mirror of
https://github.com/RGBCube/serenity
synced 2025-05-23 18:55:08 +00:00

Region now has is_user_accessible(), which informs the memory manager how to map these pages. Previously, we were just passing a "bool user_allowed" to various functions and I'm not at all sure that any of that was correct. All the Region constructors are now hidden, and you must go through one of these helpers to construct a region: - Region::create_user_accessible(...) - Region::create_kernel_only(...) That ensures that we don't accidentally create a Region without specifying user accessibility. :^)
788 lines
27 KiB
C++
788 lines
27 KiB
C++
#include "CMOS.h"
|
|
#include "Process.h"
|
|
#include "StdLib.h"
|
|
#include <AK/Assertions.h>
|
|
#include <AK/kstdio.h>
|
|
#include <Kernel/Arch/i386/CPU.h>
|
|
#include <Kernel/FileSystem/Inode.h>
|
|
#include <Kernel/Multiboot.h>
|
|
#include <Kernel/VM/MemoryManager.h>
|
|
|
|
//#define MM_DEBUG
|
|
//#define PAGE_FAULT_DEBUG
|
|
|
|
static MemoryManager* s_the;
|
|
|
|
MemoryManager& MM
|
|
{
|
|
return *s_the;
|
|
}
|
|
|
|
MemoryManager::MemoryManager()
|
|
{
|
|
m_kernel_page_directory = PageDirectory::create_at_fixed_address(PhysicalAddress(0x4000));
|
|
m_page_table_zero = (PageTableEntry*)0x6000;
|
|
m_page_table_one = (PageTableEntry*)0x7000;
|
|
|
|
initialize_paging();
|
|
|
|
kprintf("MM initialized.\n");
|
|
}
|
|
|
|
MemoryManager::~MemoryManager()
|
|
{
|
|
}
|
|
|
|
void MemoryManager::populate_page_directory(PageDirectory& page_directory)
|
|
{
|
|
page_directory.m_directory_page = allocate_supervisor_physical_page();
|
|
page_directory.entries()[0].copy_from({}, kernel_page_directory().entries()[0]);
|
|
page_directory.entries()[1].copy_from({}, kernel_page_directory().entries()[1]);
|
|
// Defer to the kernel page tables for 0xC0000000-0xFFFFFFFF
|
|
for (int i = 768; i < 1024; ++i)
|
|
page_directory.entries()[i].copy_from({}, kernel_page_directory().entries()[i]);
|
|
}
|
|
|
|
void MemoryManager::initialize_paging()
|
|
{
|
|
memset(m_page_table_zero, 0, PAGE_SIZE);
|
|
memset(m_page_table_one, 0, PAGE_SIZE);
|
|
|
|
#ifdef MM_DEBUG
|
|
dbgprintf("MM: Kernel page directory @ %p\n", kernel_page_directory().cr3());
|
|
#endif
|
|
|
|
#ifdef MM_DEBUG
|
|
dbgprintf("MM: Protect against null dereferences\n");
|
|
#endif
|
|
// Make null dereferences crash.
|
|
map_protected(VirtualAddress(0), PAGE_SIZE);
|
|
|
|
#ifdef MM_DEBUG
|
|
dbgprintf("MM: Identity map bottom 5MB\n");
|
|
#endif
|
|
// The bottom 5 MB (except for the null page) are identity mapped & supervisor only.
|
|
// Every process shares these mappings.
|
|
create_identity_mapping(kernel_page_directory(), VirtualAddress(PAGE_SIZE), (5 * MB) - PAGE_SIZE);
|
|
|
|
// Basic memory map:
|
|
// 0 -> 512 kB Kernel code. Root page directory & PDE 0.
|
|
// (last page before 1MB) Used by quickmap_page().
|
|
// 1 MB -> 3 MB kmalloc_eternal() space.
|
|
// 3 MB -> 4 MB kmalloc() space.
|
|
// 4 MB -> 5 MB Supervisor physical pages (available for allocation!)
|
|
// 5 MB -> 0xc0000000 Userspace physical pages (available for allocation!)
