 | ||
| 
 | ||
|     // 12. Perform HostImportModuleDynamically(referencingScriptOrModule, moduleRequest, promiseCapability).
 | ||
|     MUST_OR_THROW_OOM(interpreter.vm().host_import_module_dynamically(referencing_script_or_module, move(request), promise_capability));
 | ||
| 
 | ||
|     // 13. Return promiseCapability.[[Promise]].
 | ||
|     return Value { promise_capability->promise() };
 | ||
| }
 | ||
| 
 | ||
| // 13.2.3.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-literals-runtime-semantics-evaluation
 | ||
| Completion StringLiteral::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
|     auto& vm = interpreter.vm();
 | ||
| 
 | ||
|     // 1. Return the SV of StringLiteral as defined in 12.8.4.2.
 | ||
|     return Value { PrimitiveString::create(vm, m_value) };
 | ||
| }
 | ||
| 
 | ||
| // 13.2.3.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-literals-runtime-semantics-evaluation
 | ||
| Completion NumericLiteral::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // 1. Return the NumericValue of NumericLiteral as defined in 12.8.3.
 | ||
|     return Value(m_value);
 | ||
| }
 | ||
| 
 | ||
| // 13.2.3.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-literals-runtime-semantics-evaluation
 | ||
| Completion BigIntLiteral::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
|     auto& vm = interpreter.vm();
 | ||
| 
 | ||
|     // 1. Return the NumericValue of NumericLiteral as defined in 12.8.3.
 | ||
|     Crypto::SignedBigInteger integer;
 | ||
|     if (m_value[0] == '0' && m_value.length() >= 3) {
 | ||
|         if (m_value[1] == 'x' || m_value[1] == 'X') {
 | ||
|             return Value { BigInt::create(vm, Crypto::SignedBigInteger::from_base(16, m_value.substring(2, m_value.length() - 3))) };
 | ||
|         } else if (m_value[1] == 'o' || m_value[1] == 'O') {
 | ||
|             return Value { BigInt::create(vm, Crypto::SignedBigInteger::from_base(8, m_value.substring(2, m_value.length() - 3))) };
 | ||
|         } else if (m_value[1] == 'b' || m_value[1] == 'B') {
 | ||
|             return Value { BigInt::create(vm, Crypto::SignedBigInteger::from_base(2, m_value.substring(2, m_value.length() - 3))) };
 | ||
|         }
 | ||
|     }
 | ||
|     return Value { BigInt::create(vm, Crypto::SignedBigInteger::from_base(10, m_value.substring(0, m_value.length() - 1))) };
 | ||
| }
 | ||
| 
 | ||
| // 13.2.3.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-literals-runtime-semantics-evaluation
 | ||
| Completion BooleanLiteral::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // 1. If BooleanLiteral is the token false, return false.
 | ||
|     // 2. If BooleanLiteral is the token true, return true.
 | ||
|     return Value(m_value);
 | ||
| }
 | ||
| 
 | ||
| // 13.2.3.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-literals-runtime-semantics-evaluation
 | ||
| Completion NullLiteral::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // 1. Return null.
 | ||
|     return js_null();
 | ||
| }
 | ||
| 
 | ||
| void RegExpLiteral::dump(int indent) const
 | ||
| {
 | ||
|     print_indent(indent);
 | ||
|     outln("{} (/{}/{})", class_name(), pattern(), flags());
 | ||
| }
 | ||
| 
 | ||
| // 13.2.7.3 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-regular-expression-literals-runtime-semantics-evaluation
 | ||
| Completion RegExpLiteral::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
|     auto& vm = interpreter.vm();
 | ||
|     auto& realm = *vm.current_realm();
 | ||
| 
 | ||
|     // 1. Let pattern be CodePointsToString(BodyText of RegularExpressionLiteral).
 | ||
|     auto pattern = this->pattern();
 | ||
| 
 | ||
|     // 2. Let flags be CodePointsToString(FlagText of RegularExpressionLiteral).
 | ||
|     auto flags = this->flags();
 | ||
| 
 | ||
|     // 3. Return ! RegExpCreate(pattern, flags).
 | ||
|     Regex<ECMA262> regex(parsed_regex(), parsed_pattern(), parsed_flags());
 | ||
|     // NOTE: We bypass RegExpCreate and subsequently RegExpAlloc as an optimization to use the already parsed values.
 | ||
|     auto regexp_object = RegExpObject::create(realm, move(regex), move(pattern), move(flags));
 | ||
|     // RegExpAlloc has these two steps from the 'Legacy RegExp features' proposal.
 | ||
|     regexp_object->set_realm(*vm.current_realm());
 | ||
|     // We don't need to check 'If SameValue(newTarget, thisRealm.[[Intrinsics]].[[%RegExp%]]) is true'
 | ||
|     // here as we know RegExpCreate calls RegExpAlloc with %RegExp% for newTarget.
 | ||
|     regexp_object->set_legacy_features_enabled(true);
 | ||
|     return Value { regexp_object };
 | ||
| }
 | ||
| 
 | ||
| void ArrayExpression::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
|     for (auto& element : m_elements) {
 | ||
|         if (element) {
 | ||
|             element->dump(indent + 1);
 | ||
|         } else {
 | ||
|             print_indent(indent + 1);
 | ||
|             outln("<empty>");
 | ||
|         }
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| // 13.2.4.2 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-array-initializer-runtime-semantics-evaluation
 | ||
| Completion ArrayExpression::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
|     auto& vm = interpreter.vm();
 | ||
|     auto& realm = *vm.current_realm();
 | ||
| 
 | ||
|     // 1. Let array be ! ArrayCreate(0).
 | ||
|     auto array = MUST(Array::create(realm, 0));
 | ||
| 
 | ||
|     // 2. Perform ? ArrayAccumulation of ElementList with arguments array and 0.
 | ||
| 
 | ||
|     array->indexed_properties();
 | ||
|     size_t index = 0;
 | ||
|     for (auto& element : m_elements) {
 | ||
|         auto value = Value();
 | ||
|         if (element) {
 | ||
|             value = TRY(element->execute(interpreter)).release_value();
 | ||
| 
 | ||
|             if (is<SpreadExpression>(*element)) {
 | ||
|                 (void)TRY(get_iterator_values(vm, value, [&](Value iterator_value) -> Optional<Completion> {
 | ||
|                     array->indexed_properties().put(index++, iterator_value, default_attributes);
 | ||
|                     return {};
 | ||
|                 }));
 | ||
|                 continue;
 | ||
|             }
 | ||
|         }
 | ||
|         array->indexed_properties().put(index++, value, default_attributes);
 | ||
|     }
 | ||
| 
 | ||
|     // 3. Return array.
 | ||
|     return Value { array };
 | ||
| }
 | ||
| 
 | ||
| void TemplateLiteral::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
|     for (auto& expression : m_expressions)
 | ||
|         expression.dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| // 13.2.8.5 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-template-literals-runtime-semantics-evaluation
 | ||
| Completion TemplateLiteral::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
|     auto& vm = interpreter.vm();
 | ||
| 
 | ||
|     StringBuilder string_builder;
 | ||
| 
 | ||
|     for (auto& expression : m_expressions) {
 | ||
|         // 1. Let head be the TV of TemplateHead as defined in 12.8.6.
 | ||
| 
 | ||
|         // 2. Let subRef be the result of evaluating Expression.
 | ||
|         // 3. Let sub be ? GetValue(subRef).
 | ||
|         auto sub = TRY(expression.execute(interpreter)).release_value();
 | ||
| 
 | ||
|         // 4. Let middle be ? ToString(sub).
 | ||
|         auto string = TRY(sub.to_deprecated_string(vm));
 | ||
|         string_builder.append(string);
 | ||
| 
 | ||
|         // 5. Let tail be the result of evaluating TemplateSpans.
 | ||
|         // 6. ReturnIfAbrupt(tail).
 | ||
|     }
 | ||
| 
 | ||
|     // 7. Return the string-concatenation of head, middle, and tail.
 | ||
|     return Value { PrimitiveString::create(vm, string_builder.to_deprecated_string()) };
 | ||
| }
 | ||
| 
 | ||
| void TaggedTemplateLiteral::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
|     print_indent(indent + 1);
 | ||
|     outln("(Tag)");
 | ||
|     m_tag->dump(indent + 2);
 | ||
|     print_indent(indent + 1);
 | ||
|     outln("(Template Literal)");
 | ||
|     m_template_literal->dump(indent + 2);
 | ||
| }
 | ||
| 
 | ||
| // 13.3.11.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-tagged-templates-runtime-semantics-evaluation
 | ||
| Completion TaggedTemplateLiteral::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
|     auto& vm = interpreter.vm();
 | ||
| 
 | ||
|     // NOTE: This is both
 | ||
|     //  MemberExpression : MemberExpression TemplateLiteral
 | ||
|     //  CallExpression : CallExpression TemplateLiteral
 | ||
| 
 | ||
|     // 1. Let tagRef be ? Evaluation of MemberExpression.
 | ||
|     // 1. Let tagRef be ? Evaluation of CallExpression.
