1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-31 14:28:12 +00:00
serenity/Kernel/Arch/x86/Processor.h
Gunnar Beutner 52f9aaa823 Kernel: Use the GS segment for the per-CPU struct
Right now we're using the FS segment for our per-CPU struct. On x86_64
there's an instruction to switch between a kernel and usermode GS
segment (swapgs) which we could use.

This patch doesn't update the rest of the code to use swapgs but it
prepares for that by using the GS segment instead of the FS segment.
2021-07-02 23:33:17 +02:00

446 lines
12 KiB
C++

/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Array.h>
#include <AK/Concepts.h>
#include <AK/Function.h>
#include <AK/Types.h>
#include <Kernel/Arch/x86/ASM_wrapper.h>
#include <Kernel/Arch/x86/CPUID.h>
#include <Kernel/Arch/x86/DescriptorTable.h>
#include <Kernel/Arch/x86/PageDirectory.h>
#include <Kernel/Arch/x86/TSS.h>
namespace Kernel {
#if ARCH(X86_64)
# define MSR_FS_BASE 0xc0000100
# define MSR_GS_BASE 0xc0000101
#endif
class Thread;
class SchedulerPerProcessorData;
struct MemoryManagerData;
struct ProcessorMessageEntry;
struct TrapFrame;
class ProcessorInfo;
struct [[gnu::aligned(16)]] FPUState
{
u8 buffer[512];
};
struct ProcessorMessage {
using CallbackFunction = Function<void()>;
enum Type {
FlushTlb,
Callback,
};
Type type;
Atomic<u32> refs;
union {
ProcessorMessage* next; // only valid while in the pool
alignas(CallbackFunction) u8 callback_storage[sizeof(CallbackFunction)];
struct {
const PageDirectory* page_directory;
u8* ptr;
size_t page_count;
} flush_tlb;
};
volatile bool async;
ProcessorMessageEntry* per_proc_entries;
CallbackFunction& callback_value()
{
return *bit_cast<CallbackFunction*>(&callback_storage);
}
void invoke_callback()
{
VERIFY(type == Type::Callback);
callback_value()();
}
};
struct ProcessorMessageEntry {
ProcessorMessageEntry* next;
ProcessorMessage* msg;
};
struct DeferredCallEntry {
using HandlerFunction = Function<void()>;
DeferredCallEntry* next;
alignas(HandlerFunction) u8 handler_storage[sizeof(HandlerFunction)];
bool was_allocated;
HandlerFunction& handler_value()
{
return *bit_cast<HandlerFunction*>(&handler_storage);
}
void invoke_handler()
{
handler_value()();
}
};
class Processor;
// Note: We only support 8 processors at most at the moment,
// so allocate 8 slots of inline capacity in the container.
using ProcessorContainer = Array<Processor*, 8>;
class Processor {
friend class ProcessorInfo;
AK_MAKE_NONCOPYABLE(Processor);
AK_MAKE_NONMOVABLE(Processor);
Processor* m_self;
DescriptorTablePointer m_gdtr;
Descriptor m_gdt[256];
u32 m_gdt_length;
u32 m_cpu;
u32 m_in_irq;
Atomic<u32, AK::MemoryOrder::memory_order_relaxed> m_in_critical;
static Atomic<u32> s_idle_cpu_mask;
TSS m_tss;
static FPUState s_clean_fpu_state;
CPUFeature m_features;
static Atomic<u32> g_total_processors;
u8 m_physical_address_bit_width;
ProcessorInfo* m_info;
MemoryManagerData* m_mm_data;
SchedulerPerProcessorData* m_scheduler_data;
Thread* m_current_thread;
Thread* m_idle_thread;
Atomic<ProcessorMessageEntry*> m_message_queue;
bool m_invoke_scheduler_async;
bool m_scheduler_initialized;
Atomic<bool> m_halt_requested;
DeferredCallEntry* m_pending_deferred_calls; // in reverse order
DeferredCallEntry* m_free_deferred_call_pool_entry;
DeferredCallEntry m_deferred_call_pool[5];
void gdt_init();
void write_raw_gdt_entry(u16 selector, u32 low, u32 high);
void write_gdt_entry(u16 selector, Descriptor& descriptor);
static ProcessorContainer& processors();
static void smp_return_to_pool(ProcessorMessage& msg);
static ProcessorMessage& smp_get_from_pool();
static void smp_cleanup_message(ProcessorMessage& msg);
bool smp_queue_message(ProcessorMessage& msg);
static void smp_unicast_message(u32 cpu, ProcessorMessage& msg, bool async);
static void smp_broadcast_message(ProcessorMessage& msg);
static void smp_broadcast_wait_sync(ProcessorMessage& msg);
static void smp_broadcast_halt();
void deferred_call_pool_init();
void deferred_call_execute_pending();
DeferredCallEntry* deferred_call_get_free();
void deferred_call_return_to_pool(DeferredCallEntry*);
void deferred_call_queue_entry(DeferredCallEntry*);
void cpu_detect();
void cpu_setup();
String features_string() const;
public:
Processor() = default;
void early_initialize(u32 cpu);
void initialize(u32 cpu);
void idle_begin()
{
s_idle_cpu_mask.fetch_or(1u << m_cpu, AK::MemoryOrder::memory_order_relaxed);
}
void idle_end()
{
s_idle_cpu_mask.fetch_and(~(1u << m_cpu), AK::MemoryOrder::memory_order_relaxed);
}
static u32 count()
{
// NOTE: because this value never changes once all APs are booted,
// we can safely bypass loading it atomically.
