mirror of
				https://github.com/RGBCube/serenity
				synced 2025-10-30 23:52:43 +00:00 
			
		
		
		
	 5aba83e6ba
			
		
	
	
		5aba83e6ba
		
	
	
	
	
		
			
			The emulated aarch64 CPU does not contain the RNG cpu feature, so the random number generator was not seeded. This commit adds a fallback to use TimeManagement as a entropy source, such that get_good_random_bytes works, which is needed for running the first userspace application on aarch64.
		
			
				
	
	
		
			176 lines
		
	
	
	
		
			5.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			176 lines
		
	
	
	
		
			5.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
 | |
|  * Copyright (c) 2020, Peter Elliott <pelliott@serenityos.org>
 | |
|  *
 | |
|  * SPDX-License-Identifier: BSD-2-Clause
 | |
|  */
 | |
| 
 | |
| #include <AK/Singleton.h>
 | |
| #include <Kernel/Arch/Processor.h>
 | |
| #if ARCH(X86_64)
 | |
| #    include <Kernel/Arch/x86_64/Time/HPET.h>
 | |
| #    include <Kernel/Arch/x86_64/Time/RTC.h>
 | |
| #elif ARCH(AARCH64)
 | |
| #    include <Kernel/Arch/aarch64/ASM_wrapper.h>
 | |
| #endif
 | |
| #include <Kernel/Devices/RandomDevice.h>
 | |
| #include <Kernel/Random.h>
 | |
| #include <Kernel/Sections.h>
 | |
| #include <Kernel/Time/TimeManagement.h>
 | |
| 
 | |
| namespace Kernel {
 | |
| 
 | |
| static Singleton<KernelRng> s_the;
 | |
| static Atomic<u32, AK::MemoryOrder::memory_order_relaxed> s_next_random_value = 1;
 | |
| 
 | |
| KernelRng& KernelRng::the()
 | |
| {
 | |
|     return *s_the;
 | |
| }
 | |
| 
 | |
| UNMAP_AFTER_INIT KernelRng::KernelRng()
 | |
| {
 | |
| #if ARCH(X86_64)
 | |
|     if (Processor::current().has_feature(CPUFeature::RDSEED)) {
 | |
|         dmesgln("KernelRng: Using RDSEED as entropy source");
 | |
| 
 | |
|         for (size_t i = 0; i < pool_count * reseed_threshold; ++i) {
 | |
|             add_random_event(Kernel::read_rdseed(), i % 32);
 | |
|         }
 | |
|     } else if (Processor::current().has_feature(CPUFeature::RDRAND)) {
 | |
|         dmesgln("KernelRng: Using RDRAND as entropy source");
 | |
| 
 | |
|         for (size_t i = 0; i < pool_count * reseed_threshold; ++i) {
 | |
|             add_random_event(Kernel::read_rdrand(), i % 32);
 | |
|         }
 | |
|     } else if (TimeManagement::the().can_query_precise_time()) {
 | |
|         // Add HPET as entropy source if we don't have anything better.
 | |
|         dmesgln("KernelRng: Using HPET as entropy source");
 | |
| 
 | |
|         for (size_t i = 0; i < pool_count * reseed_threshold; ++i) {
 | |
|             u64 hpet_time = HPET::the().read_main_counter_unsafe();
 | |
|             add_random_event(hpet_time, i % 32);
 | |
|         }
 | |
|     } else {
 | |
|         // Fallback to RTC
 | |
|         dmesgln("KernelRng: Using RTC as entropy source (bad!)");
 | |
|         auto current_time = static_cast<u64>(RTC::now());
 | |
|         for (size_t i = 0; i < pool_count * reseed_threshold; ++i) {
 | |
|             add_random_event(current_time, i % 32);
 | |
|             current_time *= 0x574au;
 | |
|             current_time += 0x40b2u;
 | |
|         }
 | |
|     }
 | |
| #elif ARCH(AARCH64)
 | |
|     if (Processor::current().has_feature(CPUFeature::RNG)) {
 | |
|         dmesgln("KernelRng: Using RNDRRS as entropy source");
 | |
|         for (size_t i = 0; i < pool_count * reseed_threshold; ++i) {
 | |
|             add_random_event(Aarch64::Asm::read_rndrrs(), i % 32);
 | |
|         }
 | |
|     } else {
 | |
|         // Fallback to TimeManagement as entropy
 | |
|         dmesgln("KernelRng: Using bad entropy source TimeManagement");
 | |
|         auto current_time = static_cast<u64>(TimeManagement::the().now().to_milliseconds());
 | |