|
|
// 0xc0000000-0xffffffff Kernel-only virtual address space
|
|
|
|
#ifdef MM_DEBUG
|
|
dbgprintf("MM: Quickmap will use %p\n", m_quickmap_addr.get());
|
|
#endif
|
|
m_quickmap_addr = VirtualAddress((1 * MB) - PAGE_SIZE);
|
|
|
|
RefPtr<PhysicalRegion> region;
|
|
bool region_is_super = false;
|
|
|
|
for (auto* mmap = (multiboot_memory_map_t*)multiboot_info_ptr->mmap_addr; (unsigned long)mmap < multiboot_info_ptr->mmap_addr + multiboot_info_ptr->mmap_length; mmap = (multiboot_memory_map_t*)((unsigned long)mmap + mmap->size + sizeof(mmap->size))) {
|
|
kprintf("MM: Multiboot mmap: base_addr = 0x%x%08x, length = 0x%x%08x, type = 0x%x\n",
|
|
(u32)(mmap->addr >> 32),
|
|
(u32)(mmap->addr & 0xffffffff),
|
|
(u32)(mmap->len >> 32),
|
|
(u32)(mmap->len & 0xffffffff),
|
|
(u32)mmap->type);
|
|
|
|
if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
|
|
continue;
|
|
|
|
// FIXME: Maybe make use of stuff below the 1MB mark?
|
|
if (mmap->addr < (1 * MB))
|
|
continue;
|
|
|
|
#ifdef MM_DEBUG
|
|
kprintf("MM: considering memory at %p - %p\n",
|
|
(u32)mmap->addr, (u32)(mmap->addr + mmap->len));
|
|
#endif
|
|
|
|
for (size_t page_base = mmap->addr; page_base < (mmap->addr + mmap->len); page_base += PAGE_SIZE) {
|
|
auto addr = PhysicalAddress(page_base);
|
|
|
|
if (page_base < 4 * MB) {
|
|
// nothing
|
|
} else if (page_base >= 4 * MB && page_base < 5 * MB) {
|
|
if (region.is_null() || !region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
|
|
m_super_physical_regions.append(PhysicalRegion::create(addr, addr));
|
|
region = m_super_physical_regions.last();
|
|
region_is_super = true;
|
|
} else {
|
|
region->expand(region->lower(), addr);
|
|
}
|
|
} else {
|
|
if (region.is_null() || region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
|
|
m_user_physical_regions.append(PhysicalRegion::create(addr, addr));
|
|
region = &m_user_physical_regions.last();
|
|
region_is_super = false;
|
|
} else {
|
|
region->expand(region->lower(), addr);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (auto& region : m_super_physical_regions)
|
|
m_super_physical_pages += region.finalize_capacity();
|
|
|
|
for (auto& region : m_user_physical_regions)
|
|
m_user_physical_pages += region.finalize_capacity();
|
|
|
|
#ifdef MM_DEBUG
|
|
dbgprintf("MM: Installing page directory\n");
|
|
#endif
|
|
|
|
asm volatile("movl %%eax, %%cr3" ::"a"(kernel_page_directory().cr3()));
|
|
asm volatile(
|
|
"movl %%cr0, %%eax\n"
|
|
"orl $0x80000001, %%eax\n"
|
|
"movl %%eax, %%cr0\n" ::
|
|
: "%eax", "memory");
|
|
|
|
#ifdef MM_DEBUG
|
|
dbgprintf("MM: Paging initialized.\n");
|
|
#endif
|
|
}
|
|
|
|
RefPtr<PhysicalPage> MemoryManager::allocate_page_table(PageDirectory& page_directory, unsigned index)
|
|
{
|
|
ASSERT(!page_directory.m_physical_pages.contains(index));
|
|
auto physical_page = allocate_supervisor_physical_page();
|
|
if (!physical_page)
|
|
return nullptr;
|
|
page_directory.m_physical_pages.set(index, physical_page);
|
|
return physical_page;
|
|
}
|
|
|
|
void MemoryManager::remove_identity_mapping(PageDirectory& page_directory, VirtualAddress vaddr, size_t size)
|
|
{
|
|
InterruptDisabler disabler;
|
|
// FIXME: ASSERT(vaddr is 4KB aligned);
|
|
for (u32 offset = 0; offset < size; offset += PAGE_SIZE) {
|
|
auto pte_address = vaddr.offset(offset);
|
|
auto& pte = ensure_pte(page_directory, pte_address);
|
|
pte.set_physical_page_base(0);
|
|
pte.set_user_allowed(false);
|
|
pte.set_present(true);
|
|
pte.set_writable(true);
|
|
flush_tlb(pte_address);
|
|
}
|
|
}
|
|
|
|
PageTableEntry& MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr)
|
|
{
|
|
ASSERT_INTERRUPTS_DISABLED();
|
|
