mirror of
				https://github.com/RGBCube/serenity
				synced 2025-10-31 15:22:43 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			2359 lines
		
	
	
	
		
			87 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2359 lines
		
	
	
	
		
			87 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2020, the SerenityOS developers.
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions are met:
 | |
|  *
 | |
|  * 1. Redistributions of source code must retain the above copyright notice, this
 | |
|  *    list of conditions and the following disclaimer.
 | |
|  *
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright notice,
 | |
|  *    this list of conditions and the following disclaimer in the documentation
 | |
|  *    and/or other materials provided with the distribution.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 | |
|  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 | |
|  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 | |
|  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | |
|  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 | |
|  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 | |
|  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 | |
|  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
|  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
|  */
 | |
| 
 | |
| #include <AK/Random.h>
 | |
| #include <LibCore/ArgsParser.h>
 | |
| #include <LibCore/EventLoop.h>
 | |
| #include <LibCore/File.h>
 | |
| #include <LibCrypto/Authentication/HMAC.h>
 | |
| #include <LibCrypto/BigInt/SignedBigInteger.h>
 | |
| #include <LibCrypto/BigInt/UnsignedBigInteger.h>
 | |
| #include <LibCrypto/Checksum/Adler32.h>
 | |
| #include <LibCrypto/Checksum/CRC32.h>
 | |
| #include <LibCrypto/Cipher/AES.h>
 | |
| #include <LibCrypto/Hash/MD5.h>
 | |
| #include <LibCrypto/Hash/SHA1.h>
 | |
| #include <LibCrypto/Hash/SHA2.h>
 | |
| #include <LibCrypto/PK/RSA.h>
 | |
| #include <LibLine/Editor.h>
 | |
| #include <LibTLS/TLSv12.h>
 | |
| #include <limits.h>
 | |
| #include <stdio.h>
 | |
| #include <time.h>
 | |
| 
 | |
| static const char* secret_key = "WellHelloFreinds";
 | |
| static const char* suite = nullptr;
 | |
| static const char* filename = nullptr;
 | |
| static const char* server = nullptr;
 | |
| static int key_bits = 128;
 | |
| static bool binary = false;
 | |
| static bool interactive = false;
 | |
| static bool run_tests = false;
 | |
| static int port = 443;
 | |
| static bool in_ci = false;
 | |
| 
 | |
| static struct timeval start_time {
 | |
|     0, 0
 | |
| };
 | |
| static struct timezone tz;
 | |
| static bool g_some_test_failed = false;
 | |
| static bool encrypting = true;
 | |
| 
 | |
| constexpr const char* DEFAULT_DIGEST_SUITE { "HMAC-SHA256" };
 | |
| constexpr const char* DEFAULT_CHECKSUM_SUITE { "CRC32" };
 | |
| constexpr const char* DEFAULT_HASH_SUITE { "SHA256" };
 | |
| constexpr const char* DEFAULT_CIPHER_SUITE { "AES_CBC" };
 | |
| constexpr const char* DEFAULT_SERVER { "www.google.com" };
 | |
| 
 | |
| // listAllTests
 | |
| // Cipher
 | |
| static int aes_cbc_tests();
 | |
| static int aes_ctr_tests();
 | |
| 
 | |
| // Hash
 | |
| static int md5_tests();
 | |
| static int sha1_tests();
 | |
| static int sha256_tests();
 | |
| static int sha512_tests();
 | |
| 
 | |
| // Authentication
 | |
| static int hmac_md5_tests();
 | |
| static int hmac_sha256_tests();
 | |
| static int hmac_sha512_tests();
 | |
| 
 | |
| // Public-Key
 | |
| static int rsa_tests();
 | |
| 
 | |
| // TLS
 | |
| static int tls_tests();
 | |
| 
 | |
| // Big Integer
 | |
| static int bigint_tests();
 | |
| 
 | |
| // Checksum
 | |
| static int adler32_tests();
 | |
| static int crc32_tests();
 | |
| 
 | |
| // stop listing tests
 | |
| 
 | |
| static void print_buffer(ReadonlyBytes buffer, int split)
 | |
| {
 | |
|     for (size_t i = 0; i < buffer.size(); ++i) {
 | |
|         if (split > 0) {
 | |
|             if (i % split == 0 && i) {
 | |
|                 printf("    ");
 | |
|                 for (size_t j = i - split; j < i; ++j) {
 | |
|                     auto ch = buffer[j];
 | |
|                     printf("%c", ch >= 32 && ch <= 127 ? ch : '.'); // silly hack
 | |
|                 }
 | |
|                 puts("");
 | |
|             }
 | |
|         }
 | |
|         printf("%02x ", buffer[i]);
 | |
|     }
 | |
|     puts("");
 | |
| }
 | |
| 
 | |
| static Core::EventLoop g_loop;
 | |
| 
 | |
| static int run(Function<void(const char*, size_t)> fn)
 | |
| {
 | |
|     if (interactive) {
 | |
|         auto editor = Line::Editor::construct();
 | |
|         editor->initialize();
 | |
|         for (;;) {
 | |
|             auto line_result = editor->get_line("> ");
 | |
| 
 | |
|             if (line_result.is_error())
 | |
|                 break;
 | |
|             auto& line = line_result.value();
 | |
| 
 | |
|             if (line == ".wait") {
 | |
|                 g_loop.exec();
 | |
|             } else {
 | |
|                 fn(line.characters(), line.length());
 | |
|                 g_loop.pump();
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         if (filename == nullptr) {
 | |
|             puts("must specify a file name");
 | |
|             return 1;
 | |
|         }
 | |
|         if (!Core::File::exists(filename)) {
 | |
|             puts("File does not exist");
 | |
|             return 1;
 | |
|         }
 | |
|         auto file = Core::File::open(filename, Core::IODevice::OpenMode::ReadOnly);
 | |
|         if (file.is_error()) {
 | |
|             printf("That's a weird file man...\n");
 | |
|             return 1;
 | |
|         }
 | |
