1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-16 17:55:06 +00:00
serenity/Userland/Libraries/LibWeb/Painting/StackingContext.cpp
2023-10-23 12:04:51 +01:00

553 lines
26 KiB
C++

/*
* Copyright (c) 2020-2022, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2022, Sam Atkins <atkinssj@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Debug.h>
#include <AK/QuickSort.h>
#include <AK/StringBuilder.h>
#include <LibGfx/AffineTransform.h>
#include <LibGfx/Matrix4x4.h>
#include <LibGfx/Rect.h>
#include <LibWeb/CSS/ComputedValues.h>
#include <LibWeb/CSS/StyleValues/TransformationStyleValue.h>
#include <LibWeb/Layout/Box.h>
#include <LibWeb/Layout/ReplacedBox.h>
#include <LibWeb/Layout/Viewport.h>
#include <LibWeb/Painting/PaintableBox.h>
#include <LibWeb/Painting/SVGPaintable.h>
#include <LibWeb/Painting/StackingContext.h>
#include <LibWeb/Painting/TableBordersPainting.h>
#include <LibWeb/SVG/SVGMaskElement.h>
namespace Web::Painting {
static void paint_node(Paintable const& paintable, PaintContext& context, PaintPhase phase)
{
paintable.before_paint(context, phase);
paintable.paint(context, phase);
paintable.after_paint(context, phase);
}
StackingContext::StackingContext(PaintableBox& paintable_box, StackingContext* parent, size_t index_in_tree_order)
: m_paintable_box(paintable_box)
, m_transform(combine_transformations(paintable_box.computed_values().transformations()))
, m_transform_origin(compute_transform_origin())
, m_parent(parent)
, m_index_in_tree_order(index_in_tree_order)
{
VERIFY(m_parent != this);
if (m_parent)
m_parent->m_children.append(this);
}
void StackingContext::sort()
{
quick_sort(m_children, [](auto& a, auto& b) {
auto a_z_index = a->paintable_box().computed_values().z_index().value_or(0);
auto b_z_index = b->paintable_box().computed_values().z_index().value_or(0);
if (a_z_index == b_z_index)
return a->m_index_in_tree_order < b->m_index_in_tree_order;
return a_z_index < b_z_index;
});
for (auto* child : m_children)
child->sort();
}
static PaintPhase to_paint_phase(StackingContext::StackingContextPaintPhase phase)
{
// There are not a fully correct mapping since some stacking context phases are combined.
switch (phase) {
case StackingContext::StackingContextPaintPhase::Floats:
case StackingContext::StackingContextPaintPhase::BackgroundAndBordersForInlineLevelAndReplaced:
case StackingContext::StackingContextPaintPhase::BackgroundAndBorders:
return PaintPhase::Background;
case StackingContext::StackingContextPaintPhase::Foreground:
return PaintPhase::Foreground;
case StackingContext::StackingContextPaintPhase::FocusAndOverlay:
return PaintPhase::Overlay;
default:
VERIFY_NOT_REACHED();
}
}
void StackingContext::paint_node_as_stacking_context(Paintable const& paintable, PaintContext& context)
{
paint_node(paintable, context, PaintPhase::Background);
paint_node(paintable, context, PaintPhase::Border);
paint_descendants(context, paintable, StackingContextPaintPhase::BackgroundAndBorders);
paint_descendants(context, paintable, StackingContextPaintPhase::Floats);
paint_descendants(context, paintable, StackingContextPaintPhase::BackgroundAndBordersForInlineLevelAndReplaced);
paint_node(paintable, context, PaintPhase::Foreground);
paint_descendants(context, paintable, StackingContextPaintPhase::Foreground);
paint_node(paintable, context, PaintPhase::Outline);
paint_node(paintable, context, PaintPhase::Overlay);
paint_descendants(context, paintable, StackingContextPaintPhase::FocusAndOverlay);
}
void StackingContext::paint_descendants(PaintContext& context, Paintable const& paintable, StackingContextPaintPhase phase)
{
paintable.before_children_paint(context, to_paint_phase(phase));
paintable.apply_clip_overflow_rect(context, to_paint_phase(phase));
paintable.for_each_child([&context, phase](auto& child) {
auto* stacking_context = child.stacking_context_rooted_here();
if (child.is_positioned()) {
// If `child` is positioned with a z-index of `0` or `auto`, skip over it.