u32 page_directory_index = (vaddr.get() >> 22) & 0x3ff;
|
|
u32 page_table_index = (vaddr.get() >> 12) & 0x3ff;
|
|
|
|
PageDirectoryEntry& pde = page_directory.entries()[page_directory_index];
|
|
if (!pde.is_present()) {
|
|
#ifdef MM_DEBUG
|
|
dbgprintf("MM: PDE %u not present (requested for L%x), allocating\n", page_directory_index, vaddr.get());
|
|
#endif
|
|
if (page_directory_index == 0) {
|
|
ASSERT(&page_directory == m_kernel_page_directory);
|
|
pde.set_page_table_base((u32)m_page_table_zero);
|
|
pde.set_user_allowed(false);
|
|
pde.set_present(true);
|
|
pde.set_writable(true);
|
|
} else if (page_directory_index == 1) {
|
|
ASSERT(&page_directory == m_kernel_page_directory);
|
|
pde.set_page_table_base((u32)m_page_table_one);
|
|
pde.set_user_allowed(false);
|
|
pde.set_present(true);
|
|
pde.set_writable(true);
|
|
} else {
|
|
//ASSERT(&page_directory != m_kernel_page_directory.ptr());
|
|
auto page_table = allocate_page_table(page_directory, page_directory_index);
|
|
#ifdef MM_DEBUG
|
|
dbgprintf("MM: PD K%x (%s) at P%x allocated page table #%u (for L%x) at P%x\n",
|
|
&page_directory,
|
|
&page_directory == m_kernel_page_directory ? "Kernel" : "User",
|
|
page_directory.cr3(),
|
|
page_directory_index,
|
|
vaddr.get(),
|
|
page_table->paddr().get());
|
|
#endif
|
|
|
|
pde.set_page_table_base(page_table->paddr().get());
|
|
pde.set_user_allowed(true);
|
|
pde.set_present(true);
|
|
pde.set_writable(true);
|
|
page_directory.m_physical_pages.set(page_directory_index, move(page_table));
|
|
}
|
|
}
|
|
return pde.page_table_base()[page_table_index];
|
|
}
|
|
|
|
void MemoryManager::map_protected(VirtualAddress vaddr, size_t length)
|
|
{
|
|
InterruptDisabler disabler;
|
|
ASSERT(vaddr.is_page_aligned());
|
|
for (u32 offset = 0; offset < length; offset += PAGE_SIZE) {
|
|
auto pte_address = vaddr.offset(offset);
|
|
auto& pte = ensure_pte(kernel_page_directory(), pte_address);
|
|
pte.set_physical_page_base(pte_address.get());
|
|
pte.set_user_allowed(false);
|
|
pte.set_present(false);
|
|
pte.set_writable(false);
|
|
flush_tlb(pte_address);
|
|
}
|
|
}
|
|
|
|
void MemoryManager::create_identity_mapping(PageDirectory& page_directory, VirtualAddress vaddr, size_t size)
|
|
{
|
|
InterruptDisabler disabler;
|
|
ASSERT((vaddr.get() & ~PAGE_MASK) == 0);
|
|
for (u32 offset = 0; offset < size; offset += PAGE_SIZE) {
|
|
auto pte_address = vaddr.offset(offset);
|
|
auto& pte = ensure_pte(page_directory, pte_address);
|
|
pte.set_physical_page_base(pte_address.get());
|
|
pte.set_user_allowed(false);
|
|
pte.set_present(true);
|
|
pte.set_writable(true);
|
|
page_directory.flush(pte_address);
|
|
}
|
|
}
|
|
|
|
void MemoryManager::initialize()
|
|
{
|
|
s_the = new MemoryManager;
|
|
}
|
|
|
|
Region* MemoryManager::region_from_vaddr(Process& process, VirtualAddress vaddr)
|
|
{
|
|
ASSERT_INTERRUPTS_DISABLED();
|
|
|
|
if (vaddr.get() >= 0xc0000000) {
|
|
for (auto& region : MM.m_kernel_regions) {
|
|
if (region->contains(vaddr))
|
|
return region;
|
|
}
|
|
}
|
|
|
|
// FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
|
|
for (auto& region : process.m_regions) {
|
|
if (region.contains(vaddr))
|
|
return ®ion;
|
|
}
|
|
dbgprintf("%s(%u) Couldn't find region for L%x (CR3=%x)\n", process.name().characters(), process.pid(), vaddr.get(), process.page_directory().cr3());
|
|
return nullptr;
|
|
}
|
|
|
|
const Region* MemoryManager::region_from_vaddr(const Process& process, VirtualAddress vaddr)
|
|
{
|
|
if (vaddr.get() >= 0xc0000000) {
|
|
for (auto& region : MM.m_kernel_regions) {
|
|
if (region->contains(vaddr))
|
|
return region;
|
|
}
|
|
}
|
|
|
|
// FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