|         auto buffer = file.value()->read_all();
 | |
|         fn((const char*)buffer.data(), buffer.size());
 | |
|         g_loop.exec();
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void tls(const char* message, size_t len)
 | |
| {
 | |
|     static RefPtr<TLS::TLSv12> tls;
 | |
|     static ByteBuffer write {};
 | |
|     if (!tls) {
 | |
|         tls = TLS::TLSv12::construct(nullptr);
 | |
|         tls->connect(server ?: DEFAULT_SERVER, port);
 | |
|         tls->on_tls_ready_to_read = [](auto& tls) {
 | |
|             auto buffer = tls.read();
 | |
|             if (buffer.has_value())
 | |
|                 fprintf(stdout, "%.*s", (int)buffer.value().size(), buffer.value().data());
 | |
|         };
 | |
|         tls->on_tls_ready_to_write = [&](auto&) {
 | |
|             if (write.size()) {
 | |
|                 tls->write(write);
 | |
|                 write.clear();
 | |
|             }
 | |
|         };
 | |
|         tls->on_tls_error = [&](auto) {
 | |
|             g_loop.quit(1);
 | |
|         };
 | |
|         tls->on_tls_finished = [&]() {
 | |
|             g_loop.quit(0);
 | |
|         };
 | |
|     }
 | |
|     write.append(message, len);
 | |
|     write.append("\r\n", 2);
 | |
| }
 | |
| 
 | |
| static void aes_cbc(const char* message, size_t len)
 | |
| {
 | |
|     auto buffer = ByteBuffer::wrap(const_cast<char*>(message), len);
 | |
|     // FIXME: Take iv as an optional parameter
 | |
|     auto iv = ByteBuffer::create_zeroed(Crypto::Cipher::AESCipher::block_size());
 | |
| 
 | |
|     if (encrypting) {
 | |
|         Crypto::Cipher::AESCipher::CBCMode cipher(
 | |
|             ByteBuffer::wrap(const_cast<char*>(secret_key), strlen(secret_key)),
 | |
|             key_bits,
 | |
|             Crypto::Cipher::Intent::Encryption);
 | |
| 
 | |
|         auto enc = cipher.create_aligned_buffer(buffer.size());
 | |
|         auto enc_span = enc.bytes();
 | |
|         cipher.encrypt(buffer, enc_span, iv);
 | |
| 
 | |
|         if (binary)
 | |
|             printf("%.*s", (int)enc_span.size(), enc_span.data());
 | |
|         else
 | |
|             print_buffer(enc_span, Crypto::Cipher::AESCipher::block_size());
 | |
|     } else {
 | |
|         Crypto::Cipher::AESCipher::CBCMode cipher(
 | |
|             ByteBuffer::wrap(const_cast<char*>(secret_key), strlen(secret_key)),
 | |
|             key_bits,
 | |
|             Crypto::Cipher::Intent::Decryption);
 | |
|         auto dec = cipher.create_aligned_buffer(buffer.size());
 | |
|         auto dec_span = dec.bytes();
 | |
|         cipher.decrypt(buffer, dec_span, iv);
 | |
|         printf("%.*s\n", (int)dec_span.size(), dec_span.data());
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void adler32(const char* message, size_t len)
 | |
| {
 | |
|     auto checksum = Crypto::Checksum::Adler32({ (const u8*)message, len });
 | |
|     printf("%#10X\n", checksum.digest());
 | |
| }
 | |
| 
 | |
| static void crc32(const char* message, size_t len)
 | |
| {
 | |
|     auto checksum = Crypto::Checksum::CRC32({ (const u8*)message, len });
 | |
|     printf("%#10X\n", checksum.digest());
 | |
| }
 | |
| 
 | |
| static void md5(const char* message, size_t len)
 | |
| {
 | |
|     auto digest = Crypto::Hash::MD5::hash((const u8*)message, len);
 | |
|     if (binary)
 | |
|         printf("%.*s", (int)Crypto::Hash::MD5::digest_size(), digest.data);
 | |
|     else
 | |
|         print_buffer({ digest.data, Crypto::Hash::MD5::digest_size() }, -1);
 | |
| }
 | |
| 
 | |
| static void hmac_md5(const char* message, size_t len)
 | |
| {
 | |
|     Crypto::Authentication::HMAC<Crypto::Hash::MD5> hmac(secret_key);
 | |
|     auto mac = hmac.process((const u8*)message, len);
 | |
|     if (binary)
 | |
|         printf("%.*s", (int)hmac.digest_size(), mac.data);
 | |
|     else
 | |
|         print_buffer({ mac.data, hmac.digest_size() }, -1);
 | |
| }
 | |
| 
 | |
| static void sha1(const char* message, size_t len)
 | |
| {
 | |
|     auto digest = Crypto::Hash::SHA1::hash((const u8*)message, len);
 | |
|     if (binary)
 | |
|         printf("%.*s", (int)Crypto::Hash::SHA1::digest_size(), digest.data);
 | |
|     else
 | |
|         print_buffer({ digest.data, Crypto::Hash::SHA1::digest_size() }, -1);
 | |
| }
 | |
| 
 | |
| static void sha256(const char* message, size_t len)
 | |
| {
 | |
|     auto digest = Crypto::Hash::SHA256::hash((const u8*)message, len);
 | |
|     if (binary)
 | |
|         printf("%.*s", (int)Crypto::Hash::SHA256::digest_size(), digest.data);
 | |
|     else
 | |
|         print_buffer({ digest.data, Crypto::Hash::SHA256::digest_size() }, -1);
 | |
| }
 | |
| 
 | |
| static void hmac_sha256(const char* message, size_t len)
 | |
| {
 | |
|     Crypto::Authentication::HMAC<Crypto::Hash::SHA256> hmac(secret_key);
 | |
|     auto mac = hmac.process((const u8*)message, len);
 | |
|     if (binary)
 | |
|         printf("%.*s", (int)hmac.digest_size(), mac.data);
 | |
|     else
 | |
|         print_buffer({ mac.data, hmac.digest_size() }, -1);
 | |
| }
 | |
| 
 | |
| static void sha512(const char* message, size_t len)
 | |
| {
 | |
|     auto digest = Crypto::Hash::SHA512::hash((const u8*)message, len);
 | |
|     if (binary)
 | |
|         printf("%.*s", (int)Crypto::Hash::SHA512::digest_size(), digest.data);
 | |
|     else
 | |
|         print_buffer({ digest.data, Crypto::Hash::SHA512::digest_size() }, -1);
 | |
| }
 | |
| 
 | |
| static void hmac_sha512(const char* message, size_t len)
 | |
| {
 | |
|     Crypto::Authentication::HMAC<Crypto::Hash::SHA512> hmac(secret_key);
 | |
|     auto mac = hmac.process((const u8*)message, len);
 | |
|     if (binary)
 | |