 | ||
|     // 2. Let tagFunc be ? GetValue(tagRef).
 | ||
|     // NOTE: This is much more complicated than the spec because we have to
 | ||
|     //       handle every type of reference. If we handle evaluation closer
 | ||
|     //       to the spec this could be improved.
 | ||
|     Value tag_this_value;
 | ||
|     Value tag;
 | ||
|     if (auto tag_reference = TRY(m_tag->to_reference(interpreter)); tag_reference.is_valid_reference()) {
 | ||
|         tag = TRY(tag_reference.get_value(vm));
 | ||
|         if (tag_reference.is_environment_reference()) {
 | ||
|             auto& environment = tag_reference.base_environment();
 | ||
|             if (environment.has_this_binding())
 | ||
|                 tag_this_value = TRY(environment.get_this_binding(vm));
 | ||
|             else
 | ||
|                 tag_this_value = js_undefined();
 | ||
|         } else {
 | ||
|             tag_this_value = tag_reference.get_this_value();
 | ||
|         }
 | ||
|     } else {
 | ||
|         auto result = TRY(m_tag->execute(interpreter));
 | ||
|         VERIFY(result.has_value());
 | ||
|         tag = result.release_value();
 | ||
|         tag_this_value = js_undefined();
 | ||
|     }
 | ||
| 
 | ||
|     // 3. Let thisCall be this CallExpression.
 | ||
|     // 3. Let thisCall be this MemberExpression.
 | ||
|     // FIXME: 4. Let tailCall be IsInTailPosition(thisCall).
 | ||
| 
 | ||
|     // NOTE: A tagged template is a function call where the arguments of the call are derived from a
 | ||
|     //       TemplateLiteral (13.2.8). The actual arguments include a template object (13.2.8.3)
 | ||
|     //       and the values produced by evaluating the expressions embedded within the TemplateLiteral.
 | ||
|     auto template_ = TRY(get_template_object(interpreter));
 | ||
|     MarkedVector<Value> arguments(interpreter.vm().heap());
 | ||
|     arguments.append(template_);
 | ||
| 
 | ||
|     auto& expressions = m_template_literal->expressions();
 | ||
| 
 | ||
|     // tag`${foo}`             -> "", foo, ""                -> tag(["", ""], foo)
 | ||
|     // tag`foo${bar}baz${qux}` -> "foo", bar, "baz", qux, "" -> tag(["foo", "baz", ""], bar, qux)
 | ||
|     // So we want all the odd expressions
 | ||
|     for (size_t i = 1; i < expressions.size(); i += 2)
 | ||
|         arguments.append(TRY(expressions[i].execute(interpreter)).release_value());
 | ||
| 
 | ||
|     // 5. Return ? EvaluateCall(tagFunc, tagRef, TemplateLiteral, tailCall).
 | ||
|     return call(vm, tag, tag_this_value, move(arguments));
 | ||
| }
 | ||
| 
 | ||
| // 13.2.8.3 GetTemplateObject ( templateLiteral ), https://tc39.es/ecma262/#sec-gettemplateobject
 | ||
| ThrowCompletionOr<Value> TaggedTemplateLiteral::get_template_object(Interpreter& interpreter) const
 | ||
| {
 | ||
|     auto& vm = interpreter.vm();
 | ||
| 
 | ||
|     // 1. Let realm be the current Realm Record.
 | ||
|     auto& realm = *vm.current_realm();
 | ||
| 
 | ||
|     // 2. Let templateRegistry be realm.[[TemplateMap]].
 | ||
|     // 3. For each element e of templateRegistry, do
 | ||
|     //    a. If e.[[Site]] is the same Parse Node as templateLiteral, then
 | ||
|     //        i. Return e.[[Array]].
 | ||
|     // NOTE: Instead of caching on the realm we cache on the Parse Node side as
 | ||
|     //       this makes it easier to track whether it is the same parse node.
 | ||
|     if (auto cached_value_or_end = m_cached_values.find(&realm); cached_value_or_end != m_cached_values.end())
 | ||
|         return Value { cached_value_or_end->value.cell() };
 | ||
| 
 | ||
|     // 4. Let rawStrings be TemplateStrings of templateLiteral with argument true.
 | ||
|     auto& raw_strings = m_template_literal->raw_strings();
 | ||
| 
 | ||
|     // 5. Let cookedStrings be TemplateStrings of templateLiteral with argument false.
 | ||
|     auto& expressions = m_template_literal->expressions();
 | ||
| 
 | ||
|     // 6. Let count be the number of elements in the List cookedStrings.
 | ||
|     // NOTE: Only the even expression in expression are the cooked strings
 | ||
|     //       so we use rawStrings for the size here
 | ||
|     VERIFY(raw_strings.size() == (expressions.size() + 1) / 2);
 | ||
|     auto count = raw_strings.size();
 | ||
| 
 | ||
|     // 7. Assert: count ≤ 2^32 - 1.
 | ||
|     VERIFY(count <= 0xffffffff);
 | ||
| 
 | ||
|     // 8. Let template be ! ArrayCreate(count).
 | ||
|     // NOTE: We don't set count since we push the values using append which
 | ||
|     //       would then append after count. Same for 9.
 | ||
|     auto template_ = MUST(Array::create(realm, 0));
 | ||
| 
 | ||
|     // 9. Let rawObj be ! ArrayCreate(count).
 | ||
|     auto raw_obj = MUST(Array::create(realm, 0));
 | ||
| 
 | ||
|     // 10. Let index be 0.
 | ||
|     // 11. Repeat, while index < count,
 | ||
|     for (size_t i = 0; i < count; ++i) {
 | ||
|         auto cooked_string_index = i * 2;
 | ||
|         // a. Let prop be ! ToString(𝔽(index)).
 | ||
|         // b. Let cookedValue be cookedStrings[index].
 | ||
|         auto cooked_value = TRY(expressions[cooked_string_index].execute(interpreter)).release_value();
 | ||
| 
 | ||
|         // NOTE: If the string contains invalid escapes we get a null expression here,
 | ||
|         //       which we then convert to the expected `undefined` TV. See
 | ||
|         //       12.9.6.1 Static Semantics: TV, https://tc39.es/ecma262/#sec-static-semantics-tv
 | ||
|         if (cooked_value.is_null())
 | ||
|             cooked_value = js_undefined();
 | ||
| 
 | ||
|         // c. Perform ! DefinePropertyOrThrow(template, prop, PropertyDescriptor { [[Value]]: cookedValue, [[Writable]]: false, [[Enumerable]]: true, [[Configurable]]: false }).
 | ||
|         template_->indexed_properties().append(cooked_value);
 | ||
| 
 | ||
|         // d. Let rawValue be the String value rawStrings[index].
 | ||
|         // e. Perform ! DefinePropertyOrThrow(rawObj, prop, PropertyDescriptor { [[Value]]: rawValue, [[Writable]]: false, [[Enumerable]]: true, [[Configurable]]: false }).
 | ||
|         raw_obj->indexed_properties().append(TRY(raw_strings[i].execute(interpreter)).release_value());
 | ||
| 
 | ||
|         // f. Set index to index + 1.
 | ||
|     }
 | ||
| 
 | ||
|     // 12. Perform ! SetIntegrityLevel(rawObj, frozen).
 | ||
|     MUST(raw_obj->set_integrity_level(Object::IntegrityLevel::Frozen));
 | ||
| 
 | ||
|     // 13. Perform ! DefinePropertyOrThrow(template, "raw", PropertyDescriptor { [[Value]]: rawObj, [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }).
 | ||
|     template_->define_direct_property(interpreter.vm().names.raw, raw_obj, 0);
 | ||
| 
 | ||
|     // 14. Perform ! SetIntegrityLevel(template, frozen).
 | ||
|     MUST(template_->set_integrity_level(Object::IntegrityLevel::Frozen));
 | ||
| 
 | ||
|     // 15. Append the Record { [[Site]]: templateLiteral, [[Array]]: template } to templateRegistry.
 | ||
|     m_cached_values.set(&realm, make_handle(template_));
 | ||
| 
 | ||
|     // 16. Return template.
 | ||
|     return template_;
 | ||
| }
 | ||
| 
 | ||
| void TryStatement::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
|     print_indent(indent);
 | ||
|     outln("(Block)");
 | ||
|     block().dump(indent + 1);
 | ||
| 
 | ||
|     if (handler()) {
 | ||
|         print_indent(indent);
 | ||
|         outln("(Handler)");
 | ||
|         handler()->dump(indent + 1);
 | ||
|     }
 | ||
| 
 | ||
|     if (finalizer()) {
 | ||
|         print_indent(indent);
 | ||
|         outln("(Finalizer)");
 | ||
|         finalizer()->dump(indent + 1);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void CatchClause::dump(int indent) const
 | ||
| {
 | ||
|     print_indent(indent);
 | ||
|     m_parameter.visit(
 | ||
|         [&](DeprecatedFlyString const& parameter) {
 | ||
|             if (parameter.is_null())
 | ||
|                 outln("CatchClause");
 | ||
|             else
 | ||
|                 outln("CatchClause ({})", parameter);
 | ||
|         },
 | ||
|         [&](NonnullRefPtr<BindingPattern const> const& pattern) {
 | ||
|             outln("CatchClause");
 | ||
|             print_indent(indent);
 | ||
|             outln("(Parameter)");
 | ||
|             pattern->dump(indent + 2);
 | ||
|         });
 | ||
| 
 | ||
|     body().dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| void ThrowStatement::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
|     argument().dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| // 14.15.3 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-try-statement-runtime-semantics-evaluation
 | ||
| Completion TryStatement::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
|     auto& vm = interpreter.vm();
 | ||
| 
 | ||
|     // 14.15.2 Runtime Semantics: CatchClauseEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-catchclauseevaluation
 | ||
|     auto catch_clause_evaluation = [&](Value thrown_value) {
 | ||
|         // 1. Let oldEnv be the running execution context's LexicalEnvironment.