|
|
for (auto& region : process.m_regions) {
|
|
if (region.contains(vaddr))
|
|
return ®ion;
|
|
}
|
|
dbgprintf("%s(%u) Couldn't find region for L%x (CR3=%x)\n", process.name().characters(), process.pid(), vaddr.get(), process.page_directory().cr3());
|
|
return nullptr;
|
|
}
|
|
|
|
bool MemoryManager::zero_page(Region& region, unsigned page_index_in_region)
|
|
{
|
|
ASSERT_INTERRUPTS_DISABLED();
|
|
auto& vmo = region.vmo();
|
|
auto& vmo_page = vmo.physical_pages()[region.first_page_index() + page_index_in_region];
|
|
sti();
|
|
LOCKER(vmo.m_paging_lock);
|
|
cli();
|
|
if (!vmo_page.is_null()) {
|
|
#ifdef PAGE_FAULT_DEBUG
|
|
dbgprintf("MM: zero_page() but page already present. Fine with me!\n");
|
|
#endif
|
|
remap_region_page(region, page_index_in_region);
|
|
return true;
|
|
}
|
|
auto physical_page = allocate_user_physical_page(ShouldZeroFill::Yes);
|
|
#ifdef PAGE_FAULT_DEBUG
|
|
dbgprintf(" >> ZERO P%x\n", physical_page->paddr().get());
|
|
#endif
|
|
region.set_should_cow(page_index_in_region, false);
|
|
vmo.physical_pages()[page_index_in_region] = move(physical_page);
|
|
remap_region_page(region, page_index_in_region);
|
|
return true;
|
|
}
|
|
|
|
bool MemoryManager::copy_on_write(Region& region, unsigned page_index_in_region)
|
|
{
|
|
ASSERT_INTERRUPTS_DISABLED();
|
|
auto& vmo = region.vmo();
|
|
if (vmo.physical_pages()[page_index_in_region]->ref_count() == 1) {
|
|
#ifdef PAGE_FAULT_DEBUG
|
|
dbgprintf(" >> It's a COW page but nobody is sharing it anymore. Remap r/w\n");
|
|
#endif
|
|
region.set_should_cow(page_index_in_region, false);
|
|
remap_region_page(region, page_index_in_region);
|
|
return true;
|
|
}
|
|
|
|
#ifdef PAGE_FAULT_DEBUG
|
|
dbgprintf(" >> It's a COW page and it's time to COW!\n");
|
|
#endif
|
|
auto physical_page_to_copy = move(vmo.physical_pages()[page_index_in_region]);
|
|
auto physical_page = allocate_user_physical_page(ShouldZeroFill::No);
|
|
u8* dest_ptr = quickmap_page(*physical_page);
|
|
const u8* src_ptr = region.vaddr().offset(page_index_in_region * PAGE_SIZE).as_ptr();
|
|
#ifdef PAGE_FAULT_DEBUG
|
|
dbgprintf(" >> COW P%x <- P%x\n", physical_page->paddr().get(), physical_page_to_copy->paddr().get());
|
|
#endif
|
|
memcpy(dest_ptr, src_ptr, PAGE_SIZE);
|
|
vmo.physical_pages()[page_index_in_region] = move(physical_page);
|
|
unquickmap_page();
|
|
region.set_should_cow(page_index_in_region, false);
|
|
remap_region_page(region, page_index_in_region);
|
|
return true;
|
|
}
|
|
|
|
bool MemoryManager::page_in_from_inode(Region& region, unsigned page_index_in_region)
|
|
{
|
|
ASSERT(region.page_directory());
|
|
auto& vmo = region.vmo();
|
|
ASSERT(!vmo.is_anonymous());
|
|
ASSERT(vmo.inode());
|
|
|
|
auto& vmo_page = vmo.physical_pages()[region.first_page_index() + page_index_in_region];
|
|
|
|
InterruptFlagSaver saver;
|
|
|
|
sti();
|
|
LOCKER(vmo.m_paging_lock);
|
|
cli();
|
|
|
|
if (!vmo_page.is_null()) {
|
|
dbgprintf("MM: page_in_from_inode() but page already present. Fine with me!\n");
|
|
remap_region_page(region, page_index_in_region);
|
|
return true;
|
|
}
|
|
|
|
#ifdef MM_DEBUG
|
|
dbgprintf("MM: page_in_from_inode ready to read from inode\n");
|
|
#endif
|
|
sti();
|
|
u8 page_buffer[PAGE_SIZE];
|
|
auto& inode = *vmo.inode();
|
|
auto nread = inode.read_bytes(vmo.inode_offset() + ((region.first_page_index() + page_index_in_region) * PAGE_SIZE), PAGE_SIZE, page_buffer, nullptr);
|
|
if (nread < 0) {
|
|
kprintf("MM: page_in_from_inode had error (%d) while reading!\n", nread);
|
|
return false;
|
|
}
|
|
if (nread < PAGE_SIZE) {
|
|
// If we read less than a page, zero out the rest to avoid leaking uninitialized data.