|         printf("%.*s", (int)hmac.digest_size(), mac.data);
 | |
|     else
 | |
|         print_buffer({ mac.data, hmac.digest_size() }, -1);
 | |
| }
 | |
| 
 | |
| auto main(int argc, char** argv) -> int
 | |
| {
 | |
|     const char* mode = nullptr;
 | |
|     Core::ArgsParser parser;
 | |
|     parser.add_positional_argument(mode, "mode to operate in ('list' to see modes and descriptions)", "mode");
 | |
| 
 | |
|     parser.add_option(secret_key, "Set the secret key (default key is 'WellHelloFriends')", "secret-key", 'k', "secret key");
 | |
|     parser.add_option(key_bits, "Size of the key", "key-bits", 'b', "key-bits");
 | |
|     parser.add_option(filename, "Read from file", "file", 'f', "from file");
 | |
|     parser.add_option(binary, "Force binary output", "force-binary", 0);
 | |
|     parser.add_option(interactive, "REPL mode", "interactive", 'i');
 | |
|     parser.add_option(run_tests, "Run tests for the specified suite", "tests", 't');
 | |
|     parser.add_option(suite, "Set the suite used", "suite-name", 'n', "suite name");
 | |
|     parser.add_option(server, "Set the server to talk to (only for `tls')", "server-address", 's', "server-address");
 | |
|     parser.add_option(port, "Set the port to talk to (only for `tls')", "port", 'p', "port");
 | |
|     parser.add_option(in_ci, "CI Test mode", "ci-mode", 'c');
 | |
|     parser.parse(argc, argv);
 | |
| 
 | |
|     StringView mode_sv { mode };
 | |
|     if (mode_sv == "list") {
 | |
|         puts("test-crypto modes");
 | |
|         puts("\tdigest - Access digest (authentication) functions");
 | |
|         puts("\thash - Access hash functions");
 | |
|         puts("\tchecksum - Access checksum functions");
 | |
|         puts("\tencrypt -- Access encryption functions");
 | |
|         puts("\tdecrypt -- Access decryption functions");
 | |
|         puts("\ttls -- Connect to a peer over TLS 1.2");
 | |
|         puts("\tlist -- List all known modes");
 | |
|         puts("these modes only contain tests");
 | |
|         puts("\ttest -- Run every test suite");
 | |
|         puts("\tbigint -- Run big integer test suite");
 | |
|         puts("\tpk -- Run Public-key system tests");
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (mode_sv == "hash") {
 | |
|         if (suite == nullptr)
 | |
|             suite = DEFAULT_HASH_SUITE;
 | |
|         StringView suite_sv { suite };
 | |
| 
 | |
|         if (suite_sv == "MD5") {
 | |
|             if (run_tests)
 | |
|                 return md5_tests();
 | |
|             return run(md5);
 | |
|         }
 | |
|         if (suite_sv == "SHA1") {
 | |
|             if (run_tests)
 | |
|                 return sha1_tests();
 | |
|             return run(sha1);
 | |
|         }
 | |
|         if (suite_sv == "SHA256") {
 | |
|             if (run_tests)
 | |
|                 return sha256_tests();
 | |
|             return run(sha256);
 | |
|         }
 | |
|         if (suite_sv == "SHA512") {
 | |
|             if (run_tests)
 | |
|                 return sha512_tests();
 | |
|             return run(sha512);
 | |
|         }
 | |
|         printf("unknown hash function '%s'\n", suite);
 | |
|         return 1;
 | |
|     }
 | |
|     if (mode_sv == "checksum") {
 | |
|         if (suite == nullptr)
 | |
|             suite = DEFAULT_CHECKSUM_SUITE;
 | |
|         StringView suite_sv { suite };
 | |
| 
 | |
|         if (suite_sv == "CRC32") {
 | |
|             if (run_tests)
 | |
|                 return crc32_tests();
 | |
|             return run(crc32);
 | |
|         }
 | |
|         if (suite_sv == "Adler32") {
 | |
|             if (run_tests)
 | |
|                 return adler32_tests();
 | |
|             return run(adler32);
 | |
|         }
 | |
|         printf("unknown checksum function '%s'\n", suite);
 | |
|         return 1;
 | |
|     }
 | |
|     if (mode_sv == "digest") {
 | |
|         if (suite == nullptr)
 | |
|             suite = DEFAULT_DIGEST_SUITE;
 | |
|         StringView suite_sv { suite };
 | |
| 
 | |
|         if (suite_sv == "HMAC-MD5") {
 | |
|             if (run_tests)
 | |
|                 return hmac_md5_tests();
 | |
|             return run(hmac_md5);
 | |
|         }
 | |
|         if (suite_sv == "HMAC-SHA256") {
 | |
|             if (run_tests)
 | |
|                 return hmac_sha256_tests();
 | |
|             return run(hmac_sha256);
 | |
|         }
 | |
|         if (suite_sv == "HMAC-SHA512") {
 | |
|             if (run_tests)
 | |
|                 return hmac_sha512_tests();
 | |
|             return run(hmac_sha512);
 | |
|         }
 | |
|         printf("unknown hash function '%s'\n", suite);
 | |
|         return 1;
 | |
|     }
 | |
|     if (mode_sv == "pk") {
 | |
|         return rsa_tests();
 | |
|     }
 | |
|     if (mode_sv == "bigint") {
 | |
|         return bigint_tests();
 | |
|     }
 | |
|     if (mode_sv == "tls") {
 | |
|         if (run_tests)
 | |
|             return tls_tests();
 | |
|         return run(tls);
 | |
|     }
 | |
|     if (mode_sv == "test") {
 | |
|         encrypting = true;
 | |
|         aes_cbc_tests();
 | |
|         aes_ctr_tests();
 | |
| 
 | |
|         encrypting = false;
 | |
|         aes_cbc_tests();
 | |
|         aes_ctr_tests();
 | |
| 
 | |
|         md5_tests();
 | |
|         sha1_tests();
 | |
|         sha256_tests();
 | |
|         sha512_tests();
 | |
| 
 | |
|         hmac_md5_tests();
 | |
|         hmac_sha256_tests();
 | |
|         hmac_sha512_tests();
 | |
| 
 | |
|         rsa_tests();
 | |
| 
 | |
|         if (!in_ci) {
 | |
|             // Do not run these in CI to avoid tests with variables outside our control.