 | ||
|         auto* old_environment = vm.running_execution_context().lexical_environment;
 | ||
| 
 | ||
|         // 2. Let catchEnv be NewDeclarativeEnvironment(oldEnv).
 | ||
|         auto catch_environment = new_declarative_environment(*old_environment);
 | ||
| 
 | ||
|         m_handler->parameter().visit(
 | ||
|             [&](DeprecatedFlyString const& parameter) {
 | ||
|                 // 3. For each element argName of the BoundNames of CatchParameter, do
 | ||
|                 // a. Perform ! catchEnv.CreateMutableBinding(argName, false).
 | ||
|                 MUST(catch_environment->create_mutable_binding(vm, parameter, false));
 | ||
|             },
 | ||
|             [&](NonnullRefPtr<BindingPattern const> const& pattern) {
 | ||
|                 // 3. For each element argName of the BoundNames of CatchParameter, do
 | ||
|                 // NOTE: Due to the use of MUST with `create_mutable_binding` below, an exception should not result from `for_each_bound_name`.
 | ||
|                 MUST(pattern->for_each_bound_name([&](auto& name) {
 | ||
|                     // a. Perform ! catchEnv.CreateMutableBinding(argName, false).
 | ||
|                     MUST(catch_environment->create_mutable_binding(vm, name, false));
 | ||
|                 }));
 | ||
|             });
 | ||
| 
 | ||
|         // 4. Set the running execution context's LexicalEnvironment to catchEnv.
 | ||
|         vm.running_execution_context().lexical_environment = catch_environment;
 | ||
| 
 | ||
|         // 5. Let status be Completion(BindingInitialization of CatchParameter with arguments thrownValue and catchEnv).
 | ||
|         auto status = m_handler->parameter().visit(
 | ||
|             [&](DeprecatedFlyString const& parameter) {
 | ||
|                 return catch_environment->initialize_binding(vm, parameter, thrown_value, Environment::InitializeBindingHint::Normal);
 | ||
|             },
 | ||
|             [&](NonnullRefPtr<BindingPattern const> const& pattern) {
 | ||
|                 return vm.binding_initialization(pattern, thrown_value, catch_environment);
 | ||
|             });
 | ||
| 
 | ||
|         // 6. If status is an abrupt completion, then
 | ||
|         if (status.is_error()) {
 | ||
|             // a. Set the running execution context's LexicalEnvironment to oldEnv.
 | ||
|             vm.running_execution_context().lexical_environment = old_environment;
 | ||
| 
 | ||
|             // b. Return ? status.
 | ||
|             return status.release_error();
 | ||
|         }
 | ||
| 
 | ||
|         // 7. Let B be the result of evaluating Block.
 | ||
|         auto handler_result = m_handler->body().execute(interpreter);
 | ||
| 
 | ||
|         // 8. Set the running execution context's LexicalEnvironment to oldEnv.
 | ||
|         vm.running_execution_context().lexical_environment = old_environment;
 | ||
| 
 | ||
|         // 9. Return ? B.
 | ||
|         return handler_result;
 | ||
|     };
 | ||
| 
 | ||
|     Completion result;
 | ||
| 
 | ||
|     // 1. Let B be the result of evaluating Block.
 | ||
|     auto block_result = m_block->execute(interpreter);
 | ||
| 
 | ||
|     // TryStatement : try Block Catch
 | ||
|     // TryStatement : try Block Catch Finally
 | ||
|     if (m_handler) {
 | ||
|         // 2. If B.[[Type]] is throw, let C be Completion(CatchClauseEvaluation of Catch with argument B.[[Value]]).
 | ||
|         if (block_result.type() == Completion::Type::Throw)
 | ||
|             result = catch_clause_evaluation(*block_result.value());
 | ||
|         // 3. Else, let C be B.
 | ||
|         else
 | ||
|             result = move(block_result);
 | ||
|     } else {
 | ||
|         // TryStatement : try Block Finally
 | ||
|         // This variant doesn't have C & uses B in the finalizer step.
 | ||
|         result = move(block_result);
 | ||
|     }
 | ||
| 
 | ||
|     // TryStatement : try Block Finally
 | ||
|     // TryStatement : try Block Catch Finally
 | ||
|     if (m_finalizer) {
 | ||
|         // 4. Let F be the result of evaluating Finally.
 | ||
|         auto finalizer_result = m_finalizer->execute(interpreter);
 | ||
| 
 | ||
|         // 5. If F.[[Type]] is normal, set F to C.
 | ||
|         if (finalizer_result.type() == Completion::Type::Normal)
 | ||
|             finalizer_result = move(result);
 | ||
| 
 | ||
|         // 6. Return ? UpdateEmpty(F, undefined).
 | ||
|         return finalizer_result.update_empty(js_undefined());
 | ||
|     }
 | ||
| 
 | ||
|     // 4. Return ? UpdateEmpty(C, undefined).
 | ||
|     return result.update_empty(js_undefined());
 | ||
| }
 | ||
| 
 | ||
| Completion CatchClause::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // NOTE: CatchClause execution is handled by TryStatement.
 | ||
|     VERIFY_NOT_REACHED();
 | ||
|     return {};
 | ||
| }
 | ||
| 
 | ||
| // 14.14.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-throw-statement-runtime-semantics-evaluation
 | ||
| Completion ThrowStatement::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // 1. Let exprRef be the result of evaluating Expression.
 | ||
|     // 2. Let exprValue be ? GetValue(exprRef).
 | ||
|     auto value = TRY(m_argument->execute(interpreter)).release_value();
 | ||
| 
 | ||
|     // 3. Return ThrowCompletion(exprValue).
 | ||
|     return throw_completion(value);
 | ||
| }
 | ||
| 
 | ||
| // 14.1.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-statement-semantics-runtime-semantics-evaluation
 | ||
| // BreakableStatement : SwitchStatement
 | ||
| Completion SwitchStatement::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     // 1. Let newLabelSet be a new empty List.
 | ||
|     // 2. Return ? LabelledEvaluation of this BreakableStatement with argument newLabelSet.
 | ||
|     return labelled_evaluation(interpreter, *this, {});
 | ||
| }
 | ||
| 
 | ||
| // NOTE: Since we don't have the 'BreakableStatement' from the spec as a separate ASTNode that wraps IterationStatement / SwitchStatement,
 | ||
| // execute() needs to take care of LabelledEvaluation, which in turn calls execute_impl().
 | ||
| // 14.12.4 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-switch-statement-runtime-semantics-evaluation
 | ||
| Completion SwitchStatement::execute_impl(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     auto& vm = interpreter.vm();
 | ||
| 
 | ||
|     // 14.12.3 CaseClauseIsSelected ( C, input ), https://tc39.es/ecma262/#sec-runtime-semantics-caseclauseisselected
 | ||
|     auto case_clause_is_selected = [&](auto const& case_clause, auto input) -> ThrowCompletionOr<bool> {
 | ||
|         // 1. Assert: C is an instance of the production CaseClause : case Expression : StatementList[opt] .
 | ||
|         VERIFY(case_clause.test());
 | ||
| 
 | ||
|         // 2. Let exprRef be the result of evaluating the Expression of C.
 | ||
|         // 3. Let clauseSelector be ? GetValue(exprRef).
 | ||
|         auto clause_selector = TRY(case_clause.test()->execute(interpreter)).release_value();
 | ||
| 
 | ||
|         // 4. Return IsStrictlyEqual(input, clauseSelector).
 | ||
|         return is_strictly_equal(input, clause_selector);
 | ||
|     };
 | ||
| 
 | ||
|     // 14.12.2 Runtime Semantics: CaseBlockEvaluation, https://tc39.es/ecma262/#sec-runtime-semantics-caseblockevaluation
 | ||
|     auto case_block_evaluation = [&](auto input) -> Completion {
 | ||
|         // CaseBlock : { }
 | ||
|         if (m_cases.is_empty()) {
 | ||
|             // 1. Return undefined.