auto const& z_index = child.computed_values().z_index();
if (!z_index.has_value() || z_index.value() == 0)
return;
// Skip positioned children with stacking contexts, these are handled in paint_internal().
if (stacking_context)
return;
}
if (stacking_context) {
// FIXME: This may not be fully correct with respect to the paint phases.
if (phase == StackingContextPaintPhase::Foreground)
paint_child(context, *stacking_context);
// Note: Don't further recuse into descendants as paint_child() will do that.
return;
}
// NOTE: Grid specification https://www.w3.org/TR/css-grid-2/#z-order says that grid items should be treated
// the same way as CSS2 defines for inline-blocks:
// "For each one of these, treat the element as if it created a new stacking context, but any positioned
// descendants and descendants which actually create a new stacking context should be considered part of
// the parent stacking context, not this new one."
auto should_be_treated_as_stacking_context = child.layout_node().is_grid_item();
if (should_be_treated_as_stacking_context) {
// FIXME: This may not be fully correct with respect to the paint phases.
if (phase == StackingContextPaintPhase::Foreground)
paint_node_as_stacking_context(child, context);
return;
}
bool child_is_inline_or_replaced = child.is_inline() || is<Layout::ReplacedBox>(child);
switch (phase) {
case StackingContextPaintPhase::BackgroundAndBorders:
if (!child_is_inline_or_replaced && !child.is_floating()) {
paint_node(child, context, PaintPhase::Background);
bool is_table_with_collapsed_borders = child.display().is_table_inside() && child.computed_values().border_collapse() == CSS::BorderCollapse::Collapse;
if (!child.display().is_table_cell() && !is_table_with_collapsed_borders)
paint_node(child, context, PaintPhase::Border);
paint_descendants(context, child, phase);
if (child.display().is_table_inside() || child.computed_values().border_collapse() == CSS::BorderCollapse::Collapse) {
paint_table_borders(context, verify_cast<PaintableBox>(child));
}
}
break;
case StackingContextPaintPhase::Floats:
if (child.is_floating()) {
paint_node(child, context, PaintPhase::Background);
paint_node(child, context, PaintPhase::Border);
paint_descendants(context, child, StackingContextPaintPhase::BackgroundAndBorders);
}
paint_descendants(context, child, phase);
break;
case StackingContextPaintPhase::BackgroundAndBordersForInlineLevelAndReplaced:
if (child_is_inline_or_replaced) {
paint_node(child, context, PaintPhase::Background);
paint_node(child, context, PaintPhase::Border);
if (child.display().is_table_inside() && child.computed_values().border_collapse() == CSS::BorderCollapse::Separate)
paint_table_borders(context, verify_cast<PaintableBox>(child));
paint_descendants(context, child, StackingContextPaintPhase::BackgroundAndBorders);
}
paint_descendants(context, child, phase);
break;
case StackingContextPaintPhase::Foreground:
paint_node(child, context, PaintPhase::Foreground);
paint_descendants(context, child, phase);
break;
case StackingContextPaintPhase::FocusAndOverlay:
paint_node(child, context, PaintPhase::Outline);
paint_node(child, context, PaintPhase::Overlay);
paint_descendants(context, child, phase);
break;
}
});
paintable.clear_clip_overflow_rect(context, to_paint_phase(phase));
paintable.after_children_paint(context, to_paint_phase(phase));
}
void StackingContext::paint_child(PaintContext& context, StackingContext const& child)
{
auto parent_paintable = child.paintable_box().parent();
if (parent_paintable)
parent_paintable->before_children_paint(context, PaintPhase::Foreground);
auto containing_block = child.paintable_box().containing_block();
auto* containing_block_paintable = containing_block ? containing_block->paintable() : nullptr;
if (containing_block_paintable)
containing_block_paintable->apply_clip_overflow_rect(context, PaintPhase::Foreground);
child.paint(context);
if (parent_paintable)
parent_paintable->after_children_paint(context, PaintPhase::Foreground);
if (containing_block_paintable)