|
|
memset(page_buffer + nread, 0, PAGE_SIZE - nread);
|
|
}
|
|
cli();
|
|
vmo_page = allocate_user_physical_page(ShouldZeroFill::No);
|
|
if (vmo_page.is_null()) {
|
|
kprintf("MM: page_in_from_inode was unable to allocate a physical page\n");
|
|
return false;
|
|
}
|
|
remap_region_page(region, page_index_in_region);
|
|
u8* dest_ptr = region.vaddr().offset(page_index_in_region * PAGE_SIZE).as_ptr();
|
|
memcpy(dest_ptr, page_buffer, PAGE_SIZE);
|
|
return true;
|
|
}
|
|
|
|
PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
|
|
{
|
|
ASSERT_INTERRUPTS_DISABLED();
|
|
ASSERT(current);
|
|
#ifdef PAGE_FAULT_DEBUG
|
|
dbgprintf("MM: handle_page_fault(%w) at L%x\n", fault.code(), fault.vaddr().get());
|
|
#endif
|
|
ASSERT(fault.vaddr() != m_quickmap_addr);
|
|
if (fault.is_not_present() && fault.vaddr().get() >= 0xc0000000) {
|
|
u32 page_directory_index = (fault.vaddr().get() >> 22) & 0x3ff;
|
|
if (kernel_page_directory().entries()[page_directory_index].is_present()) {
|
|
current->process().page_directory().entries()[page_directory_index].copy_from({}, kernel_page_directory().entries()[page_directory_index]);
|
|
dbgprintf("NP(kernel): copying new kernel mapping for L%x into process\n", fault.vaddr().get());
|
|
return PageFaultResponse::Continue;
|
|
}
|
|
}
|
|
auto* region = region_from_vaddr(current->process(), fault.vaddr());
|
|
if (!region) {
|
|
kprintf("NP(error) fault at invalid address L%x\n", fault.vaddr().get());
|
|
return PageFaultResponse::ShouldCrash;
|
|
}
|
|
auto page_index_in_region = region->page_index_from_address(fault.vaddr());
|
|
if (fault.is_not_present()) {
|
|
if (region->vmo().inode()) {
|
|
#ifdef PAGE_FAULT_DEBUG
|
|
dbgprintf("NP(inode) fault in Region{%p}[%u]\n", region, page_index_in_region);
|
|
#endif
|
|
page_in_from_inode(*region, page_index_in_region);
|
|
return PageFaultResponse::Continue;
|
|
} else {
|
|
#ifdef PAGE_FAULT_DEBUG
|
|
dbgprintf("NP(zero) fault in Region{%p}[%u]\n", region, page_index_in_region);
|
|
#endif
|
|
zero_page(*region, page_index_in_region);
|
|
return PageFaultResponse::Continue;
|
|
}
|
|
} else if (fault.is_protection_violation()) {
|
|
if (region->should_cow(page_index_in_region)) {
|
|
#ifdef PAGE_FAULT_DEBUG
|
|
dbgprintf("PV(cow) fault in Region{%p}[%u]\n", region, page_index_in_region);
|
|
#endif
|
|
bool success = copy_on_write(*region, page_index_in_region);
|
|
ASSERT(success);
|
|
return PageFaultResponse::Continue;
|
|
}
|
|
kprintf("PV(error) fault in Region{%p}[%u] at L%x\n", region, page_index_in_region, fault.vaddr().get());
|
|
} else {
|
|
ASSERT_NOT_REACHED();
|
|
}
|
|
|
|
return PageFaultResponse::ShouldCrash;
|
|
}
|
|
|
|
RefPtr<Region> MemoryManager::allocate_kernel_region(size_t size, String&& name)
|
|
{
|
|
InterruptDisabler disabler;
|
|
|
|
ASSERT(!(size % PAGE_SIZE));
|
|
auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
|
|
ASSERT(range.is_valid());
|
|
auto region = Region::create_kernel_only(range, move(name), PROT_READ | PROT_WRITE | PROT_EXEC, false);
|
|
region->set_user_accessible(false);
|
|
MM.map_region_at_address(*m_kernel_page_directory, *region, range.base());
|
|
// FIXME: It would be cool if these could zero-fill on demand instead.