 | |
|             tls_tests();
 | |
|         }
 | |
| 
 | |
|         bigint_tests();
 | |
| 
 | |
|         return g_some_test_failed ? 1 : 0;
 | |
|     }
 | |
|     encrypting = mode_sv == "encrypt";
 | |
|     if (encrypting || mode_sv == "decrypt") {
 | |
|         if (suite == nullptr)
 | |
|             suite = DEFAULT_CIPHER_SUITE;
 | |
|         StringView suite_sv { suite };
 | |
| 
 | |
|         if (StringView(suite) == "AES_CBC") {
 | |
|             if (run_tests)
 | |
|                 return aes_cbc_tests();
 | |
| 
 | |
|             if (!Crypto::Cipher::AESCipher::KeyType::is_valid_key_size(key_bits)) {
 | |
|                 printf("Invalid key size for AES: %d\n", key_bits);
 | |
|                 return 1;
 | |
|             }
 | |
|             if (strlen(secret_key) != (size_t)key_bits / 8) {
 | |
|                 printf("Key must be exactly %d bytes long\n", key_bits / 8);
 | |
|                 return 1;
 | |
|             }
 | |
|             return run(aes_cbc);
 | |
|         } else {
 | |
|             printf("Unknown cipher suite '%s'\n", suite);
 | |
|             return 1;
 | |
|         }
 | |
|     }
 | |
|     printf("Unknown mode '%s', check out the list of modes\n", mode);
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| #define I_TEST(thing)                     \
 | |
|     {                                     \
 | |
|         printf("Testing " #thing "... "); \
 | |
|         fflush(stdout);                   \
 | |
|         gettimeofday(&start_time, &tz);   \
 | |
|     }
 | |
| #define PASS                                                                          \
 | |
|     {                                                                                 \
 | |
|         struct timeval end_time {                                                     \
 | |
|             0, 0                                                                      \
 | |
|         };                                                                            \
 | |
|         gettimeofday(&end_time, &tz);                                                 \
 | |
|         time_t interval_s = end_time.tv_sec - start_time.tv_sec;                      \
 | |
|         suseconds_t interval_us = end_time.tv_usec;                                   \
 | |
|         if (interval_us < start_time.tv_usec) {                                       \
 | |
|             interval_s -= 1;                                                          \
 | |
|             interval_us += 1000000;                                                   \
 | |
|         }                                                                             \
 | |
|         interval_us -= start_time.tv_usec;                                            \
 | |
|         printf("PASS %llds %lldus\n", (long long)interval_s, (long long)interval_us); \
 | |
|     }
 | |
| #define FAIL(reason)                   \
 | |
|     do {                               \
 | |
|         printf("FAIL: " #reason "\n"); \
 | |
|         g_some_test_failed = true;     \
 | |
|     } while (0)
 | |
| 
 | |
| static ByteBuffer operator""_b(const char* string, size_t length)
 | |
| {
 | |
|     dbg() << "Create byte buffer of size " << length;
 | |
|     return ByteBuffer::copy(string, length);
 | |
| }
 | |
| 
 | |
| // tests go after here
 | |
| // please be reasonable with orders kthx
 | |
| static void aes_cbc_test_name();
 | |
| static void aes_cbc_test_encrypt();
 | |
| static void aes_cbc_test_decrypt();
 | |
| static void aes_ctr_test_name();
 | |
| static void aes_ctr_test_encrypt();
 | |
| static void aes_ctr_test_decrypt();
 | |
| 
 | |
| static void md5_test_name();
 | |
| static void md5_test_hash();
 | |
| static void md5_test_consecutive_updates();
 | |
| 
 | |
| static void sha1_test_name();
 | |
| static void sha1_test_hash();
 | |
| 
 | |
| static void sha256_test_name();
 | |
| static void sha256_test_hash();
 | |
| 
 | |
| static void sha512_test_name();
 | |
| static void sha512_test_hash();
 | |
| 
 | |
| static void hmac_md5_test_name();
 | |
| static void hmac_md5_test_process();
 | |
| 
 | |
| static void hmac_sha256_test_name();
 | |
| static void hmac_sha256_test_process();
 | |
| 
 | |
| static void hmac_sha512_test_name();
 | |
| static void hmac_sha512_test_process();
 | |
| 
 | |
| static void rsa_test_encrypt();
 | |
| static void rsa_test_der_parse();
 | |
| static void rsa_test_encrypt_decrypt();
 | |
| static void rsa_emsa_pss_test_create();
 | |
| static void bigint_test_number_theory(); // FIXME: we should really move these num theory stuff out
 | |
| 
 | |
| static void tls_test_client_hello();
 | |
| 
 | |
| static void bigint_test_fibo500();
 | |
| static void bigint_addition_edgecases();
 | |
| static void bigint_subtraction();
 | |