return *g_total_processors.ptr();
}
ALWAYS_INLINE static void wait_check()
{
Processor::current().smp_process_pending_messages();
// TODO: pause
}
[[noreturn]] static void halt();
static void flush_entire_tlb_local()
{
write_cr3(read_cr3());
}
static void flush_tlb_local(VirtualAddress vaddr, size_t page_count);
static void flush_tlb(const PageDirectory*, VirtualAddress, size_t);
Descriptor& get_gdt_entry(u16 selector);
void flush_gdt();
const DescriptorTablePointer& get_gdtr();
static Processor& by_id(u32 cpu);
static size_t processor_count() { return processors().size(); }
template<IteratorFunction<Processor&> Callback>
static inline IterationDecision for_each(Callback callback)
{
auto& procs = processors();
size_t count = procs.size();
for (size_t i = 0; i < count; i++) {
if (callback(*procs[i]) == IterationDecision::Break)
return IterationDecision::Break;
}
return IterationDecision::Continue;
}
template<VoidFunction<Processor&> Callback>
static inline IterationDecision for_each(Callback callback)
{
auto& procs = processors();
size_t count = procs.size();
for (size_t i = 0; i < count; i++) {
if (procs[i] != nullptr)
callback(*procs[i]);
}
return IterationDecision::Continue;
}
ALWAYS_INLINE u8 physical_address_bit_width() const { return m_physical_address_bit_width; }
ALWAYS_INLINE ProcessorInfo& info() { return *m_info; }
ALWAYS_INLINE static Processor& current()
{
return *(Processor*)read_gs_ptr(__builtin_offsetof(Processor, m_self));
}
ALWAYS_INLINE static bool is_initialized()
{
return
#if ARCH(I386)
get_gs() == GDT_SELECTOR_PROC &&
#endif
read_gs_u32(__builtin_offsetof(Processor, m_self)) != 0;
}
ALWAYS_INLINE void set_scheduler_data(SchedulerPerProcessorData& scheduler_data)
{
m_scheduler_data = &scheduler_data;
}
ALWAYS_INLINE SchedulerPerProcessorData& get_scheduler_data() const
{
return *m_scheduler_data;
}
ALWAYS_INLINE void set_mm_data(MemoryManagerData& mm_data)
{
m_mm_data = &mm_data;
}
ALWAYS_INLINE MemoryManagerData& get_mm_data() const
{
return *m_mm_data;
}
ALWAYS_INLINE void set_idle_thread(Thread& idle_thread)
{
m_idle_thread = &idle_thread;
}
ALWAYS_INLINE static Thread* current_thread()
{
// If we were to use Processor::current here, we'd have to
// disable interrupts to prevent a race where we may get pre-empted
// right after getting the Processor structure and then get moved
// to another processor, which would lead us to get the wrong thread.
// To avoid having to disable interrupts, we can just read the field
// directly in an atomic fashion, similar to Processor::current.
return (Thread*)read_gs_ptr(__builtin_offsetof(Processor, m_current_thread));
}
ALWAYS_INLINE static void set_current_thread(Thread& current_thread)
{
// See comment in Processor::current_thread
write_gs_u32(__builtin_offsetof(Processor, m_current_thread), FlatPtr(&current_thread));
}
ALWAYS_INLINE static Thread* idle_thread()
{
// See comment in Processor::current_thread
return (Thread*)read_gs_ptr(__builtin_offsetof(Processor, m_idle_thread));
}
ALWAYS_INLINE u32 get_id() const
{
// NOTE: This variant should only be used when iterating over all
// Processor instances, or when it's guaranteed that the thread
// cannot move to another processor in between calling Processor::current
// and Processor::get_id, or if this fact is not important.