containing_block_paintable->clear_clip_overflow_rect(context, PaintPhase::Foreground);
}
void StackingContext::paint_internal(PaintContext& context) const
{
// For a more elaborate description of the algorithm, see CSS 2.1 Appendix E
// Draw the background and borders for the context root (steps 1, 2)
paint_node(paintable_box(), context, PaintPhase::Background);
paint_node(paintable_box(), context, PaintPhase::Border);
// Stacking contexts formed by positioned descendants with negative z-indices (excluding 0) in z-index order
// (most negative first) then tree order. (step 3)
for (auto* child : m_children) {
if (!child->paintable_box().is_positioned())
continue;
if (child->paintable_box().computed_values().z_index().has_value() && child->paintable_box().computed_values().z_index().value() < 0)
paint_child(context, *child);
}
// Draw the background and borders for block-level children (step 4)
paint_descendants(context, paintable_box(), StackingContextPaintPhase::BackgroundAndBorders);
// Draw the non-positioned floats (step 5)
paint_descendants(context, paintable_box(), StackingContextPaintPhase::Floats);
// Draw inline content, replaced content, etc. (steps 6, 7)
paint_descendants(context, paintable_box(), StackingContextPaintPhase::BackgroundAndBordersForInlineLevelAndReplaced);
paint_node(paintable_box(), context, PaintPhase::Foreground);
paint_descendants(context, paintable_box(), StackingContextPaintPhase::Foreground);
// Draw positioned descendants with z-index `0` or `auto` in tree order. (step 8)
// FIXME: There's more to this step that we have yet to understand and implement.
paintable_box().for_each_in_subtree([&context](Paintable const& paintable) {
auto const& z_index = paintable.computed_values().z_index();
if (!paintable.is_positioned() || (z_index.has_value() && z_index.value() != 0)) {
return paintable.stacking_context_rooted_here()
? TraversalDecision::SkipChildrenAndContinue
: TraversalDecision::Continue;
}
// At this point, `paintable_box` is a positioned descendant with z-index: auto.
// FIXME: This is basically duplicating logic found elsewhere in this same function. Find a way to make this more elegant.
auto exit_decision = TraversalDecision::Continue;
auto* parent_paintable = paintable.parent();
if (parent_paintable)
parent_paintable->before_children_paint(context, PaintPhase::Foreground);
auto containing_block = paintable.containing_block();
auto* containing_block_paintable = containing_block ? containing_block->paintable() : nullptr;
if (containing_block_paintable)
containing_block_paintable->apply_clip_overflow_rect(context, PaintPhase::Foreground);
if (auto* child = paintable.stacking_context_rooted_here()) {
paint_child(context, *child);
exit_decision = TraversalDecision::SkipChildrenAndContinue;
} else {
paint_node_as_stacking_context(paintable, context);
}
if (parent_paintable)
parent_paintable->after_children_paint(context, PaintPhase::Foreground);
if (containing_block_paintable)
containing_block_paintable->clear_clip_overflow_rect(context, PaintPhase::Foreground);
return exit_decision;
});
// Stacking contexts formed by positioned descendants with z-indices greater than or equal to 1 in z-index order
// (smallest first) then tree order. (Step 9)
for (auto* child : m_children) {
if (!child->paintable_box().is_positioned())
continue;
if (child->paintable_box().computed_values().z_index().has_value() && child->paintable_box().computed_values().z_index().value() >= 1)
paint_child(context, *child);
}
paint_node(paintable_box(), context, PaintPhase::Outline);
paint_node(paintable_box(), context, PaintPhase::Overlay);
paint_descendants(context, paintable_box(), StackingContextPaintPhase::FocusAndOverlay);
}
Gfx::FloatMatrix4x4 StackingContext::combine_transformations(Vector<CSS::Transformation> const& transformations) const
{
auto matrix = Gfx::FloatMatrix4x4::identity();
for (auto const& transform : transformations)
matrix = matrix * transform.to_matrix(paintable_box());
return matrix;
}
// FIXME: This extracts the affine 2D part of the full transformation matrix.