|
|
region->commit();
|
|
return region;
|
|
}
|
|
|
|
void MemoryManager::deallocate_user_physical_page(PhysicalPage&& page)
|
|
{
|
|
for (auto& region : m_user_physical_regions) {
|
|
if (!region.contains(page)) {
|
|
kprintf(
|
|
"MM: deallocate_user_physical_page: %p not in %p -> %p\n",
|
|
page.paddr(), region.lower().get(), region.upper().get());
|
|
continue;
|
|
}
|
|
|
|
region.return_page(move(page));
|
|
--m_user_physical_pages_used;
|
|
|
|
return;
|
|
}
|
|
|
|
kprintf("MM: deallocate_user_physical_page couldn't figure out region for user page @ %p\n", page.paddr());
|
|
ASSERT_NOT_REACHED();
|
|
}
|
|
|
|
RefPtr<PhysicalPage> MemoryManager::allocate_user_physical_page(ShouldZeroFill should_zero_fill)
|
|
{
|
|
InterruptDisabler disabler;
|
|
RefPtr<PhysicalPage> page;
|
|
|
|
for (auto& region : m_user_physical_regions) {
|
|
page = region.take_free_page(false);
|
|
if (page.is_null())
|
|
continue;
|
|
}
|
|
|
|
if (!page) {
|
|
if (m_user_physical_regions.is_empty()) {
|
|
kprintf("MM: no user physical regions available (?)\n");
|
|
}
|
|
|
|
kprintf("MM: no user physical pages available\n");
|
|
ASSERT_NOT_REACHED();
|
|
return {};
|
|
}
|
|
|
|
#ifdef MM_DEBUG
|
|
dbgprintf("MM: allocate_user_physical_page vending P%p\n", page->paddr().get());
|
|
#endif
|
|
|
|
if (should_zero_fill == ShouldZeroFill::Yes) {
|
|
auto* ptr = (u32*)quickmap_page(*page);
|
|
fast_u32_fill(ptr, 0, PAGE_SIZE / sizeof(u32));
|
|
unquickmap_page();
|
|
}
|
|
|
|
++m_user_physical_pages_used;
|
|
return page;
|
|
}
|
|
|
|
void MemoryManager::deallocate_supervisor_physical_page(PhysicalPage&& page)
|
|
{
|
|
for (auto& region : m_super_physical_regions) {
|
|
if (!region.contains(page)) {
|
|
kprintf(
|
|
"MM: deallocate_supervisor_physical_page: %p not in %p -> %p\n",
|
|
page.paddr(), region.lower().get(), region.upper().get());
|
|
continue;
|
|
}
|
|
|
|
region.return_page(move(page));
|
|
--m_super_physical_pages_used;
|
|
return;
|
|
}
|
|
|
|
kprintf("MM: deallocate_supervisor_physical_page couldn't figure out region for super page @ %p\n", page.paddr());
|
|
ASSERT_NOT_REACHED();
|
|
}
|
|
|
|
RefPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
|
|
{
|
|
InterruptDisabler disabler;
|
|
RefPtr<PhysicalPage> page;
|
|
|
|
for (auto& region : m_super_physical_regions) {
|
|
page = region.take_free_page(true);
|
|
if (page.is_null())
|
|
continue;
|
|
}
|
|
|
|
if (!page) {
|
|
if (m_super_physical_regions.is_empty()) {
|
|
kprintf("MM: no super physical regions available (?)\n");
|
|
}
|
|
|
|
kprintf("MM: no super physical pages available\n");
|
|
ASSERT_NOT_REACHED();
|
|
return {};
|
|
}
|
|
|
|
#ifdef MM_DEBUG
|
|
dbgprintf("MM: allocate_supervisor_physical_page vending P%p\n", page->paddr().get());
|
|
#endif
|
|
|
|
fast_u32_fill((u32*)page->paddr().as_ptr(), 0, PAGE_SIZE / sizeof(u32));
|
|
++m_super_physical_pages_used;
|
|
return page;
|
|
}
|
|
|
|
void MemoryManager::enter_process_paging_scope(Process& process)
|
|
{
|
|
ASSERT(current);
|
|
InterruptDisabler disabler;
|
|
current->tss().cr3 = process.page_directory().cr3();
|
|
asm volatile("movl %%eax, %%cr3" ::"a"(process.page_directory().cr3())
|
|
: "memory");
|
|
}
|
|
|
|
void MemoryManager::flush_entire_tlb()
|
|
{
|
|
asm volatile(
|
|
"mov %%cr3, %%eax\n"
|
|
"mov %%eax, %%cr3\n" ::
|
|
: "%eax", "memory");
|
|
}
|
|
|
|
void MemoryManager::flush_tlb(VirtualAddress vaddr)
|
|
{
|
|
asm volatile("invlpg %0"
|
|
:
|
|
: "m"(*(char*)vaddr.get())
|
|
: "memory");
|
|
}
|
|
|
|
void MemoryManager::map_for_kernel(VirtualAddress vaddr, PhysicalAddress paddr)
|
|
{
|
|
auto& pte = ensure_pte(kernel_page_directory(), vaddr);
|
|
pte.set_physical_page_base(paddr.get());