| static void bigint_multiplication();
 | |
| static void bigint_division();
 | |
| static void bigint_base10();
 | |
| static void bigint_import_export();
 | |
| static void bigint_bitwise();
 | |
| 
 | |
| static void bigint_test_signed_fibo500();
 | |
| static void bigint_signed_addition_edgecases();
 | |
| static void bigint_signed_subtraction();
 | |
| static void bigint_signed_multiplication();
 | |
| static void bigint_signed_division();
 | |
| static void bigint_signed_base10();
 | |
| static void bigint_signed_import_export();
 | |
| static void bigint_signed_bitwise();
 | |
| 
 | |
| static int aes_cbc_tests()
 | |
| {
 | |
|     aes_cbc_test_name();
 | |
|     if (encrypting) {
 | |
|         aes_cbc_test_encrypt();
 | |
|     } else {
 | |
|         aes_cbc_test_decrypt();
 | |
|     }
 | |
| 
 | |
|     return g_some_test_failed ? 1 : 0;
 | |
| }
 | |
| 
 | |
| static void aes_cbc_test_name()
 | |
| {
 | |
|     I_TEST((AES CBC class name));
 | |
|     Crypto::Cipher::AESCipher::CBCMode cipher("WellHelloFriends"_b, 128, Crypto::Cipher::Intent::Encryption);
 | |
|     if (cipher.class_name() != "AES_CBC")
 | |
|         FAIL(Invalid class name);
 | |
|     else
 | |
|         PASS;
 | |
| }
 | |
| 
 | |
| static void aes_cbc_test_encrypt()
 | |
| {
 | |
|     auto test_it = [](auto& cipher, auto& result) {
 | |
|         auto in = "This is a test! This is another test!"_b;
 | |
|         auto out = cipher.create_aligned_buffer(in.size());
 | |
|         auto iv = ByteBuffer::create_zeroed(Crypto::Cipher::AESCipher::block_size());
 | |
|         auto out_span = out.bytes();
 | |
|         cipher.encrypt(in, out_span, iv);
 | |
|         if (out.size() != sizeof(result))
 | |
|             FAIL(size mismatch);
 | |
|         else if (memcmp(out_span.data(), result, out_span.size()) != 0) {
 | |
|             FAIL(invalid data);
 | |
|             print_buffer(out_span, Crypto::Cipher::AESCipher::block_size());
 | |
|         } else
 | |
|             PASS;
 | |
|     };
 | |
|     {
 | |
|         I_TEST((AES CBC with 128 bit key | Encrypt))
 | |
|         u8 result[] {
 | |
|             0xb8, 0x06, 0x7c, 0xf2, 0xa9, 0x56, 0x63, 0x58, 0x2d, 0x5c, 0xa1, 0x4b, 0xc5, 0xe3, 0x08,
 | |
|             0xcf, 0xb5, 0x93, 0xfb, 0x67, 0xb6, 0xf7, 0xaf, 0x45, 0x34, 0x64, 0x70, 0x9e, 0xc9, 0x1a,
 | |
|             0x8b, 0xd3, 0x70, 0x45, 0xf0, 0x79, 0x65, 0xca, 0xb9, 0x03, 0x88, 0x72, 0x1c, 0xdd, 0xab,
 | |
|             0x45, 0x6b, 0x1c
 | |
|         };
 | |
|         Crypto::Cipher::AESCipher::CBCMode cipher("WellHelloFriends"_b, 128, Crypto::Cipher::Intent::Encryption);
 | |
|         test_it(cipher, result);
 | |
|     }
 | |
|     {
 | |
|         I_TEST((AES CBC with 192 bit key | Encrypt))
 | |
|         u8 result[] {
 | |
|             0xae, 0xd2, 0x70, 0xc4, 0x9c, 0xaa, 0x83, 0x33, 0xd3, 0xd3, 0xac, 0x11, 0x65, 0x35, 0xf7,
 | |
|             0x19, 0x48, 0x7c, 0x7a, 0x8a, 0x95, 0x64, 0xe7, 0xc6, 0x0a, 0xdf, 0x10, 0x06, 0xdc, 0x90,
 | |
|             0x68, 0x51, 0x09, 0xd7, 0x3b, 0x48, 0x1b, 0x8a, 0xd3, 0x50, 0x09, 0xba, 0xfc, 0xde, 0x11,
 | |
|             0xe0, 0x3f, 0xcb
 | |
|         };
 | |
|         Crypto::Cipher::AESCipher::CBCMode cipher("Well Hello Friends! whf!"_b, 192, Crypto::Cipher::Intent::Encryption);
 | |
|         test_it(cipher, result);
 | |
|     }
 | |
|     {
 | |
|         I_TEST((AES CBC with 256 bit key | Encrypt))
 | |
|         u8 result[] {
 | |
|             0x0a, 0x44, 0x4d, 0x62, 0x9e, 0x8b, 0xd8, 0x11, 0x80, 0x48, 0x2a, 0x32, 0x53, 0x61, 0xe7,
 | |
|             0x59, 0x62, 0x55, 0x9e, 0xf4, 0xe6, 0xad, 0xea, 0xc5, 0x0b, 0xf6, 0xbc, 0x6a, 0xcb, 0x9c,
 | |
|             0x47, 0x9f, 0xc2, 0x21, 0xe6, 0x19, 0x62, 0xc3, 0x75, 0xca, 0xab, 0x2d, 0x18, 0xa1, 0x54,
 | |
|             0xd1, 0x41, 0xe6
 | |
|         };
 | |
|         Crypto::Cipher::AESCipher::CBCMode cipher("WellHelloFriendsWellHelloFriends"_b, 256, Crypto::Cipher::Intent::Encryption);
 | |
|         test_it(cipher, result);
 | |
|     }
 | |
|     {
 | |
|         I_TEST((AES CBC with 256 bit key | Encrypt with unsigned key))
 | |
|         u8 result[] {
 | |
|             0x18, 0x71, 0x80, 0x4c, 0x28, 0x07, 0x55, 0x3c, 0x05, 0x33, 0x36, 0x3f, 0x19, 0x38, 0x5c,
 | |
|             0xbe, 0xf8, 0xb8, 0x0e, 0x0e, 0x66, 0x67, 0x63, 0x9c, 0xbf, 0x73, 0xcd, 0x82, 0xf9, 0xcb,
 | |
|             0x9d, 0x81, 0x56, 0xc6, 0x75, 0x14, 0x8b, 0x79, 0x60, 0xb0, 0xdf, 0xaa, 0x2c, 0x2b, 0xd4,
 | |
|             0xd6, 0xa0, 0x46
 | |
|         };
 | |
|         u8 key[] { 0x0a, 0x8c, 0x5b, 0x0d, 0x8a, 0x68, 0x43, 0xf7, 0xaf, 0xc0, 0xe3, 0x4e, 0x4b, 0x43, 0xaa, 0x28, 0x69, 0x9b, 0x6f, 0xe7, 0x24, 0x82, 0x1c, 0x71, 0x86, 0xf6, 0x2b, 0x87, 0xd6, 0x8b, 0x8f, 0xf1 };
 | |
|         Crypto::Cipher::AESCipher::CBCMode cipher(ByteBuffer::wrap(key, 32), 256, Crypto::Cipher::Intent::Encryption);