// Use the whole matrix when we get better transformation support in LibGfx or use LibGL for drawing the bitmap
Gfx::AffineTransform StackingContext::affine_transform_matrix() const
{
auto* m = m_transform.elements();
return Gfx::AffineTransform(m[0][0], m[1][0], m[0][1], m[1][1], m[0][3], m[1][3]);
}
void StackingContext::paint(PaintContext& context) const
{
RecordingPainterStateSaver saver(context.painter());
auto opacity = paintable_box().computed_values().opacity();
if (opacity == 0.0f)
return;
if (auto masking_area = paintable_box().get_masking_area(); masking_area.has_value()) {
// TODO: Support masks and CSS transforms at the same time.
// Note: Currently only SVG masking is implemented (which does not use CSS transforms anyway).
if (masking_area->is_empty())
return;
auto paint_rect = context.enclosing_device_rect(*masking_area);
context.painter().push_stacking_context_with_mask(paint_rect);
paint_internal(context);
auto mask_bitmap = paintable_box().calculate_mask(context, *masking_area);
auto mask_type = paintable_box().get_mask_type();
context.painter().pop_stacking_context_with_mask(mask_bitmap, *mask_type, paint_rect, opacity);
return;
}
auto affine_transform = affine_transform_matrix();
auto translation = context.rounded_device_point(affine_transform.translation().to_type<CSSPixels>()).to_type<int>().to_type<float>();
affine_transform.set_translation(translation);
auto transform_origin = this->transform_origin();
auto source_rect = context.enclosing_device_rect(paintable_box().absolute_paint_rect()).to_type<int>().to_type<float>().translated(-transform_origin);
auto transformed_destination_rect = affine_transform.map(source_rect).translated(transform_origin);
auto destination_rect = transformed_destination_rect.to_rounded<int>();
RecordingPainter::PushStackingContextParams push_stacking_context_params {
.semitransparent_or_has_non_identity_transform = false,
.has_fixed_position = false,
.opacity = opacity,
.source_rect = source_rect,
.transformed_destination_rect = transformed_destination_rect,
.painter_location = context.rounded_device_point(-paintable_box().absolute_paint_rect().location())
};
RecordingPainter::PopStackingContextParams pop_stacking_context_params {
.semitransparent_or_has_non_identity_transform = false,
.scaling_mode = CSS::to_gfx_scaling_mode(paintable_box().computed_values().image_rendering(), destination_rect, destination_rect)
};
if (paintable_box().is_fixed_position()) {
push_stacking_context_params.has_fixed_position = true;
}
if (opacity < 1.0f || !affine_transform.is_identity_or_translation()) {
push_stacking_context_params.semitransparent_or_has_non_identity_transform = true;
pop_stacking_context_params.semitransparent_or_has_non_identity_transform = true;
context.painter().push_stacking_context(push_stacking_context_params);
paint_internal(context);
context.painter().pop_stacking_context(pop_stacking_context_params);
} else {
context.painter().push_stacking_context(push_stacking_context_params);
context.painter().translate(affine_transform.translation().to_rounded<int>());
paint_internal(context);
context.painter().pop_stacking_context(pop_stacking_context_params);
}
}
Gfx::FloatPoint StackingContext::compute_transform_origin() const
{
auto style_value = paintable_box().computed_values().transform_origin();
// FIXME: respect transform-box property
auto reference_box = paintable_box().absolute_border_box_rect();
auto x = reference_box.left() + style_value.x.to_px(paintable_box().layout_node(), reference_box.width());
auto y = reference_box.top() + style_value.y.to_px(paintable_box().layout_node(), reference_box.height());
return { x.to_float(), y.to_float() };
}
template<typename U, typename Callback>
static TraversalDecision for_each_in_inclusive_subtree_of_type_within_same_stacking_context_in_reverse(Paintable const& paintable, Callback callback)
{
if (paintable.stacking_context_rooted_here()) {
// Note: Include the stacking context (so we can hit test it), but don't recurse into it.
