1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-21 15:35:07 +00:00
serenity/Kernel/Bus/PCI/Definitions.h
Liav A 1f9d3a3523 Kernel/PCI: Hold a reference to DeviceIdentifier in the Device class
There are now 2 separate classes for almost the same object type:
- EnumerableDeviceIdentifier, which is used in the enumeration code for
  all PCI host controller classes. This is allowed to be moved and
  copied, as it doesn't support ref-counting.
- DeviceIdentifier, which inherits from EnumerableDeviceIdentifier. This
  class uses ref-counting, and is not allowed to be copied. It has a
  spinlock member in its structure to allow safely executing complicated
  IO sequences on a PCI device and its space configuration.
  There's a static method that allows a quick conversion from
  EnumerableDeviceIdentifier to DeviceIdentifier while creating a
  NonnullRefPtr out of it.

The reason for doing this is for the sake of integrity and reliablity of
the system in 2 places:
- Ensure that "complicated" tasks that rely on manipulating PCI device
  registers are done in a safe manner. For example, determining a PCI
  BAR space size requires multiple read and writes to the same register,
  and if another CPU tries to do something else with our selected
  register, then the result will be a catastrophe.
- Allow the PCI API to have a united form around a shared object which
  actually holds much more data than the PCI::Address structure. This is
  fundamental if we want to do certain types of optimizations, and be
  able to support more features of the PCI bus in the foreseeable
  future.

This patch already has several implications:
- All PCI::Device(s) hold a reference to a DeviceIdentifier structure
  being given originally from the PCI::Access singleton. This means that
  all instances of DeviceIdentifier structures are located in one place,
  and all references are pointing to that location. This ensures that
  locking the operation spinlock will take effect in all the appropriate
  places.
- We no longer support adding PCI host controllers and then immediately
  allow for enumerating it with a lambda function. It was found that
  this method is extremely broken and too much complicated to work
  reliably with the new paradigm being introduced in this patch. This
  means that for Volume Management Devices (Intel VMD devices), we
  simply first enumerate the PCI bus for such devices in the storage
  code, and if we find a device, we attach it in the PCI::Access method
  which will scan for devices behind that bridge and will add new
  DeviceIdentifier(s) objects to its internal Vector. Afterwards, we
  just continue as usual with scanning for actual storage controllers,
  so we will find a corresponding NVMe controllers if there were any
  behind that VMD bridge.
2023-01-26 23:04:26 +01:00

363 lines
10 KiB
C++

/*
* Copyright (c) 2020, Liav A. <liavalb@hotmail.co.il>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Badge.h>
#include <AK/DistinctNumeric.h>
#include <AK/Function.h>
#include <AK/Types.h>
#include <AK/Vector.h>
#include <Kernel/Debug.h>
#include <Kernel/Locking/Spinlock.h>
#include <Kernel/PhysicalAddress.h>
namespace Kernel::PCI {
enum class HeaderType {
Device = 0,
Bridge = 1,
};
enum class HeaderType0BaseRegister {
BAR0 = 0,
BAR1,
BAR2,
BAR3,
BAR4,
BAR5,
};
enum class BARSpaceType {
IOSpace,
Memory16BitSpace,
Memory32BitSpace,
Memory64BitSpace,
};
enum class RegisterOffset {
VENDOR_ID = 0x00, // word
DEVICE_ID = 0x02, // word
COMMAND = 0x04, // word
STATUS = 0x06, // word
REVISION_ID = 0x08, // byte
PROG_IF = 0x09, // byte
SUBCLASS = 0x0a, // byte
CLASS = 0x0b, // byte
CACHE_LINE_SIZE = 0x0c, // byte
LATENCY_TIMER = 0x0d, // byte
HEADER_TYPE = 0x0e, // byte
BIST = 0x0f, // byte
BAR0 = 0x10, // u32
BAR1 = 0x14, // u32
BAR2 = 0x18, // u32
SECONDARY_BUS = 0x19, // byte
BAR3 = 0x1C, // u32