 | ||
|             return js_undefined();
 | ||
|         }
 | ||
| 
 | ||
|         NonnullRefPtrVector<SwitchCase const> case_clauses_1;
 | ||
|         NonnullRefPtrVector<SwitchCase const> case_clauses_2;
 | ||
|         RefPtr<SwitchCase const> default_clause;
 | ||
|         for (auto const& switch_case : m_cases) {
 | ||
|             if (!switch_case.test())
 | ||
|                 default_clause = switch_case;
 | ||
|             else if (!default_clause)
 | ||
|                 case_clauses_1.append(switch_case);
 | ||
|             else
 | ||
|                 case_clauses_2.append(switch_case);
 | ||
|         }
 | ||
| 
 | ||
|         // CaseBlock : { CaseClauses }
 | ||
|         if (!default_clause) {
 | ||
|             VERIFY(!case_clauses_1.is_empty());
 | ||
|             VERIFY(case_clauses_2.is_empty());
 | ||
| 
 | ||
|             // 1. Let V be undefined.
 | ||
|             auto last_value = js_undefined();
 | ||
| 
 | ||
|             // 2. Let A be the List of CaseClause items in CaseClauses, in source text order.
 | ||
|             // NOTE: A is case_clauses_1.
 | ||
| 
 | ||
|             // 3. Let found be false.
 | ||
|             auto found = false;
 | ||
| 
 | ||
|             // 4. For each CaseClause C of A, do
 | ||
|             for (auto const& case_clause : case_clauses_1) {
 | ||
|                 // a. If found is false, then
 | ||
|                 if (!found) {
 | ||
|                     // i. Set found to ? CaseClauseIsSelected(C, input).
 | ||
|                     found = TRY(case_clause_is_selected(case_clause, input));
 | ||
|                 }
 | ||
| 
 | ||
|                 // b. If found is true, then
 | ||
|                 if (found) {
 | ||
|                     // i. Let R be the result of evaluating C.
 | ||
|                     auto result = case_clause.evaluate_statements(interpreter);
 | ||
| 
 | ||
|                     // ii. If R.[[Value]] is not empty, set V to R.[[Value]].
 | ||
|                     if (result.value().has_value())
 | ||
|                         last_value = *result.value();
 | ||
| 
 | ||
|                     // iii. If R is an abrupt completion, return ? UpdateEmpty(R, V).
 | ||
|                     if (result.is_abrupt())
 | ||
|                         return result.update_empty(last_value);
 | ||
|                 }
 | ||
|             }
 | ||
| 
 | ||
|             // 5. Return V.
 | ||
|             return last_value;
 | ||
|         }
 | ||
|         // CaseBlock : { CaseClauses[opt] DefaultClause CaseClauses[opt] }
 | ||
|         else {
 | ||
|             // 1. Let V be undefined.
 | ||
|             auto last_value = js_undefined();
 | ||
| 
 | ||
|             // 2. If the first CaseClauses is present, then
 | ||
|             //    a. Let A be the List of CaseClause items in the first CaseClauses, in source text order.
 | ||
|             // 3. Else,
 | ||
|             //    a. Let A be a new empty List.
 | ||
|             // NOTE: A is case_clauses_1.
 | ||
| 
 | ||
|             // 4. Let found be false.
 | ||
|             auto found = false;
 | ||
| 
 | ||
|             // 5. For each CaseClause C of A, do
 | ||
|             for (auto const& case_clause : case_clauses_1) {
 | ||
|                 // a. If found is false, then
 | ||
|                 if (!found) {
 | ||
|                     // i. Set found to ? CaseClauseIsSelected(C, input).
 | ||
|                     found = TRY(case_clause_is_selected(case_clause, input));
 | ||
|                 }
 | ||
| 
 | ||
|                 // b. If found is true, then
 | ||
|                 if (found) {
 | ||
|                     // i. Let R be the result of evaluating C.
 | ||
|                     auto result = case_clause.evaluate_statements(interpreter);
 | ||
| 
 | ||
|                     // ii. If R.[[Value]] is not empty, set V to R.[[Value]].
 | ||
|                     if (result.value().has_value())
 | ||
|                         last_value = *result.value();
 | ||
| 
 | ||
|                     // iii. If R is an abrupt completion, return ? UpdateEmpty(R, V).
 | ||
|                     if (result.is_abrupt())
 | ||
|                         return result.update_empty(last_value);
 | ||
|                 }
 | ||
|             }
 | ||
| 
 | ||
|             // 6. Let foundInB be false.
 | ||
|             auto found_in_b = false;
 | ||
| 
 | ||
|             // 7. If the second CaseClauses is present, then
 | ||
|             //    a. Let B be the List of CaseClause items in the second CaseClauses, in source text order.
 | ||
|             // 8. Else,
 | ||
|             //    a. Let B be a new empty List.
 | ||
|             // NOTE: B is case_clauses_2.
 | ||
| 
 | ||
|             // 9. If found is false, then
 | ||
|             if (!found) {
 | ||
|                 // a. For each CaseClause C of B, do
 | ||
|                 for (auto const& case_clause : case_clauses_2) {
 | ||
|                     // i. If foundInB is false, then
 | ||
|                     if (!found_in_b) {
 | ||
|                         // 1. Set foundInB to ? CaseClauseIsSelected(C, input).
 | ||
|                         found_in_b = TRY(case_clause_is_selected(case_clause, input));
 | ||
|                     }
 | ||
| 
 | ||
|                     // ii. If foundInB is true, then
 | ||
|                     if (found_in_b) {
 | ||
|                         // 1. Let R be the result of evaluating CaseClause C.
 | ||
|                         auto result = case_clause.evaluate_statements(interpreter);
 | ||
| 
 | ||
|                         // 2. If R.[[Value]] is not empty, set V to R.[[Value]].
 | ||
|                         if (result.value().has_value())
 | ||
|                             last_value = *result.value();
 | ||
| 
 | ||
|                         // 3. If R is an abrupt completion, return ? UpdateEmpty(R, V).
 | ||
|                         if (result.is_abrupt())
 | ||
|                             return result.update_empty(last_value);
 | ||
|                     }
 | ||
|                 }
 | ||
|             }
 | ||
| 
 | ||
|             // 10. If foundInB is true, return V.
 | ||
|             if (found_in_b)
 | ||
|                 return last_value;
 | ||
| 
 | ||
|             // 11. Let R be the result of evaluating DefaultClause.
 | ||
|             auto result = default_clause->evaluate_statements(interpreter);
 | ||
| 
 | ||
|             // 12. If R.[[Value]] is not empty, set V to R.[[Value]].
 | ||
|             if (result.value().has_value())
 | ||
|                 last_value = *result.value();
 | ||
| 
 | ||
|             // 13. If R is an abrupt completion, return ? UpdateEmpty(R, V).
 | ||
|             if (result.is_abrupt())
 | ||
|                 return result.update_empty(last_value);
 | ||
| 
 | ||
|             // 14. NOTE: The following is another complete iteration of the second CaseClauses.
 | ||
|             // 15. For each CaseClause C of B, do
 | ||
|             for (auto const& case_clause : case_clauses_2) {
 | ||
|                 // a. Let R be the result of evaluating CaseClause C.
 | ||
|                 result = case_clause.evaluate_statements(interpreter);
 | ||
| 
 | ||
|                 // b. If R.[[Value]] is not empty, set V to R.[[Value]].
 | ||
|                 if (result.value().has_value())
 | ||
|                     last_value = *result.value();
 | ||
| 
 | ||
|                 // c. If R is an abrupt completion, return ? UpdateEmpty(R, V).
 | ||
|                 if (result.is_abrupt())
 | ||
|                     return result.update_empty(last_value);
 | ||
|             }
 | ||
| 
 | ||
|             // 16. Return V.
 | ||
|             return last_value;
 | ||
|         }
 | ||
| 
 | ||
|         VERIFY_NOT_REACHED();
 | ||
|     };
 | ||
| 
 | ||
|     // SwitchStatement : switch ( Expression ) CaseBlock
 | ||
|     // 1. Let exprRef be the result of evaluating Expression.
 | ||
|     // 2. Let switchValue be ? GetValue(exprRef).
 | ||
|     auto switch_value = TRY(m_discriminant->execute(interpreter)).release_value();
 | ||
| 
 | ||
|     Completion result;
 | ||
| 
 | ||
|     // Optimization: Avoid creating a lexical environment if there are no lexical declarations.
 | ||
|     if (has_lexical_declarations()) {
 | ||
|         // 3. Let oldEnv be the running execution context's LexicalEnvironment.
 | ||
|         auto* old_environment = interpreter.lexical_environment();
 | ||
| 
 | ||
|         // 4. Let blockEnv be NewDeclarativeEnvironment(oldEnv).
 | ||
|         auto block_environment = new_declarative_environment(*old_environment);
 | ||
| 
 | ||
|         // 5. Perform BlockDeclarationInstantiation(CaseBlock, blockEnv).
 | ||
|         block_declaration_instantiation(interpreter, block_environment);
 | ||
| 
 | ||
|         // 6. Set the running execution context's LexicalEnvironment to blockEnv.
 | ||
|         vm.running_execution_context().lexical_environment = block_environment;
 | ||
| 
 | ||
|         // 7. Let R be Completion(CaseBlockEvaluation of CaseBlock with argument switchValue).
 | ||
|         result = case_block_evaluation(switch_value);
 | ||
| 
 | ||
|         // 8. Let env be blockEnv's LexicalEnvironment.
 | ||
|         // FIXME: blockEnv doesn't have a lexical env it is one?? Probably a spec issue
 | ||
| 
 | ||
|         // 9. Set R to DisposeResources(env, R).
 | ||
|         result = dispose_resources(vm, block_environment, result);
 | ||
| 
 | ||
|         // 10. Set the running execution context's LexicalEnvironment to oldEnv.
 | ||
|         vm.running_execution_context().lexical_environment = old_environment;
 | ||
|     } else {
 | ||
|         result = case_block_evaluation(switch_value);
 | ||
|     }
 | ||
| 
 | ||
|     // 11. Return R.