 | |
|         test_it(cipher, result);
 | |
|     }
 | |
|     // TODO: Test non-CMS padding options
 | |
| }
 | |
| static void aes_cbc_test_decrypt()
 | |
| {
 | |
|     auto test_it = [](auto& cipher, auto& result, auto result_len) {
 | |
|         auto true_value = "This is a test! This is another test!";
 | |
|         auto in = ByteBuffer::copy(result, result_len);
 | |
|         auto out = cipher.create_aligned_buffer(in.size());
 | |
|         auto iv = ByteBuffer::create_zeroed(Crypto::Cipher::AESCipher::block_size());
 | |
|         auto out_span = out.bytes();
 | |
|         cipher.decrypt(in, out_span, iv);
 | |
|         if (out_span.size() != strlen(true_value)) {
 | |
|             FAIL(size mismatch);
 | |
|             printf("Expected %zu bytes but got %zu\n", strlen(true_value), out_span.size());
 | |
|         } else if (memcmp(out_span.data(), true_value, strlen(true_value)) != 0) {
 | |
|             FAIL(invalid data);
 | |
|             print_buffer(out_span, Crypto::Cipher::AESCipher::block_size());
 | |
|         } else
 | |
|             PASS;
 | |
|     };
 | |
|     {
 | |
|         I_TEST((AES CBC with 128 bit key | Decrypt))
 | |
|         u8 result[] {
 | |
|             0xb8, 0x06, 0x7c, 0xf2, 0xa9, 0x56, 0x63, 0x58, 0x2d, 0x5c, 0xa1, 0x4b, 0xc5, 0xe3, 0x08,
 | |
|             0xcf, 0xb5, 0x93, 0xfb, 0x67, 0xb6, 0xf7, 0xaf, 0x45, 0x34, 0x64, 0x70, 0x9e, 0xc9, 0x1a,
 | |
|             0x8b, 0xd3, 0x70, 0x45, 0xf0, 0x79, 0x65, 0xca, 0xb9, 0x03, 0x88, 0x72, 0x1c, 0xdd, 0xab,
 | |
|             0x45, 0x6b, 0x1c
 | |
|         };
 | |
|         Crypto::Cipher::AESCipher::CBCMode cipher("WellHelloFriends"_b, 128, Crypto::Cipher::Intent::Decryption);
 | |
|         test_it(cipher, result, 48);
 | |
|     }
 | |
|     {
 | |
|         I_TEST((AES CBC with 192 bit key | Decrypt))
 | |
|         u8 result[] {
 | |
|             0xae, 0xd2, 0x70, 0xc4, 0x9c, 0xaa, 0x83, 0x33, 0xd3, 0xd3, 0xac, 0x11, 0x65, 0x35, 0xf7,
 | |
|             0x19, 0x48, 0x7c, 0x7a, 0x8a, 0x95, 0x64, 0xe7, 0xc6, 0x0a, 0xdf, 0x10, 0x06, 0xdc, 0x90,
 | |
|             0x68, 0x51, 0x09, 0xd7, 0x3b, 0x48, 0x1b, 0x8a, 0xd3, 0x50, 0x09, 0xba, 0xfc, 0xde, 0x11,
 | |
|             0xe0, 0x3f, 0xcb
 | |
|         };
 | |
|         Crypto::Cipher::AESCipher::CBCMode cipher("Well Hello Friends! whf!"_b, 192, Crypto::Cipher::Intent::Decryption);
 | |
|         test_it(cipher, result, 48);
 | |
|     }
 | |
|     {
 | |
|         I_TEST((AES CBC with 256 bit key | Decrypt))
 | |
|         u8 result[] {
 | |
|             0x0a, 0x44, 0x4d, 0x62, 0x9e, 0x8b, 0xd8, 0x11, 0x80, 0x48, 0x2a, 0x32, 0x53, 0x61, 0xe7,
 | |
|             0x59, 0x62, 0x55, 0x9e, 0xf4, 0xe6, 0xad, 0xea, 0xc5, 0x0b, 0xf6, 0xbc, 0x6a, 0xcb, 0x9c,
 | |
|             0x47, 0x9f, 0xc2, 0x21, 0xe6, 0x19, 0x62, 0xc3, 0x75, 0xca, 0xab, 0x2d, 0x18, 0xa1, 0x54,
 | |
|             0xd1, 0x41, 0xe6
 | |
|         };
 | |
|         Crypto::Cipher::AESCipher::CBCMode cipher("WellHelloFriendsWellHelloFriends"_b, 256, Crypto::Cipher::Intent::Decryption);
 | |
|         test_it(cipher, result, 48);
 | |
|     }
 | |
|     // TODO: Test non-CMS padding options
 | |
| }
 | |
| 
 | |
| static int aes_ctr_tests()
 | |
| {
 | |
|     aes_ctr_test_name();
 | |
|     if (encrypting) {
 | |
|         aes_ctr_test_encrypt();
 | |
|     } else {
 | |
|         aes_ctr_test_decrypt();
 | |
|     }
 | |
| 
 | |
|     return g_some_test_failed ? 1 : 0;
 | |
| }
 | |
| 
 | |
| static void aes_ctr_test_name()
 | |
| {
 | |
|     I_TEST((AES CTR class name));
 | |
|     Crypto::Cipher::AESCipher::CTRMode cipher("WellHelloFriends"_b, 128, Crypto::Cipher::Intent::Encryption);
 | |
|     if (cipher.class_name() != "AES_CTR")
 | |
|         FAIL(Invalid class name);
 | |
|     else
 | |
|         PASS;
 | |
| }
 | |
| 
 | |
| #define AS_BB(x) (ByteBuffer::wrap((x), sizeof((x)) / sizeof((x)[0])))
 | |
| static void aes_ctr_test_encrypt()
 | |
| {
 | |
|     auto test_it = [](auto key, auto ivec, auto in, auto out_expected) {
 | |
|         // nonce is already included in ivec.
 | |
|         Crypto::Cipher::AESCipher::CTRMode cipher(key, 8 * key.size(), Crypto::Cipher::Intent::Encryption);
 | |
|         ByteBuffer out_actual = ByteBuffer::create_zeroed(in.size());
 | |
|         Bytes out_span = out_actual.bytes();
 | |
|         cipher.encrypt(in, out_span, ivec);
 | |
|         if (out_expected.size() != out_actual.size()) {
 | |
|             FAIL(size mismatch);
 | |
|             printf("Expected %zu bytes but got %zu\n", out_expected.size(), out_span.size());
 | |
|             print_buffer(out_span, Crypto::Cipher::AESCipher::block_size());
 | |
|         } else if (memcmp(out_expected.data(), out_span.data(), out_expected.size()) != 0) {
 | |
|             FAIL(invalid data);
 | |