if (auto decision = callback(static_cast<U const&>(paintable)); decision != TraversalDecision::Continue)
return decision;
return TraversalDecision::SkipChildrenAndContinue;
}
for (auto* child = paintable.last_child(); child; child = child->previous_sibling()) {
if (for_each_in_inclusive_subtree_of_type_within_same_stacking_context_in_reverse<U>(*child, callback) == TraversalDecision::Break)
return TraversalDecision::Break;
}
if (is<U>(paintable)) {
if (auto decision = callback(static_cast<U const&>(paintable)); decision != TraversalDecision::Continue)
return decision;
}
return TraversalDecision::Continue;
}
template<typename U, typename Callback>
static TraversalDecision for_each_in_subtree_of_type_within_same_stacking_context_in_reverse(Paintable const& paintable, Callback callback)
{
for (auto* child = paintable.last_child(); child; child = child->previous_sibling()) {
if (for_each_in_inclusive_subtree_of_type_within_same_stacking_context_in_reverse<U>(*child, callback) == TraversalDecision::Break)
return TraversalDecision::Break;
}
return TraversalDecision::Continue;
}
Optional<HitTestResult> StackingContext::hit_test(CSSPixelPoint position, HitTestType type) const
{
if (!paintable_box().is_visible())
return {};
auto transform_origin = this->transform_origin().to_type<CSSPixels>();
// NOTE: This CSSPixels -> Float -> CSSPixels conversion is because we can't AffineTransform::map() a CSSPixelPoint.
Gfx::FloatPoint offset_position {
(position.x() - transform_origin.x()).to_float(),
(position.y() - transform_origin.y()).to_float()
};
auto transformed_position = affine_transform_matrix().inverse().value_or({}).map(offset_position).to_type<CSSPixels>() + transform_origin;
if (paintable_box().is_fixed_position()) {
auto scroll_offset = paintable_box().document().navigable()->viewport_scroll_offset();
transformed_position.translate_by(-scroll_offset);
}
// FIXME: Support more overflow variations.
if (paintable_box().computed_values().overflow_x() == CSS::Overflow::Hidden && paintable_box().computed_values().overflow_y() == CSS::Overflow::Hidden) {
if (!paintable_box().absolute_border_box_rect().contains(transformed_position.x(), transformed_position.y()))
return {};
}
// NOTE: Hit testing basically happens in reverse painting order.
// https://www.w3.org/TR/CSS22/visuren.html#z-index
// 7. the child stacking contexts with positive stack levels (least positive first).
// NOTE: Hit testing follows reverse painting order, that's why the conditions here are reversed.
for (ssize_t i = m_children.size() - 1; i >= 0; --i) {
auto const& child = *m_children[i];
if (child.paintable_box().computed_values().z_index().value_or(0) <= 0)
break;
auto result = child.hit_test(transformed_position, type);
if (result.has_value() && result->paintable->visible_for_hit_testing())
return result;
}
// 6. the child stacking contexts with stack level 0 and the positioned descendants with stack level 0.
Optional<HitTestResult> result;
for_each_in_subtree_of_type_within_same_stacking_context_in_reverse<PaintableBox>(paintable_box(), [&](PaintableBox const& paintable_box) {
// FIXME: Support more overflow variations.
if (paintable_box.computed_values().overflow_x() == CSS::Overflow::Hidden && paintable_box.computed_values().overflow_y() == CSS::Overflow::Hidden) {
if (!paintable_box.absolute_border_box_rect().contains(transformed_position.x(), transformed_position.y()))
return TraversalDecision::SkipChildrenAndContinue;
}
auto const& z_index = paintable_box.computed_values().z_index();
if (z_index.value_or(0) == 0 && paintable_box.is_positioned() && !paintable_box.stacking_context()) {
auto candidate = paintable_box.hit_test(transformed_position, type);
if (candidate.has_value() && candidate->paintable->visible_for_hit_testing()) {
result = move(candidate);
return TraversalDecision::Break;
}
}
if (paintable_box.stacking_context()) {
if (z_index.value_or(0) == 0) {
auto candidate = paintable_box.stacking_context()->hit_test(transformed_position, type);
if (candidate.has_value() && candidate->paintable->visible_for_hit_testing()) {
result = move(candidate);
return TraversalDecision::Break;
}
}
}
return TraversalDecision::Continue;
});
if (result.has_value())
return result;
// 5. the in-flow, inline-level, non-positioned descendants, including inline tables and inline blocks.