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| Completion SwitchCase::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // NOTE: SwitchCase execution is handled by SwitchStatement.
 | ||
|     VERIFY_NOT_REACHED();
 | ||
|     return {};
 | ||
| }
 | ||
| 
 | ||
| // 14.9.2 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-break-statement-runtime-semantics-evaluation
 | ||
| Completion BreakStatement::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // BreakStatement : break ;
 | ||
|     if (m_target_label.is_null()) {
 | ||
|         // 1. Return Completion Record { [[Type]]: break, [[Value]]: empty, [[Target]]: empty }.
 | ||
|         return { Completion::Type::Break, {}, {} };
 | ||
|     }
 | ||
| 
 | ||
|     // BreakStatement : break LabelIdentifier ;
 | ||
|     // 1. Let label be the StringValue of LabelIdentifier.
 | ||
|     // 2. Return Completion Record { [[Type]]: break, [[Value]]: empty, [[Target]]: label }.
 | ||
|     return { Completion::Type::Break, {}, m_target_label };
 | ||
| }
 | ||
| 
 | ||
| // 14.8.2 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-continue-statement-runtime-semantics-evaluation
 | ||
| Completion ContinueStatement::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // ContinueStatement : continue ;
 | ||
|     if (m_target_label.is_null()) {
 | ||
|         // 1. Return Completion Record { [[Type]]: continue, [[Value]]: empty, [[Target]]: empty }.
 | ||
|         return { Completion::Type::Continue, {}, {} };
 | ||
|     }
 | ||
| 
 | ||
|     // ContinueStatement : continue LabelIdentifier ;
 | ||
|     // 1. Let label be the StringValue of LabelIdentifier.
 | ||
|     // 2. Return Completion Record { [[Type]]: continue, [[Value]]: empty, [[Target]]: label }.
 | ||
|     return { Completion::Type::Continue, {}, m_target_label };
 | ||
| }
 | ||
| 
 | ||
| void SwitchStatement::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
|     m_discriminant->dump(indent + 1);
 | ||
|     for (auto& switch_case : m_cases) {
 | ||
|         switch_case.dump(indent + 1);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void SwitchCase::dump(int indent) const
 | ||
| {
 | ||
|     print_indent(indent + 1);
 | ||
|     if (m_test) {
 | ||
|         outln("(Test)");
 | ||
|         m_test->dump(indent + 2);
 | ||
|     } else {
 | ||
|         outln("(Default)");
 | ||
|     }
 | ||
|     print_indent(indent + 1);
 | ||
|     outln("(Consequent)");
 | ||
|     ScopeNode::dump(indent + 2);
 | ||
| }
 | ||
| 
 | ||
| // 13.14.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-conditional-operator-runtime-semantics-evaluation
 | ||
| Completion ConditionalExpression::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // 1. Let lref be the result of evaluating ShortCircuitExpression.
 | ||
|     // 2. Let lval be ToBoolean(? GetValue(lref)).
 | ||
|     auto test_result = TRY(m_test->execute(interpreter)).release_value();
 | ||
| 
 | ||
|     // 3. If lval is true, then
 | ||
|     if (test_result.to_boolean()) {
 | ||
|         // a. Let trueRef be the result of evaluating the first AssignmentExpression.
 | ||
|         // b. Return ? GetValue(trueRef).
 | ||
|         return m_consequent->execute(interpreter);
 | ||
|     }
 | ||
|     // 4. Else,
 | ||
|     else {
 | ||
|         // a. Let falseRef be the result of evaluating the second AssignmentExpression.
 | ||
|         // b. Return ? GetValue(falseRef).
 | ||
|         return m_alternate->execute(interpreter);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void ConditionalExpression::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
|     print_indent(indent + 1);
 | ||
|     outln("(Test)");
 | ||
|     m_test->dump(indent + 2);
 | ||
|     print_indent(indent + 1);
 | ||
|     outln("(Consequent)");
 | ||
|     m_consequent->dump(indent + 2);
 | ||
|     print_indent(indent + 1);
 | ||
|     outln("(Alternate)");
 | ||
|     m_alternate->dump(indent + 2);
 | ||
| }
 | ||
| 
 | ||
| void SequenceExpression::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
|     for (auto& expression : m_expressions)
 | ||
|         expression.dump(indent + 1);
 | ||
| }
 | ||
| 
 | ||
| // 13.16.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-comma-operator-runtime-semantics-evaluation
 | ||
| Completion SequenceExpression::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // NOTE: Not sure why the last node is an AssignmentExpression in the spec :yakfused:
 | ||
|     // 1. Let lref be the result of evaluating Expression.
 | ||
|     // 2. Perform ? GetValue(lref).
 | ||
|     // 3. Let rref be the result of evaluating AssignmentExpression.
 | ||
|     // 4. Return ? GetValue(rref).
 | ||
|     Value last_value;
 | ||
|     for (auto const& expression : m_expressions)
 | ||
|         last_value = TRY(expression.execute(interpreter)).release_value();
 | ||
|     return { move(last_value) };
 | ||
| }
 | ||
| 
 | ||
| // 14.16.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-debugger-statement-runtime-semantics-evaluation
 | ||
| Completion DebuggerStatement::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     Completion result;
 | ||
| 
 | ||
|     // 1. If an implementation-defined debugging facility is available and enabled, then
 | ||
|     if (false) {
 | ||
|         // a. Perform an implementation-defined debugging action.
 | ||
|         // b. Return a new implementation-defined Completion Record.
 | ||
|         VERIFY_NOT_REACHED();
 | ||
|     }
 | ||
|     // 2. Else,
 | ||
|     else {
 | ||
|         // a. Return empty.
 | ||
|         return Optional<Value> {};
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| ThrowCompletionOr<void> ScopeNode::for_each_lexically_scoped_declaration(ThrowCompletionOrVoidCallback<Declaration const&>&& callback) const
 | ||
| {
 | ||
|     for (auto& declaration : m_lexical_declarations)
 | ||
|         TRY(callback(declaration));
 | ||
| 
 | ||
|     return {};
 | ||
| }
 | ||
| 
 | ||
| ThrowCompletionOr<void> ScopeNode::for_each_lexically_declared_name(ThrowCompletionOrVoidCallback<DeprecatedFlyString const&>&& callback) const
 | ||
| {
 | ||
|     for (auto const& declaration : m_lexical_declarations) {
 | ||
|         TRY(declaration.for_each_bound_name([&](auto const& name) {
 | ||
|             return callback(name);
 | ||
|         }));
 | ||
|     }
 | ||
|     return {};
 | ||
| }
 | ||
| 
 | ||
| ThrowCompletionOr<void> ScopeNode::for_each_var_declared_name(ThrowCompletionOrVoidCallback<DeprecatedFlyString const&>&& callback) const
 | ||
| {
 | ||
|     for (auto& declaration : m_var_declarations) {
 | ||
|         TRY(declaration.for_each_bound_name([&](auto const& name) {
 | ||
|             return callback(name);
 | ||
|         }));
 | ||
|     }
 | ||
|     return {};
 | ||
| }
 | ||
| 
 | ||
| ThrowCompletionOr<void> ScopeNode::for_each_var_function_declaration_in_reverse_order(ThrowCompletionOrVoidCallback<FunctionDeclaration const&>&& callback) const
 | ||
| {
 | ||
|     for (ssize_t i = m_var_declarations.size() - 1; i >= 0; i--) {
 | ||
|         auto& declaration = m_var_declarations[i];
 | ||
|         if (is<FunctionDeclaration>(declaration))
 | ||
|             TRY(callback(static_cast<FunctionDeclaration const&>(declaration)));
 | ||
|     }
 | ||
|     return {};
 | ||
| }
 | ||
| 
 | ||
| ThrowCompletionOr<void> ScopeNode::for_each_var_scoped_variable_declaration(ThrowCompletionOrVoidCallback<VariableDeclaration const&>&& callback) const
 | ||
| {
 | ||
|     for (auto& declaration : m_var_declarations) {
 | ||
|         if (!is<FunctionDeclaration>(declaration)) {
 | ||
|             VERIFY(is<VariableDeclaration>(declaration));
 | ||
|             TRY(callback(static_cast<VariableDeclaration const&>(declaration)));
 | ||
|         }
 | ||
|     }
 | ||
|     return {};
 | ||
| }
 | ||
| 
 | ||
| ThrowCompletionOr<void> ScopeNode::for_each_function_hoistable_with_annexB_extension(ThrowCompletionOrVoidCallback<FunctionDeclaration&>&& callback) const
 | ||
| {
 | ||
|     for (auto& function : m_functions_hoistable_with_annexB_extension) {
 | ||
|         // We need const_cast here since it might have to set a property on function declaration.