|
|
pte.set_present(true);
|
|
pte.set_writable(true);
|
|
pte.set_user_allowed(false);
|
|
flush_tlb(vaddr);
|
|
}
|
|
|
|
u8* MemoryManager::quickmap_page(PhysicalPage& physical_page)
|
|
{
|
|
ASSERT_INTERRUPTS_DISABLED();
|
|
ASSERT(!m_quickmap_in_use);
|
|
m_quickmap_in_use = true;
|
|
auto page_vaddr = m_quickmap_addr;
|
|
auto& pte = ensure_pte(kernel_page_directory(), page_vaddr);
|
|
pte.set_physical_page_base(physical_page.paddr().get());
|
|
pte.set_present(true);
|
|
pte.set_writable(true);
|
|
pte.set_user_allowed(false);
|
|
flush_tlb(page_vaddr);
|
|
ASSERT((u32)pte.physical_page_base() == physical_page.paddr().get());
|
|
#ifdef MM_DEBUG
|
|
dbgprintf("MM: >> quickmap_page L%x => P%x @ PTE=%p\n", page_vaddr, physical_page.paddr().get(), pte.ptr());
|
|
#endif
|
|
return page_vaddr.as_ptr();
|
|
}
|
|
|
|
void MemoryManager::unquickmap_page()
|
|
{
|
|
ASSERT_INTERRUPTS_DISABLED();
|
|
ASSERT(m_quickmap_in_use);
|
|
auto page_vaddr = m_quickmap_addr;
|
|
auto& pte = ensure_pte(kernel_page_directory(), page_vaddr);
|
|
#ifdef MM_DEBUG
|
|
auto old_physical_address = pte.physical_page_base();
|
|
#endif
|
|
pte.set_physical_page_base(0);
|
|
pte.set_present(false);
|
|
pte.set_writable(false);
|
|
flush_tlb(page_vaddr);
|
|
#ifdef MM_DEBUG
|
|
dbgprintf("MM: >> unquickmap_page L%x =/> P%x\n", page_vaddr, old_physical_address);
|
|
#endif
|
|
m_quickmap_in_use = false;
|
|
}
|
|
|
|
void MemoryManager::remap_region_page(Region& region, unsigned page_index_in_region)
|
|
{
|
|
ASSERT(region.page_directory());
|
|
InterruptDisabler disabler;
|
|
auto page_vaddr = region.vaddr().offset(page_index_in_region * PAGE_SIZE);
|
|
auto& pte = ensure_pte(*region.page_directory(), page_vaddr);
|
|
auto& physical_page = region.vmo().physical_pages()[page_index_in_region];
|
|
ASSERT(physical_page);
|
|
pte.set_physical_page_base(physical_page->paddr().get());
|
|
pte.set_present(true); // FIXME: Maybe we should use the is_readable flag here?
|
|
if (region.should_cow(page_index_in_region))
|
|
pte.set_writable(false);
|
|
else
|
|
pte.set_writable(region.is_writable());
|
|
pte.set_cache_disabled(!region.vmo().m_allow_cpu_caching);
|
|
pte.set_write_through(!region.vmo().m_allow_cpu_caching);
|
|
pte.set_user_allowed(region.is_user_accessible());
|
|
region.page_directory()->flush(page_vaddr);
|
|
#ifdef MM_DEBUG
|
|
dbgprintf("MM: >> remap_region_page (PD=%x, PTE=P%x) '%s' L%x => P%x (@%p)\n", region.page_directory()->cr3(), pte.ptr(), region.name().characters(), page_vaddr.get(), physical_page->paddr().get(), physical_page.ptr());
|
|
#endif
|
|
}
|
|
|
|
void MemoryManager::remap_region(PageDirectory& page_directory, Region& region)
|
|
{
|
|
InterruptDisabler disabler;
|
|
ASSERT(region.page_directory() == &page_directory);
|
|
map_region_at_address(page_directory, region, region.vaddr());
|
|
}
|
|
|
|
void MemoryManager::map_region_at_address(PageDirectory& page_directory, Region& region, VirtualAddress vaddr)
|
|
{
|
|
InterruptDisabler disabler;
|
|
region.set_page_directory(page_directory);
|
|
auto& vmo = region.vmo();
|
|
#ifdef MM_DEBUG
|
|
dbgprintf("MM: map_region_at_address will map VMO pages %u - %u (VMO page count: %u)\n", region.first_page_index(), region.last_page_index(), vmo.page_count());
|
|
#endif
|
|
for (size_t i = 0; i < region.page_count(); ++i) {
|
|
auto page_vaddr = vaddr.offset(i * PAGE_SIZE);
|
|
auto& pte = ensure_pte(page_directory, page_vaddr);
|
|
auto& physical_page = vmo.physical_pages()[region.first_page_index() + i];
|
|
if (physical_page) {
|
|
pte.set_physical_page_base(physical_page->paddr().get());
|
|
pte.set_present(true); // FIXME: Maybe we should use the is_readable flag here?