if (paintable_box().layout_box().children_are_inline() && is<Layout::BlockContainer>(paintable_box().layout_box())) {
auto result = paintable_box().hit_test(transformed_position, type);
if (result.has_value() && result->paintable->visible_for_hit_testing())
return result;
}
// 4. the non-positioned floats.
for_each_in_subtree_of_type_within_same_stacking_context_in_reverse<PaintableBox>(paintable_box(), [&](PaintableBox const& paintable_box) {
// FIXME: Support more overflow variations.
if (paintable_box.computed_values().overflow_x() == CSS::Overflow::Hidden && paintable_box.computed_values().overflow_y() == CSS::Overflow::Hidden) {
if (!paintable_box.absolute_border_box_rect().contains(transformed_position.x(), transformed_position.y()))
return TraversalDecision::SkipChildrenAndContinue;
}
if (paintable_box.is_floating()) {
if (auto candidate = paintable_box.hit_test(transformed_position, type); candidate.has_value()) {
result = move(candidate);
return TraversalDecision::Break;
}
}
return TraversalDecision::Continue;
});
if (result.has_value() && result->paintable->visible_for_hit_testing())
return result;
// 3. the in-flow, non-inline-level, non-positioned descendants.
if (!paintable_box().layout_box().children_are_inline()) {
for_each_in_subtree_of_type_within_same_stacking_context_in_reverse<PaintableBox>(paintable_box(), [&](PaintableBox const& paintable_box) {
// FIXME: Support more overflow variations.
if (paintable_box.computed_values().overflow_x() == CSS::Overflow::Hidden && paintable_box.computed_values().overflow_y() == CSS::Overflow::Hidden) {
if (!paintable_box.absolute_border_box_rect().contains(transformed_position.x(), transformed_position.y()))
return TraversalDecision::SkipChildrenAndContinue;
}
if (!paintable_box.is_absolutely_positioned() && !paintable_box.is_floating()) {
if (auto candidate = paintable_box.hit_test(transformed_position, type); candidate.has_value()) {
result = move(candidate);
return TraversalDecision::Break;
}
}
return TraversalDecision::Continue;
});
if (result.has_value() && result->paintable->visible_for_hit_testing())
return result;
}
// 2. the child stacking contexts with negative stack levels (most negative first).
// NOTE: Hit testing follows reverse painting order, that's why the conditions here are reversed.
for (ssize_t i = m_children.size() - 1; i >= 0; --i) {
auto const& child = *m_children[i];
if (child.paintable_box().computed_values().z_index().value_or(0) >= 0)
break;
auto result = child.hit_test(transformed_position, type);
if (result.has_value() && result->paintable->visible_for_hit_testing())
return result;
}
// 1. the background and borders of the element forming the stacking context.
if (paintable_box().absolute_border_box_rect().contains(transformed_position.x(), transformed_position.y())) {
return HitTestResult {
.paintable = const_cast<PaintableBox&>(paintable_box()),
};
}
return {};
}
void StackingContext::dump(int indent) const
{
StringBuilder builder;
for (int i = 0; i < indent; ++i)
builder.append(' ');
builder.appendff("SC for {} {} [children: {}] (z-index: ", paintable_box().layout_box().debug_description(), paintable_box().absolute_rect(), m_children.size());
if (paintable_box().computed_values().z_index().has_value())
builder.appendff("{}", paintable_box().computed_values().z_index().value());
else
builder.append("auto"sv);
builder.append(')');
auto affine_transform = affine_transform_matrix();
if (!affine_transform.is_identity()) {
builder.appendff(", transform: {}", affine_transform);
}
dbgln("{}", builder.string_view());
for (auto& child : m_children)
child->dump(indent + 1);
}
}