 | ||
|         TRY(callback(const_cast<FunctionDeclaration&>(function)));
 | ||
|     }
 | ||
|     return {};
 | ||
| }
 | ||
| 
 | ||
| void ScopeNode::add_lexical_declaration(NonnullRefPtr<Declaration const> declaration)
 | ||
| {
 | ||
|     m_lexical_declarations.append(move(declaration));
 | ||
| }
 | ||
| 
 | ||
| void ScopeNode::add_var_scoped_declaration(NonnullRefPtr<Declaration const> declaration)
 | ||
| {
 | ||
|     m_var_declarations.append(move(declaration));
 | ||
| }
 | ||
| 
 | ||
| void ScopeNode::add_hoisted_function(NonnullRefPtr<FunctionDeclaration const> declaration)
 | ||
| {
 | ||
|     m_functions_hoistable_with_annexB_extension.append(move(declaration));
 | ||
| }
 | ||
| 
 | ||
| // 16.2.1.11 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-module-semantics-runtime-semantics-evaluation
 | ||
| Completion ImportStatement::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
| 
 | ||
|     // 1. Return empty.
 | ||
|     return Optional<Value> {};
 | ||
| }
 | ||
| 
 | ||
| DeprecatedFlyString ExportStatement::local_name_for_default = "*default*";
 | ||
| 
 | ||
| // 16.2.3.7 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-exports-runtime-semantics-evaluation
 | ||
| Completion ExportStatement::execute(Interpreter& interpreter) const
 | ||
| {
 | ||
|     InterpreterNodeScope node_scope { interpreter, *this };
 | ||
|     auto& vm = interpreter.vm();
 | ||
| 
 | ||
|     if (!is_default_export()) {
 | ||
|         if (m_statement) {
 | ||
|             // 1. Return the result of evaluating <Thing>.
 | ||
|             return m_statement->execute(interpreter);
 | ||
|         }
 | ||
| 
 | ||
|         // 1. Return empty.
 | ||
|         return Optional<Value> {};
 | ||
|     }
 | ||
| 
 | ||
|     VERIFY(m_statement);
 | ||
| 
 | ||
|     // ExportDeclaration : export default HoistableDeclaration
 | ||
|     if (is<FunctionDeclaration>(*m_statement)) {
 | ||
|         // 1. Return the result of evaluating HoistableDeclaration.
 | ||
|         return m_statement->execute(interpreter);
 | ||
|     }
 | ||
| 
 | ||
|     // ExportDeclaration : export default ClassDeclaration
 | ||
|     // ClassDeclaration: class BindingIdentifier[?Yield, ?Await] ClassTail[?Yield, ?Await]
 | ||
|     if (is<ClassDeclaration>(*m_statement)) {
 | ||
|         auto const& class_declaration = static_cast<ClassDeclaration const&>(*m_statement);
 | ||
| 
 | ||
|         // 1. Let value be ? BindingClassDeclarationEvaluation of ClassDeclaration.
 | ||
|         auto value = TRY(binding_class_declaration_evaluation(interpreter, class_declaration.m_class_expression));
 | ||
| 
 | ||
|         // 2. Let className be the sole element of BoundNames of ClassDeclaration.
 | ||
|         // 3. If className is "*default*", then
 | ||
|         // Note: We never go into step 3. since a ClassDeclaration always has a name and "*default*" is not a class name.
 | ||
|         (void)value;
 | ||
| 
 | ||
|         // 4. Return empty.
 | ||
|         return Optional<Value> {};
 | ||
|     }
 | ||
| 
 | ||
|     // ExportDeclaration : export default ClassDeclaration
 | ||
|     // ClassDeclaration: [+Default] class ClassTail [?Yield, ?Await]
 | ||
|     if (is<ClassExpression>(*m_statement)) {
 | ||
|         auto& class_expression = static_cast<ClassExpression const&>(*m_statement);
 | ||
| 
 | ||
|         // 1. Let value be ? BindingClassDeclarationEvaluation of ClassDeclaration.
 | ||
|         auto value = TRY(binding_class_declaration_evaluation(interpreter, class_expression));
 | ||
| 
 | ||
|         // 2. Let className be the sole element of BoundNames of ClassDeclaration.
 | ||
|         // 3. If className is "*default*", then
 | ||
|         if (!class_expression.has_name()) {
 | ||
|             // Note: This can only occur if the class does not have a name since "*default*" is normally not valid.
 | ||
| 
 | ||
|             // a. Let env be the running execution context's LexicalEnvironment.
 | ||
|             auto* env = interpreter.lexical_environment();
 | ||
| 
 | ||
|             // b. Perform ? InitializeBoundName("*default*", value, env).
 | ||
|             TRY(initialize_bound_name(vm, ExportStatement::local_name_for_default, value, env));
 | ||
|         }
 | ||
| 
 | ||
|         // 4. Return empty.
 | ||
|         return Optional<Value> {};
 | ||
|     }
 | ||
| 
 | ||
|     // ExportDeclaration : export default AssignmentExpression ;
 | ||
| 
 | ||
|     // 1. If IsAnonymousFunctionDefinition(AssignmentExpression) is true, then
 | ||
|     //     a. Let value be ? NamedEvaluation of AssignmentExpression with argument "default".
 | ||
|     // 2. Else,
 | ||
|     //     a. Let rhs be the result of evaluating AssignmentExpression.
 | ||
|     //     b. Let value be ? GetValue(rhs).
 | ||
|     auto value = TRY(vm.named_evaluation_if_anonymous_function(*m_statement, "default"));
 | ||
| 
 | ||
|     // 3. Let env be the running execution context's LexicalEnvironment.
 | ||
|     auto* env = interpreter.lexical_environment();
 | ||
| 
 | ||
|     // 4. Perform ? InitializeBoundName("*default*", value, env).
 | ||
|     TRY(initialize_bound_name(vm, ExportStatement::local_name_for_default, value, env));
 | ||
| 
 | ||
|     // 5. Return empty.
 | ||
|     return Optional<Value> {};
 | ||
| }
 | ||
| 
 | ||
| static void dump_assert_clauses(ModuleRequest const& request)
 | ||
| {
 | ||
|     if (!request.assertions.is_empty()) {
 | ||
|         out("[ ");
 | ||
|         for (auto& assertion : request.assertions)
 | ||
|             out("{}: {}, ", assertion.key, assertion.value);
 | ||
|         out(" ]");
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void ExportStatement::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
|     print_indent(indent + 1);
 | ||
|     outln("(ExportEntries)");
 | ||
| 
 | ||
|     auto string_or_null = [](DeprecatedString const& string) -> DeprecatedString {
 | ||
|         if (string.is_empty()) {
 | ||
|             return "null";
 | ||
|         }
 | ||
|         return DeprecatedString::formatted("\"{}\"", string);
 | ||
|     };
 | ||
| 
 | ||
|     for (auto& entry : m_entries) {
 | ||
|         print_indent(indent + 2);
 | ||
|         out("ExportName: {}, ImportName: {}, LocalName: {}, ModuleRequest: ",
 | ||
|             string_or_null(entry.export_name),
 | ||
|             entry.is_module_request() ? string_or_null(entry.local_or_import_name) : "null",
 | ||
|             entry.is_module_request() ? "null" : string_or_null(entry.local_or_import_name));
 | ||
|         if (entry.is_module_request()) {
 | ||
|             out("{}", entry.m_module_request->module_specifier);
 | ||
|             dump_assert_clauses(*entry.m_module_request);
 | ||
|             outln();
 | ||
|         } else {
 | ||
|             outln("null");
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     if (m_statement) {
 | ||
|         print_indent(indent + 1);
 | ||
|         outln("(Statement)");
 | ||
|         m_statement->dump(indent + 2);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void ImportStatement::dump(int indent) const
 | ||
| {
 | ||
|     ASTNode::dump(indent);
 | ||
|     print_indent(indent + 1);
 | ||
|     if (m_entries.is_empty()) {
 | ||
|         // direct from "module" import
 | ||
|         outln("Entire module '{}'", m_module_request.module_specifier);
 | ||
|         dump_assert_clauses(m_module_request);
 | ||
|     } else {
 | ||
|         outln("(ExportEntries) from {}", m_module_request.module_specifier);
 | ||
|         dump_assert_clauses(m_module_request);
 | ||
| 
 | ||
|         for (auto& entry : m_entries) {
 | ||
|             print_indent(indent + 2);
 | ||
|             outln("ImportName: {}, LocalName: {}", entry.import_name, entry.local_name);
 | ||
|         }
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| bool ExportStatement::has_export(DeprecatedFlyString const& export_name) const
 | ||
| {
 | ||
|     return any_of(m_entries.begin(), m_entries.end(), [&](auto& entry) {
 | ||
|         // Make sure that empty exported names does not overlap with anything
 | ||
|         if (entry.kind != ExportEntry::Kind::NamedExport)
 | ||
|             return false;
 | ||
|         return entry.export_name == export_name;
 | ||
|     });
 | ||
| }
 | ||
| 
 | ||
| bool ImportStatement::has_bound_name(DeprecatedFlyString const& name) const
 | ||
| {
 | ||
|     return any_of(m_entries.begin(), m_entries.end(), [&](auto& entry) {
 | ||
|         return entry.local_name == name;
 | ||
|     });
 | ||
| }
 | ||
| 
 | ||
| // 14.2.3 BlockDeclarationInstantiation ( code, env ), https://tc39.es/ecma262/#sec-blockdeclarationinstantiation
 | ||
| void ScopeNode::block_declaration_instantiation(Interpreter& interpreter, Environment* environment) const
 | ||
| {
 | ||
|     // See also B.3.2.6 Changes to BlockDeclarationInstantiation, https://tc39.es/ecma262/#sec-web-compat-blockdeclarationinstantiation
 | ||
|     auto& vm = interpreter.vm();
 | ||
|     auto& realm = *vm.current_realm();
 | ||
| 
 | ||
|     VERIFY(environment);
 | ||
|     auto* private_environment = vm.running_execution_context().private_environment;
 | ||
|     // Note: All the calls here are ! and thus we do not need to TRY this callback.