|
|
// FIXME: It seems wrong that the *region* cow map is essentially using *VMO* relative indices.
|
|
if (region.should_cow(region.first_page_index() + i))
|
|
pte.set_writable(false);
|
|
else
|
|
pte.set_writable(region.is_writable());
|
|
pte.set_cache_disabled(!region.vmo().m_allow_cpu_caching);
|
|
pte.set_write_through(!region.vmo().m_allow_cpu_caching);
|
|
} else {
|
|
pte.set_physical_page_base(0);
|
|
pte.set_present(false);
|
|
pte.set_writable(region.is_writable());
|
|
}
|
|
pte.set_user_allowed(region.is_user_accessible());
|
|
page_directory.flush(page_vaddr);
|
|
#ifdef MM_DEBUG
|
|
dbgprintf("MM: >> map_region_at_address (PD=%x) '%s' L%x => P%x (@%p)\n", &page_directory, region.name().characters(), page_vaddr, physical_page ? physical_page->paddr().get() : 0, physical_page.ptr());
|
|
#endif
|
|
}
|
|
}
|
|
|
|
bool MemoryManager::unmap_region(Region& region)
|
|
{
|
|
ASSERT(region.page_directory());
|
|
InterruptDisabler disabler;
|
|
for (size_t i = 0; i < region.page_count(); ++i) {
|
|
auto vaddr = region.vaddr().offset(i * PAGE_SIZE);
|
|
auto& pte = ensure_pte(*region.page_directory(), vaddr);
|
|
pte.set_physical_page_base(0);
|
|
pte.set_present(false);
|
|
pte.set_writable(false);
|
|
pte.set_user_allowed(false);
|
|
region.page_directory()->flush(vaddr);
|
|
#ifdef MM_DEBUG
|
|
auto& physical_page = region.vmo().physical_pages()[region.first_page_index() + i];
|
|
dbgprintf("MM: >> Unmapped L%x => P%x <<\n", vaddr, physical_page ? physical_page->paddr().get() : 0);
|
|
#endif
|
|
}
|
|
region.release_page_directory();
|
|
return true;
|
|
}
|
|
|
|
bool MemoryManager::map_region(Process& process, Region& region)
|
|
{
|
|
map_region_at_address(process.page_directory(), region, region.vaddr());
|
|
return true;
|
|
}
|
|
|
|
bool MemoryManager::validate_user_read(const Process& process, VirtualAddress vaddr) const
|
|
{
|
|
auto* region = region_from_vaddr(process, vaddr);
|
|
return region && region->is_readable();
|
|
}
|
|
|
|
bool MemoryManager::validate_user_write(const Process& process, VirtualAddress vaddr) const
|
|
{
|
|
auto* region = region_from_vaddr(process, vaddr);
|
|
return region && region->is_writable();
|
|
}
|
|
|
|
void MemoryManager::register_vmo(VMObject& vmo)
|
|
{
|
|
InterruptDisabler disabler;
|
|
m_vmos.set(&vmo);
|
|
}
|
|
|
|
void MemoryManager::unregister_vmo(VMObject& vmo)
|
|
{
|
|
InterruptDisabler disabler;
|
|
m_vmos.remove(&vmo);
|
|
}
|
|
|
|
void MemoryManager::register_region(Region& region)
|
|
{
|
|
InterruptDisabler disabler;
|
|
if (region.vaddr().get() >= 0xc0000000)
|
|
m_kernel_regions.set(®ion);
|
|
else
|
|
m_user_regions.set(®ion);
|
|
}
|
|
|
|
void MemoryManager::unregister_region(Region& region)
|
|
{
|
|
InterruptDisabler disabler;
|
|
if (region.vaddr().get() >= 0xc0000000)
|
|
m_kernel_regions.remove(®ion);
|
|
else
|
|
m_user_regions.remove(®ion);
|
|
}
|
|
|
|
ProcessPagingScope::ProcessPagingScope(Process& process)
|
|
{
|
|
ASSERT(current);
|
|
MM.enter_process_paging_scope(process);
|
|
}
|
|
|
|
ProcessPagingScope::~ProcessPagingScope()
|
|
{
|
|
MM.enter_process_paging_scope(current->process());
|
|
}
|