|         for (size_t i = 0; i < pool_count * reseed_threshold; ++i) {
 | |
|             add_random_event(current_time, i % 32);
 | |
|             current_time *= 0x574au;
 | |
|             current_time += 0x40b2u;
 | |
|         }
 | |
|     }
 | |
| #else
 | |
|     dmesgln("KernelRng: No entropy source available!");
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void KernelRng::wait_for_entropy()
 | |
| {
 | |
|     SpinlockLocker lock(get_lock());
 | |
|     if (!is_ready()) {
 | |
|         dbgln("Entropy starvation...");
 | |
|         m_seed_queue.wait_forever("KernelRng"sv);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void KernelRng::wake_if_ready()
 | |
| {
 | |
|     VERIFY(get_lock().is_locked());
 | |
|     if (is_ready()) {
 | |
|         m_seed_queue.wake_all();
 | |
|     }
 | |
| }
 | |
| 
 | |
| size_t EntropySource::next_source { static_cast<size_t>(EntropySource::Static::MaxHardcodedSourceIndex) };
 | |
| 
 | |
| static void do_get_fast_random_bytes(Bytes buffer)
 | |
| {
 | |
| 
 | |
|     union {
 | |
|         u8 bytes[4];
 | |
|         u32 value;
 | |
|     } u;
 | |
|     size_t offset = 4;
 | |
|     for (size_t i = 0; i < buffer.size(); ++i) {
 | |
|         if (offset >= 4) {
 | |
|             auto current_next = s_next_random_value.load();
 | |
|             for (;;) {
 | |
|                 auto new_next = current_next * 1103515245 + 12345;
 | |
|                 if (s_next_random_value.compare_exchange_strong(current_next, new_next)) {
 | |
|                     u.value = new_next;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|             offset = 0;
 | |
|         }
 | |
|         buffer[i] = u.bytes[offset++];
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool get_good_random_bytes(Bytes buffer, bool allow_wait, bool fallback_to_fast)
 | |
| {
 | |
|     bool result = false;
 | |
|     auto& kernel_rng = KernelRng::the();
 | |
|     // FIXME: What if interrupts are disabled because we're in an interrupt?
 | |
|     bool can_wait = Processor::are_interrupts_enabled();
 | |
|     if (!can_wait && allow_wait) {
 | |
|         // If we can't wait but the caller would be ok with it, then we
 | |
|         // need to definitely fallback to *something*, even if it's less
 | |
|         // secure...
 | |
|         fallback_to_fast = true;
 | |
|     }
 | |
|     if (can_wait && allow_wait) {
 | |
|         for (;;) {
 | |
|             {
 | |
|                 if (kernel_rng.get_random_bytes(buffer)) {
 | |
|                     result = true;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|             kernel_rng.wait_for_entropy();
 | |
|         }
 | |
|     } else {
 | |
|         // We can't wait/block here, or we are not allowed to block/wait
 | |
|         if (kernel_rng.get_random_bytes(buffer)) {
 | |
|             result = true;
 | |
|         } else if (fallback_to_fast) {
 | |
|             // If interrupts are disabled
 | |
|             do_get_fast_random_bytes(buffer);
 | |
|             result = true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // NOTE: The only case where this function should ever return false and
 | |
|     // not actually return random data is if fallback_to_fast == false and
 | |
|     // allow_wait == false and interrupts are enabled!
 | |
|     VERIFY(result || !fallback_to_fast);
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| void get_fast_random_bytes(Bytes buffer)
 | |
| {
 | |
|     // Try to get good randomness, but don't block if we can't right now
 | |
|     // and allow falling back to fast randomness
 | |
|     auto result = get_good_random_bytes(buffer, false, true);
 | |
|     VERIFY(result);
 | |
| }
 | |
| 
 | |
| }
 |