 | ||
|     //       We use MUST to ensure it does not throw and to avoid discarding the returned ThrowCompletionOr<void>.
 | ||
|     MUST(for_each_lexically_scoped_declaration([&](Declaration const& declaration) {
 | ||
|         auto is_constant_declaration = declaration.is_constant_declaration();
 | ||
|         // NOTE: Due to the use of MUST with `create_immutable_binding` and `create_mutable_binding` below,
 | ||
|         //       an exception should not result from `for_each_bound_name`.
 | ||
|         MUST(declaration.for_each_bound_name([&](auto const& name) {
 | ||
|             if (is_constant_declaration) {
 | ||
|                 MUST(environment->create_immutable_binding(vm, name, true));
 | ||
|             } else {
 | ||
|                 if (!MUST(environment->has_binding(name)))
 | ||
|                     MUST(environment->create_mutable_binding(vm, name, false));
 | ||
|             }
 | ||
|         }));
 | ||
| 
 | ||
|         if (is<FunctionDeclaration>(declaration)) {
 | ||
|             auto& function_declaration = static_cast<FunctionDeclaration const&>(declaration);
 | ||
|             auto function = ECMAScriptFunctionObject::create(realm, function_declaration.name(), function_declaration.source_text(), function_declaration.body(), function_declaration.parameters(), function_declaration.function_length(), environment, private_environment, function_declaration.kind(), function_declaration.is_strict_mode(), function_declaration.might_need_arguments_object(), function_declaration.contains_direct_call_to_eval());
 | ||
|             VERIFY(is<DeclarativeEnvironment>(*environment));
 | ||
|             static_cast<DeclarativeEnvironment&>(*environment).initialize_or_set_mutable_binding({}, vm, function_declaration.name(), function);
 | ||
|         }
 | ||
|     }));
 | ||
| }
 | ||
| 
 | ||
| // 16.1.7 GlobalDeclarationInstantiation ( script, env ), https://tc39.es/ecma262/#sec-globaldeclarationinstantiation
 | ||
| ThrowCompletionOr<void> Program::global_declaration_instantiation(Interpreter& interpreter, GlobalEnvironment& global_environment) const
 | ||
| {
 | ||
|     auto& vm = interpreter.vm();
 | ||
|     auto& realm = *vm.current_realm();
 | ||
| 
 | ||
|     // 1. Let lexNames be the LexicallyDeclaredNames of script.
 | ||
|     // 2. Let varNames be the VarDeclaredNames of script.
 | ||
|     // 3. For each element name of lexNames, do
 | ||
|     TRY(for_each_lexically_declared_name([&](DeprecatedFlyString const& name) -> ThrowCompletionOr<void> {
 | ||
|         // a. If env.HasVarDeclaration(name) is true, throw a SyntaxError exception.
 | ||
|         if (global_environment.has_var_declaration(name))
 | ||
|             return vm.throw_completion<SyntaxError>(ErrorType::TopLevelVariableAlreadyDeclared, name);
 | ||
| 
 | ||
|         // b. If env.HasLexicalDeclaration(name) is true, throw a SyntaxError exception.
 | ||
|         if (global_environment.has_lexical_declaration(name))
 | ||
|             return vm.throw_completion<SyntaxError>(ErrorType::TopLevelVariableAlreadyDeclared, name);
 | ||
| 
 | ||
|         // c. Let hasRestrictedGlobal be ? env.HasRestrictedGlobalProperty(name).
 | ||
|         auto has_restricted_global = TRY(global_environment.has_restricted_global_property(name));
 | ||
| 
 | ||
|         // d. If hasRestrictedGlobal is true, throw a SyntaxError exception.
 | ||
|         if (has_restricted_global)
 | ||
|             return vm.throw_completion<SyntaxError>(ErrorType::RestrictedGlobalProperty, name);
 | ||
| 
 | ||
|         return {};
 | ||
|     }));
 | ||
| 
 | ||
|     // 4. For each element name of varNames, do
 | ||
|     TRY(for_each_var_declared_name([&](auto const& name) -> ThrowCompletionOr<void> {
 | ||
|         // a. If env.HasLexicalDeclaration(name) is true, throw a SyntaxError exception.
 | ||
|         if (global_environment.has_lexical_declaration(name))
 | ||
|             return vm.throw_completion<SyntaxError>(ErrorType::TopLevelVariableAlreadyDeclared, name);
 | ||
| 
 | ||
|         return {};
 | ||
|     }));
 | ||
| 
 | ||
|     // 5. Let varDeclarations be the VarScopedDeclarations of script.
 | ||
|     // 6. Let functionsToInitialize be a new empty List.
 | ||
|     Vector<FunctionDeclaration const&> functions_to_initialize;
 | ||
| 
 | ||
|     // 7. Let declaredFunctionNames be a new empty List.
 | ||
|     HashTable<DeprecatedFlyString> declared_function_names;
 | ||
| 
 | ||
|     // 8. For each element d of varDeclarations, in reverse List order, do
 | ||
| 
 | ||
|     TRY(for_each_var_function_declaration_in_reverse_order([&](FunctionDeclaration const& function) -> ThrowCompletionOr<void> {
 | ||
|         // a. If d is neither a VariableDeclaration nor a ForBinding nor a BindingIdentifier, then
 | ||
|         // i. Assert: d is either a FunctionDeclaration, a GeneratorDeclaration, an AsyncFunctionDeclaration, or an AsyncGeneratorDeclaration.
 | ||
|         // Note: This is checked in for_each_var_function_declaration_in_reverse_order.
 | ||
| 
 | ||
|         // ii. NOTE: If there are multiple function declarations for the same name, the last declaration is used.
 | ||
| 
 | ||
|         // iii. Let fn be the sole element of the BoundNames of d.
 | ||
| 
 | ||
|         // iv. If fn is not an element of declaredFunctionNames, then
 | ||
|         if (declared_function_names.set(function.name()) != AK::HashSetResult::InsertedNewEntry)
 | ||
|             return {};
 | ||
| 
 | ||
|         // 1. Let fnDefinable be ? env.CanDeclareGlobalFunction(fn).
 | ||
|         auto function_definable = TRY(global_environment.can_declare_global_function(function.name()));
 | ||
| 
 | ||
|         // 2. If fnDefinable is false, throw a TypeError exception.
 | ||
|         if (!function_definable)
 | ||
|             return vm.throw_completion<TypeError>(ErrorType::CannotDeclareGlobalFunction, function.name());
 | ||
| 
 | ||
|         // 3. Append fn to declaredFunctionNames.
 | ||
|         // Note: Already done in step iv. above.
 | ||
| 
 | ||
|         // 4. Insert d as the first element of functionsToInitialize.
 | ||
|         // NOTE: Since prepending is much slower, we just append
 | ||
|         //       and iterate in reverse order in step 16 below.
 | ||
|         functions_to_initialize.append(function);
 | ||
|         return {};
 | ||
|     }));
 | ||
| 
 | ||
|     // 9. Let declaredVarNames be a new empty List.
 | ||
|     HashTable<DeprecatedFlyString> declared_var_names;
 | ||
| 
 | ||
|     // 10. For each element d of varDeclarations, do
 | ||
|     TRY(for_each_var_scoped_variable_declaration([&](Declaration const& declaration) {
 | ||
|         // a. If d is a VariableDeclaration, a ForBinding, or a BindingIdentifier, then
 | ||
|         // Note: This is done in for_each_var_scoped_variable_declaration.
 | ||
| 
 | ||
|         // i. For each String vn of the BoundNames of d, do
 | ||
|         return declaration.for_each_bound_name([&](auto const& name) -> ThrowCompletionOr<void> {
 | ||
|             // 1. If vn is not an element of declaredFunctionNames, then
 | ||
|             if (declared_function_names.contains(name))
 | ||
|                 return {};
 | ||
| 
 | ||
|             // a. Let vnDefinable be ? env.CanDeclareGlobalVar(vn).