|             print_buffer(out_span, Crypto::Cipher::AESCipher::block_size());
 | |
|         } else
 | |
|             PASS;
 | |
|     };
 | |
|     // From RFC 3686, Section 6
 | |
|     {
 | |
|         // Test Vector #1
 | |
|         I_TEST((AES CTR 16 octets with 128 bit key | Encrypt))
 | |
|         u8 key[] {
 | |
|             0xae, 0x68, 0x52, 0xf8, 0x12, 0x10, 0x67, 0xcc, 0x4b, 0xf7, 0xa5, 0x76, 0x55, 0x77, 0xf3, 0x9e
 | |
|         };
 | |
|         u8 ivec[] {
 | |
|             0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 + 1 // See CTR.h
 | |
|         };
 | |
|         u8 in[] {
 | |
|             0x53, 0x69, 0x6e, 0x67, 0x6c, 0x65, 0x20, 0x62, 0x6c, 0x6f, 0x63, 0x6b, 0x20, 0x6d, 0x73, 0x67
 | |
|         };
 | |
|         u8 out[] {
 | |
|             0xe4, 0x09, 0x5d, 0x4f, 0xb7, 0xa7, 0xb3, 0x79, 0x2d, 0x61, 0x75, 0xa3, 0x26, 0x13, 0x11, 0xb8
 | |
|         };
 | |
|         test_it(AS_BB(key), AS_BB(ivec), AS_BB(in), AS_BB(out));
 | |
|     }
 | |
|     {
 | |
|         // Test Vector #2
 | |
|         I_TEST((AES CTR 32 octets with 128 bit key | Encrypt))
 | |
|         u8 key[] {
 | |
|             0x7e, 0x24, 0x06, 0x78, 0x17, 0xfa, 0xe0, 0xd7, 0x43, 0xd6, 0xce, 0x1f, 0x32, 0x53, 0x91, 0x63
 | |
|         };
 | |
|         u8 ivec[] {
 | |
|             0x00, 0x6c, 0xb6, 0xdb, 0xc0, 0x54, 0x3b, 0x59, 0xda, 0x48, 0xd9, 0x0b, 0x00, 0x00, 0x00, 0x00 + 1 // See CTR.h
 | |
|         };
 | |
|         u8 in[] {
 | |
|             0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
 | |
|         };
 | |
|         u8 out[] {
 | |
|             0x51, 0x04, 0xa1, 0x06, 0x16, 0x8a, 0x72, 0xd9, 0x79, 0x0d, 0x41, 0xee, 0x8e, 0xda, 0xd3, 0x88,
 | |
|             0xeb, 0x2e, 0x1e, 0xfc, 0x46, 0xda, 0x57, 0xc8, 0xfc, 0xe6, 0x30, 0xdf, 0x91, 0x41, 0xbe, 0x28
 | |
|         };
 | |
|         test_it(AS_BB(key), AS_BB(ivec), AS_BB(in), AS_BB(out));
 | |
|     }
 | |
|     {
 | |
|         // Test Vector #3
 | |
|         I_TEST((AES CTR 36 octets with 128 bit key | Encrypt))
 | |
|         u8 key[] {
 | |
|             0x76, 0x91, 0xbe, 0x03, 0x5e, 0x50, 0x20, 0xa8, 0xac, 0x6e, 0x61, 0x85, 0x29, 0xf9, 0xa0, 0xdc
 | |
|         };
 | |
|         u8 ivec[] {
 | |
|             0x00, 0xe0, 0x01, 0x7b, 0x27, 0x77, 0x7f, 0x3f, 0x4a, 0x17, 0x86, 0xf0, 0x00, 0x00, 0x00, 0x00 + 1 // See CTR.h
 | |
|         };
 | |
|         u8 in[] {
 | |
|             0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23
 | |
|         };
 | |
|         u8 out[] {
 | |
|             0xc1, 0xcf, 0x48, 0xa8, 0x9f, 0x2f, 0xfd, 0xd9, 0xcf, 0x46, 0x52, 0xe9, 0xef, 0xdb, 0x72, 0xd7, 0x45, 0x40, 0xa4, 0x2b, 0xde, 0x6d, 0x78, 0x36, 0xd5, 0x9a, 0x5c, 0xea, 0xae, 0xf3, 0x10, 0x53, 0x25, 0xb2, 0x07, 0x2f
 | |
|         };
 | |
|         test_it(AS_BB(key), AS_BB(ivec), AS_BB(in), AS_BB(out));
 | |
|     }
 | |
|     {
 | |
|         // Test Vector #4
 | |
|         I_TEST((AES CTR 16 octets with 192 bit key | Encrypt))
 | |
|         u8 key[] {
 | |
|             0x16, 0xaf, 0x5b, 0x14, 0x5f, 0xc9, 0xf5, 0x79, 0xc1, 0x75, 0xf9, 0x3e, 0x3b, 0xfb, 0x0e, 0xed, 0x86, 0x3d, 0x06, 0xcc, 0xfd, 0xb7, 0x85, 0x15
 | |
|         };
 | |
|         u8 ivec[] {
 | |
|             0x00, 0x00, 0x00, 0x48, 0x36, 0x73, 0x3c, 0x14, 0x7d, 0x6d, 0x93, 0xcb, 0x00, 0x00, 0x00, 0x00 + 1 // See CTR.h
 | |
|         };
 | |
|         u8 in[] {
 | |
|             0x53, 0x69, 0x6e, 0x67, 0x6c, 0x65, 0x20, 0x62, 0x6c, 0x6f, 0x63, 0x6b, 0x20, 0x6d, 0x73, 0x67
 | |
|         };
 | |
|         u8 out[] {
 | |
|             0x4b, 0x55, 0x38, 0x4f, 0xe2, 0x59, 0xc9, 0xc8, 0x4e, 0x79, 0x35, 0xa0, 0x03, 0xcb, 0xe9, 0x28
 | |
|         };
 | |
|         test_it(AS_BB(key), AS_BB(ivec), AS_BB(in), AS_BB(out));
 | |
|     }
 | |
|     {
 | |
|         // Test Vector #5
 | |
|         I_TEST((AES CTR 32 octets with 192 bit key | Encrypt))
 | |
|         u8 key[] {
 | |
|             0x7c, 0x5c, 0xb2, 0x40, 0x1b, 0x3d, 0xc3, 0x3c, 0x19, 0xe7, 0x34, 0x08, 0x19, 0xe0, 0xf6, 0x9c, 0x67, 0x8c, 0x3d, 0xb8, 0xe6, 0xf6, 0xa9, 0x1a
 | |
|         };
 | |
|         u8 ivec[] {
 | |
|             0x00, 0x96, 0xb0, 0x3b, 0x02, 0x0c, 0x6e, 0xad, 0xc2, 0xcb, 0x50, 0x0d, 0x00, 0x00, 0x00, 0x00 + 1 // See CTR.h
 | |
|         };
 | |
|         u8 in[] {
 | |
|             0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
 | |
|         };
 | |
|         u8 out[] {
 | |
|             0x45, 0x32, 0x43, 0xfc, 0x60, 0x9b, 0x23, 0x32, 0x7e, 0xdf, 0xaa, 0xfa, 0x71, 0x31, 0xcd, 0x9f, 0x84, 0x90, 0x70, 0x1c, 0x5a, 0xd4, 0xa7, 0x9c, 0xfc, 0x1f, 0xe0, 0xff, 0x42, 0xf4, 0xfb, 0x00
 | |
|         };
 | |
|         test_it(AS_BB(key), AS_BB(ivec), AS_BB(in), AS_BB(out));
 | |
|     }
 | |
|     {
 | |
|         // Test Vector #6
 | |
|         I_TEST((AES CTR 36 octets with 192 bit key | Encrypt))
 | |