BAR4 = 0x20, // u32
BAR5 = 0x24, // u32
SUBSYSTEM_VENDOR_ID = 0x2C, // u16
SUBSYSTEM_ID = 0x2E, // u16
EXPANSION_ROM_POINTER = 0x30, // u32
CAPABILITIES_POINTER = 0x34, // u8
INTERRUPT_LINE = 0x3C, // byte
INTERRUPT_PIN = 0x3D, // byte
};
enum class Limits {
MaxDevicesPerBus = 32,
MaxBusesPerDomain = 256,
MaxFunctionsPerDevice = 8,
};
static constexpr u16 address_port = 0xcf8;
static constexpr u16 value_port = 0xcfc;
static constexpr size_t mmio_device_space_size = 4096;
static constexpr u16 none_value = 0xffff;
static constexpr size_t memory_range_per_bus = mmio_device_space_size * to_underlying(Limits::MaxFunctionsPerDevice) * to_underlying(Limits::MaxDevicesPerBus);
// Taken from https://pcisig.com/sites/default/files/files/PCI_Code-ID_r_1_11__v24_Jan_2019.pdf
enum class ClassID {
MassStorage = 0x1,
Multimedia = 0x4,
Bridge = 0x6,
};
namespace MassStorage {
enum class SubclassID {
IDEController = 0x1,
SATAController = 0x6,
NVMeController = 0x8,
};
enum class SATAProgIF {
AHCI = 0x1,
};
}
namespace Multimedia {
enum class SubclassID {
AudioController = 0x1,
};
}
namespace Bridge {
enum class SubclassID {
PCI_TO_PCI = 0x4,
};
}
AK_TYPEDEF_DISTINCT_ORDERED_ID(u8, CapabilityID);
namespace Capabilities {
enum ID {
Null = 0x0,
MSI = 0x5,
VendorSpecific = 0x9,
MSIX = 0x11,
};
}
struct HardwareID {
u16 vendor_id { 0 };
u16 device_id { 0 };
bool is_null() const { return !vendor_id && !device_id; }
bool operator==(HardwareID const& other) const
{
return vendor_id == other.vendor_id && device_id == other.device_id;
}
bool operator!=(HardwareID const& other) const
{
return vendor_id != other.vendor_id || device_id != other.device_id;
}
};
class Domain {
public:
Domain() = delete;
Domain(u32 domain_number, u8 start_bus, u8 end_bus)
: m_domain_number(domain_number)
, m_start_bus(start_bus)
, m_end_bus(end_bus)
{
}
u8 start_bus() const { return m_start_bus; }
u8 end_bus() const { return m_end_bus; }
u32 domain_number() const { return m_domain_number; }
private:
u32 m_domain_number;
u8 m_start_bus;
u8 m_end_bus;
};
struct Address {
public:
Address() = default;
Address(u32 domain)
: m_domain(domain)
, m_bus(0)
, m_device(0)
, m_function(0)
{
}
Address(u32 domain, u8 bus, u8 device, u8 function)
: m_domain(domain)
, m_bus(bus)
, m_device(device)
, m_function(function)
{
}
Address(Address const& address) = default;
bool is_null() const { return !m_bus && !m_device && !m_function; }
operator bool() const { return !is_null(); }
// Disable default implementations that would use surprising integer promotion.
bool operator<=(Address const&) const = delete;
bool operator>=(Address const&) const = delete;
bool operator<(Address const&) const = delete;
bool operator>(Address const&) const = delete;
bool operator==(Address const& other) const
{
if (this == &other)
return true;
return m_domain == other.m_domain && m_bus == other.m_bus && m_device == other.m_device && m_function == other.m_function;
}
bool operator!=(Address const& other) const
{
return !(*this == other);
}
u32 domain() const { return m_domain; }
u8 bus() const { return m_bus; }
u8 device() const { return m_device; }
u8 function() const { return m_function; }
private:
u32 m_domain { 0 };
u8 m_bus { 0 };
u8 m_device { 0 };
u8 m_function { 0 };
};
class Capability {
public:
Capability(Address address, u8 id, u8 ptr)
: m_address(address)
, m_id(id)
, m_ptr(ptr)
{
}
CapabilityID id() const { return m_id; }
u8 read8(size_t offset) const;
u16 read16(size_t offset) const;
u32 read32(size_t offset) const;
private:
const Address m_address;
const CapabilityID m_id;
const u8 m_ptr;
};
AK_TYPEDEF_DISTINCT_ORDERED_ID(u8, ClassCode);
AK_TYPEDEF_DISTINCT_ORDERED_ID(u8, SubclassCode);
AK_TYPEDEF_DISTINCT_ORDERED_ID(u8, ProgrammingInterface);
AK_TYPEDEF_DISTINCT_ORDERED_ID(u8, RevisionID);
AK_TYPEDEF_DISTINCT_ORDERED_ID(u16, SubsystemID);