 | ||
|             auto var_definable = TRY(global_environment.can_declare_global_var(name));
 | ||
| 
 | ||
|             // b. If vnDefinable is false, throw a TypeError exception.
 | ||
|             if (!var_definable)
 | ||
|                 return vm.throw_completion<TypeError>(ErrorType::CannotDeclareGlobalVariable, name);
 | ||
| 
 | ||
|             // c. If vn is not an element of declaredVarNames, then
 | ||
|             // i. Append vn to declaredVarNames.
 | ||
|             declared_var_names.set(name);
 | ||
|             return {};
 | ||
|         });
 | ||
|     }));
 | ||
| 
 | ||
|     // 11. NOTE: No abnormal terminations occur after this algorithm step if the global object is an ordinary object. However, if the global object is a Proxy exotic object it may exhibit behaviours that cause abnormal terminations in some of the following steps.
 | ||
|     // 12. NOTE: Annex B.3.2.2 adds additional steps at this point.
 | ||
| 
 | ||
|     // 12. Let strict be IsStrict of script.
 | ||
|     // 13. If strict is false, then
 | ||
|     if (!m_is_strict_mode) {
 | ||
|         // a. Let declaredFunctionOrVarNames be the list-concatenation of declaredFunctionNames and declaredVarNames.
 | ||
|         // b. For each FunctionDeclaration f that is directly contained in the StatementList of a Block, CaseClause, or DefaultClause Contained within script, do
 | ||
|         TRY(for_each_function_hoistable_with_annexB_extension([&](FunctionDeclaration& function_declaration) -> ThrowCompletionOr<void> {
 | ||
|             // i. Let F be StringValue of the BindingIdentifier of f.
 | ||
|             auto& function_name = function_declaration.name();
 | ||
| 
 | ||
|             // ii. If replacing the FunctionDeclaration f with a VariableStatement that has F as a BindingIdentifier would not produce any Early Errors for script, then
 | ||
|             // Note: This step is already performed during parsing and for_each_function_hoistable_with_annexB_extension so this always passes here.
 | ||
| 
 | ||
|             // 1. If env.HasLexicalDeclaration(F) is false, then
 | ||
|             if (global_environment.has_lexical_declaration(function_name))
 | ||
|                 return {};
 | ||
| 
 | ||
|             // a. Let fnDefinable be ? env.CanDeclareGlobalVar(F).
 | ||
|             auto function_definable = TRY(global_environment.can_declare_global_function(function_name));
 | ||
|             // b. If fnDefinable is true, then
 | ||
| 
 | ||
|             if (!function_definable)
 | ||
|                 return {};
 | ||
| 
 | ||
|             // i. NOTE: A var binding for F is only instantiated here if it is neither a VarDeclaredName nor the name of another FunctionDeclaration.
 | ||
| 
 | ||
|             // ii. If declaredFunctionOrVarNames does not contain F, then
 | ||
| 
 | ||
|             if (!declared_function_names.contains(function_name) && !declared_var_names.contains(function_name)) {
 | ||
|                 // i. Perform ? env.CreateGlobalVarBinding(F, false).
 | ||
|                 TRY(global_environment.create_global_var_binding(function_name, false));
 | ||
| 
 | ||
|                 // ii. Append F to declaredFunctionOrVarNames.
 | ||
|                 declared_function_names.set(function_name);
 | ||
|             }
 | ||
| 
 | ||
|             // iii. When the FunctionDeclaration f is evaluated, perform the following steps in place of the FunctionDeclaration Evaluation algorithm provided in 15.2.6:
 | ||
|             //     i. Let genv be the running execution context's VariableEnvironment.
 | ||
|             //     ii. Let benv be the running execution context's LexicalEnvironment.
 | ||
|             //     iii. Let fobj be ! benv.GetBindingValue(F, false).
 | ||
|             //     iv. Perform ? genv.SetMutableBinding(F, fobj, false).
 | ||
|             //     v. Return unused.
 | ||
|             function_declaration.set_should_do_additional_annexB_steps();
 | ||
| 
 | ||
|             return {};
 | ||
|         }));
 | ||
| 
 | ||
|         // We should not use declared function names below here anymore since these functions are not in there in the spec.
 | ||
|         declared_function_names.clear();
 | ||
|     }
 | ||
| 
 | ||
|     // 13. Let lexDeclarations be the LexicallyScopedDeclarations of script.
 | ||
|     // 14. Let privateEnv be null.
 | ||
|     PrivateEnvironment* private_environment = nullptr;
 | ||
| 
 | ||
|     // 15. For each element d of lexDeclarations, do
 | ||
|     TRY(for_each_lexically_scoped_declaration([&](Declaration const& declaration) {
 | ||
|         // a. NOTE: Lexically declared names are only instantiated here but not initialized.
 | ||
|         // b. For each element dn of the BoundNames of d, do
 | ||
|         return declaration.for_each_bound_name([&](auto const& name) -> ThrowCompletionOr<void> {
 | ||
|             // i. If IsConstantDeclaration of d is true, then
 | ||
|             if (declaration.is_constant_declaration()) {
 | ||
|                 // 1. Perform ? env.CreateImmutableBinding(dn, true).
 | ||
|                 TRY(global_environment.create_immutable_binding(vm, name, true));
 | ||
|             }
 | ||
|             // ii. Else,
 | ||
|             else {
 | ||
|                 // 1. Perform ? env.CreateMutableBinding(dn, false).
 | ||
|                 TRY(global_environment.create_mutable_binding(vm, name, false));
 | ||
|             }
 | ||
| 
 | ||
|             return {};
 | ||
|         });
 | ||
|     }));
 | ||
| 
 | ||
|     // 16. For each Parse Node f of functionsToInitialize, do
 | ||
|     // NOTE: We iterate in reverse order since we appended the functions
 | ||
|     //       instead of prepending. We append because prepending is much slower
 | ||
|     //       and we only use the created vector here.
 | ||
|     for (auto& declaration : functions_to_initialize.in_reverse()) {
 | ||
|         // a. Let fn be the sole element of the BoundNames of f.
 | ||
|         // b. Let fo be InstantiateFunctionObject of f with arguments env and privateEnv.
 | ||
|         auto function = ECMAScriptFunctionObject::create(realm, declaration.name(), declaration.source_text(), declaration.body(), declaration.parameters(), declaration.function_length(), &global_environment, private_environment, declaration.kind(), declaration.is_strict_mode(), declaration.might_need_arguments_object(), declaration.contains_direct_call_to_eval());
 | ||
| 
 | ||
|         // c. Perform ? env.CreateGlobalFunctionBinding(fn, fo, false).
 | ||
|         TRY(global_environment.create_global_function_binding(declaration.name(), function, false));
 | ||
|     }
 | ||
| 
 | ||
|     // 17. For each String vn of declaredVarNames, do
 | ||
|     for (auto& var_name : declared_var_names) {
 | ||
|         // a. Perform ? env.CreateGlobalVarBinding(vn, false).
 | ||
|         TRY(global_environment.create_global_var_binding(var_name, false));
 | ||
|     }
 | ||
| 
 | ||
|     // 18. Return unused.
 | ||
|     return {};
 | ||
| }
 | ||
| 
 | ||
| ModuleRequest::ModuleRequest(DeprecatedFlyString module_specifier_, Vector<Assertion> assertions_)
 | ||
|     : module_specifier(move(module_specifier_))
 | ||
|     , assertions(move(assertions_))
 | ||
| {
 | ||
|     // Perform step 10.e. from EvaluateImportCall, https://tc39.es/proposal-import-assertions/#sec-evaluate-import-call
 | ||
|     // or step 2. from 2.7 Static Semantics: AssertClauseToAssertions, https://tc39.es/proposal-import-assertions/#sec-assert-clause-to-assertions
 | ||
|     // e. / 2. Sort assertions by the code point order of the [[Key]] of each element.
 | ||
|     // NOTE: This sorting is observable only in that hosts are prohibited from distinguishing among assertions by the order they occur in.
 | ||
|     quick_sort(assertions, [](Assertion const& lhs, Assertion const& rhs) {
 | ||
|         return lhs.key < rhs.key;
 | ||
|     });
 | ||
| }
 | ||
| 
 | ||
| DeprecatedString SourceRange::filename() const
 | ||
| {
 | ||
|     return code->filename().to_deprecated_string();
 | ||
| }
 | ||
| 
 | ||
| NonnullRefPtr<CallExpression> CallExpression::create(SourceRange source_range, NonnullRefPtr<Expression const> callee, ReadonlySpan<Argument> arguments)
 | ||
| {
 | ||
|     return ASTNodeWithTailArray::create<CallExpression>(arguments.size(), move(source_range), move(callee), arguments);
 | ||
| }
 | ||
| 
 | ||
| NonnullRefPtr<NewExpression> NewExpression::create(SourceRange source_range, NonnullRefPtr<Expression const> callee, ReadonlySpan<Argument> arguments)
 | ||
| {
 | ||
|     return ASTNodeWithTailArray::create<NewExpression>(arguments.size(), move(source_range), move(callee), arguments);
 | ||
| }
 | ||
| 
 | ||
| }
 | 