// All other cases should use Processor::id instead!
return m_cpu;
}
ALWAYS_INLINE static u32 id()
{
// See comment in Processor::current_thread
return read_gs_ptr(__builtin_offsetof(Processor, m_cpu));
}
ALWAYS_INLINE static bool is_bootstrap_processor()
{
return Processor::id() == 0;
}
ALWAYS_INLINE u32 raise_irq()
{
return m_in_irq++;
}
ALWAYS_INLINE void restore_irq(u32 prev_irq)
{
VERIFY(prev_irq <= m_in_irq);
if (!prev_irq) {
u32 prev_critical = 0;
if (m_in_critical.compare_exchange_strong(prev_critical, 1)) {
m_in_irq = prev_irq;
deferred_call_execute_pending();
auto prev_raised = m_in_critical.exchange(prev_critical);
VERIFY(prev_raised == prev_critical + 1);
check_invoke_scheduler();
} else if (prev_critical == 0) {
check_invoke_scheduler();
}
} else {
m_in_irq = prev_irq;
}
}
ALWAYS_INLINE u32& in_irq()
{
return m_in_irq;
}
ALWAYS_INLINE void restore_in_critical(u32 critical)
{
m_in_critical = critical;
}
ALWAYS_INLINE void enter_critical(u32& prev_flags)
{
prev_flags = cpu_flags();
cli();
m_in_critical++;
}
ALWAYS_INLINE void leave_critical(u32 prev_flags)
{
cli(); // Need to prevent IRQs from interrupting us here!
VERIFY(m_in_critical > 0);
if (m_in_critical == 1) {
if (!m_in_irq) {
deferred_call_execute_pending();
VERIFY(m_in_critical == 1);
}
m_in_critical--;
if (!m_in_irq)
check_invoke_scheduler();
} else {
m_in_critical--;
}
if (prev_flags & 0x200)
sti();
else
cli();
}
ALWAYS_INLINE u32 clear_critical(u32& prev_flags, bool enable_interrupts)
{
prev_flags = cpu_flags();
u32 prev_crit = m_in_critical.exchange(0, AK::MemoryOrder::memory_order_acquire);
if (!m_in_irq)
check_invoke_scheduler();
if (enable_interrupts)
sti();
return prev_crit;
}
ALWAYS_INLINE void restore_critical(u32 prev_crit, u32 prev_flags)
{
m_in_critical.store(prev_crit, AK::MemoryOrder::memory_order_release);
VERIFY(!prev_crit || !(prev_flags & 0x200));
if (prev_flags & 0x200)
sti();
else
cli();
}
ALWAYS_INLINE u32 in_critical() { return m_in_critical.load(); }
ALWAYS_INLINE const FPUState& clean_fpu_state() const
{
return s_clean_fpu_state;
}
static void smp_enable();
bool smp_process_pending_messages();
static void smp_broadcast(Function<void()>, bool async);
static void smp_unicast(u32 cpu, Function<void()>, bool async);
static void smp_broadcast_flush_tlb(const PageDirectory*, VirtualAddress, size_t);
static u32 smp_wake_n_idle_processors(u32 wake_count);
static void deferred_call_queue(Function<void()> callback);
ALWAYS_INLINE bool has_feature(CPUFeature f) const
{
return (static_cast<u32>(m_features) & static_cast<u32>(f)) != 0;
}
void check_invoke_scheduler();
void invoke_scheduler_async() { m_invoke_scheduler_async = true; }
void enter_trap(TrapFrame& trap, bool raise_irq);
void exit_trap(TrapFrame& trap);
[[noreturn]] void initialize_context_switching(Thread& initial_thread);
NEVER_INLINE void switch_context(Thread*& from_thread, Thread*& to_thread);
[[noreturn]] static void assume_context(Thread& thread, FlatPtr flags);
FlatPtr init_context(Thread& thread, bool leave_crit);
static Vector<FlatPtr> capture_stack_trace(Thread& thread, size_t max_frames = 0);
String platform_string() const;
};
}