AK_TYPEDEF_DISTINCT_ORDERED_ID(u16, SubsystemVendorID);
AK_TYPEDEF_DISTINCT_ORDERED_ID(u8, InterruptLine);
AK_TYPEDEF_DISTINCT_ORDERED_ID(u8, InterruptPin);
class Access;
class EnumerableDeviceIdentifier {
public:
EnumerableDeviceIdentifier(Address address, HardwareID hardware_id, RevisionID revision_id, ClassCode class_code, SubclassCode subclass_code, ProgrammingInterface prog_if, SubsystemID subsystem_id, SubsystemVendorID subsystem_vendor_id, InterruptLine interrupt_line, InterruptPin interrupt_pin, Vector<Capability> const& capabilities)
: m_address(address)
, m_hardware_id(hardware_id)
, m_revision_id(revision_id)
, m_class_code(class_code)
, m_subclass_code(subclass_code)
, m_prog_if(prog_if)
, m_subsystem_id(subsystem_id)
, m_subsystem_vendor_id(subsystem_vendor_id)
, m_interrupt_line(interrupt_line)
, m_interrupt_pin(interrupt_pin)
, m_capabilities(capabilities)
{
if constexpr (PCI_DEBUG) {
for (auto const& capability : capabilities)
dbgln("{} has capability {}", address, capability.id());
}
}
Vector<Capability> const& capabilities() const { return m_capabilities; }
HardwareID const& hardware_id() const { return m_hardware_id; }
Address const& address() const { return m_address; }
RevisionID revision_id() const { return m_revision_id; }
ClassCode class_code() const { return m_class_code; }
SubclassCode subclass_code() const { return m_subclass_code; }
ProgrammingInterface prog_if() const { return m_prog_if; }
SubsystemID subsystem_id() const { return m_subsystem_id; }
SubsystemVendorID subsystem_vendor_id() const { return m_subsystem_vendor_id; }
InterruptLine interrupt_line() const { return m_interrupt_line; }
InterruptPin interrupt_pin() const { return m_interrupt_pin; }
void apply_subclass_code_change(Badge<Access>, SubclassCode new_subclass)
{
m_subclass_code = new_subclass;
}
void apply_prog_if_change(Badge<Access>, ProgrammingInterface new_progif)
{
m_prog_if = new_progif;
}
protected:
Address m_address;
HardwareID m_hardware_id;
RevisionID m_revision_id;
ClassCode m_class_code;
SubclassCode m_subclass_code;
ProgrammingInterface m_prog_if;
SubsystemID m_subsystem_id;
SubsystemVendorID m_subsystem_vendor_id;
InterruptLine m_interrupt_line;
InterruptPin m_interrupt_pin;
Vector<Capability> m_capabilities;
};
class DeviceIdentifier
: public RefCounted<DeviceIdentifier>
, public EnumerableDeviceIdentifier {
AK_MAKE_NONCOPYABLE(DeviceIdentifier);
public:
static ErrorOr<NonnullRefPtr<DeviceIdentifier>> from_enumerable_identifier(EnumerableDeviceIdentifier const& other_identifier);
Spinlock<LockRank::None>& operation_lock() { return m_operation_lock; }
Spinlock<LockRank::None>& operation_lock() const { return m_operation_lock; }
virtual ~DeviceIdentifier() = default;
private:
DeviceIdentifier(EnumerableDeviceIdentifier const& other_identifier)
: EnumerableDeviceIdentifier(other_identifier.address(),
other_identifier.hardware_id(),
other_identifier.revision_id(),
other_identifier.class_code(),
other_identifier.subclass_code(),
other_identifier.prog_if(),
other_identifier.subsystem_id(),
other_identifier.subsystem_vendor_id(),
other_identifier.interrupt_line(),
other_identifier.interrupt_pin(),
other_identifier.capabilities())
{
}
mutable Spinlock<LockRank::None> m_operation_lock;
};
class Domain;
class Device;
}
template<>
struct AK::Formatter<Kernel::PCI::Address> : Formatter<FormatString> {
ErrorOr<void> format(FormatBuilder& builder, Kernel::PCI::Address value)
{
return Formatter<FormatString>::format(
builder,
"PCI [{:04x}:{:02x}:{:02x}:{:02x}]"sv, value.domain(), value.bus(), value.device(), value.function());
}
};
template<>
struct AK::Formatter<Kernel::PCI::HardwareID> : Formatter<FormatString> {
ErrorOr<void> format(FormatBuilder& builder, Kernel::PCI::HardwareID value)
{
return Formatter<FormatString>::format(
builder,
"PCI::HardwareID [{:04x}:{:04x}]"sv, value.vendor_id, value.device_id);
}
};