|         u8 key[] {
 | |
|             0x02, 0xbf, 0x39, 0x1e, 0xe8, 0xec, 0xb1, 0x59, 0xb9, 0x59, 0x61, 0x7b, 0x09, 0x65, 0x27, 0x9b, 0xf5, 0x9b, 0x60, 0xa7, 0x86, 0xd3, 0xe0, 0xfe
 | |
|         };
 | |
|         u8 ivec[] {
 | |
|             0x00, 0x07, 0xbd, 0xfd, 0x5c, 0xbd, 0x60, 0x27, 0x8d, 0xcc, 0x09, 0x12, 0x00, 0x00, 0x00, 0x00 + 1 // See CTR.h
 | |
|         };
 | |
|         u8 in[] {
 | |
|             0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23
 | |
|         };
 | |
|         u8 out[] {
 | |
|             0x96, 0x89, 0x3f, 0xc5, 0x5e, 0x5c, 0x72, 0x2f, 0x54, 0x0b, 0x7d, 0xd1, 0xdd, 0xf7, 0xe7, 0x58, 0xd2, 0x88, 0xbc, 0x95, 0xc6, 0x91, 0x65, 0x88, 0x45, 0x36, 0xc8, 0x11, 0x66, 0x2f, 0x21, 0x88, 0xab, 0xee, 0x09, 0x35
 | |
|         };
 | |
|         test_it(AS_BB(key), AS_BB(ivec), AS_BB(in), AS_BB(out));
 | |
|     }
 | |
|     {
 | |
|         // Test Vector #7
 | |
|         I_TEST((AES CTR 16 octets with 256 bit key | Encrypt))
 | |
|         u8 key[] {
 | |
|             0x77, 0x6b, 0xef, 0xf2, 0x85, 0x1d, 0xb0, 0x6f, 0x4c, 0x8a, 0x05, 0x42, 0xc8, 0x69, 0x6f, 0x6c, 0x6a, 0x81, 0xaf, 0x1e, 0xec, 0x96, 0xb4, 0xd3, 0x7f, 0xc1, 0xd6, 0x89, 0xe6, 0xc1, 0xc1, 0x04
 | |
|         };
 | |
|         u8 ivec[] {
 | |
|             0x00, 0x00, 0x00, 0x60, 0xdb, 0x56, 0x72, 0xc9, 0x7a, 0xa8, 0xf0, 0xb2, 0x00, 0x00, 0x00, 0x00 + 1 // See CTR.h
 | |
|         };
 | |
|         u8 in[] {
 | |
|             0x53, 0x69, 0x6e, 0x67, 0x6c, 0x65, 0x20, 0x62, 0x6c, 0x6f, 0x63, 0x6b, 0x20, 0x6d, 0x73, 0x67
 | |
|         };
 | |
|         u8 out[] {
 | |
|             0x14, 0x5a, 0xd0, 0x1d, 0xbf, 0x82, 0x4e, 0xc7, 0x56, 0x08, 0x63, 0xdc, 0x71, 0xe3, 0xe0, 0xc0
 | |
|         };
 | |
|         test_it(AS_BB(key), AS_BB(ivec), AS_BB(in), AS_BB(out));
 | |
|     }
 | |
|     {
 | |
|         // Test Vector #8
 | |
|         I_TEST((AES CTR 32 octets with 256 bit key | Encrypt))
 | |
|         u8 key[] {
 | |
|             0xf6, 0xd6, 0x6d, 0x6b, 0xd5, 0x2d, 0x59, 0xbb, 0x07, 0x96, 0x36, 0x58, 0x79, 0xef, 0xf8, 0x86, 0xc6, 0x6d, 0xd5, 0x1a, 0x5b, 0x6a, 0x99, 0x74, 0x4b, 0x50, 0x59, 0x0c, 0x87, 0xa2, 0x38, 0x84
 | |
|         };
 | |
|         u8 ivec[] {
 | |
|             0x00, 0xfa, 0xac, 0x24, 0xc1, 0x58, 0x5e, 0xf1, 0x5a, 0x43, 0xd8, 0x75, 0x00, 0x00, 0x00, 0x00 + 1 // See CTR.h
 | |
|         };
 | |
|         u8 in[] {
 | |
|             0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
 | |
|         };
 | |
|         u8 out[] {
 | |
|             0xf0, 0x5e, 0x23, 0x1b, 0x38, 0x94, 0x61, 0x2c, 0x49, 0xee, 0x00, 0x0b, 0x80, 0x4e, 0xb2, 0xa9, 0xb8, 0x30, 0x6b, 0x50, 0x8f, 0x83, 0x9d, 0x6a, 0x55, 0x30, 0x83, 0x1d, 0x93, 0x44, 0xaf, 0x1c
 | |
|         };
 | |
|         test_it(AS_BB(key), AS_BB(ivec), AS_BB(in), AS_BB(out));
 | |
|     }
 | |
|     {
 | |
|         // Test Vector #9
 | |
|         I_TEST((AES CTR 36 octets with 256 bit key | Encrypt))
 | |
|         u8 key[] {
 | |
|             0xff, 0x7a, 0x61, 0x7c, 0xe6, 0x91, 0x48, 0xe4, 0xf1, 0x72, 0x6e, 0x2f, 0x43, 0x58, 0x1d, 0xe2, 0xaa, 0x62, 0xd9, 0xf8, 0x05, 0x53, 0x2e, 0xdf, 0xf1, 0xee, 0xd6, 0x87, 0xfb, 0x54, 0x15, 0x3d
 | |
|         };
 | |
|         u8 ivec[] {
 | |
|             0x00, 0x1c, 0xc5, 0xb7, 0x51, 0xa5, 0x1d, 0x70, 0xa1, 0xc1, 0x11, 0x48, 0x00, 0x00, 0x00, 0x00 + 1 // See CTR.h
 | |
|         };
 | |
|         u8 in[] {
 | |
|             0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23
 | |
|         };
 | |
|         u8 out[] {
 | |
|             0xeb, 0x6c, 0x52, 0x82, 0x1d, 0x0b, 0xbb, 0xf7, 0xce, 0x75, 0x94, 0x46, 0x2a, 0xca, 0x4f, 0xaa, 0xb4, 0x07, 0xdf, 0x86, 0x65, 0x69, 0xfd, 0x07, 0xf4, 0x8c, 0xc0, 0xb5, 0x83, 0xd6, 0x07, 0x1f, 0x1e, 0xc0, 0xe6, 0xb8
 | |
|         };
 | |
|         test_it(AS_BB(key), AS_BB(ivec), AS_BB(in), AS_BB(out));
 | |
|     }
 | |
|     // Manual test case
 | |
|     {
 | |
|         // This test checks whether counter overflow crashes.
 | |
|         I_TEST((AES CTR 36 octets with 256 bit key, high counter | Encrypt))
 | |
|         u8 key[] {
 | |
|             0xff, 0x7a, 0x61, 0x7c, 0xe6, 0x91, 0x48, 0xe4, 0xf1, 0x72, 0x6e, 0x2f, 0x43, 0x58, 0x1d, 0xe2, 0xaa, 0x62, 0xd9, 0xf8, 0x05, 0x53, 0x2e, 0xdf, 0xf1, 0xee, 0xd6, 0x87, 0xfb, 0x54, 0x15, 0x3d
 | |
|         };
 | |
|         u8 ivec[] {
 | |
|             0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
 | |
|         };
 | |
|         u8 in[] {
 | |
|             0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23
 | |
|         };
 | |
|         u8 out[] {
 | |
|             // Pasted from the output. The actual success condition is
 | |
|             // not crashing when incrementing the counter.
 | |
|             0x6e, 0x8c, 0xfc, 0x59, 0x08, 0xa8, 0xc0, 0xf1, 0xe6, 0x85, 0x96, 0xe9, 0xc5, 0x40, 0xb6, 0x8b, 0xfe, 0x28, 0x72, 0xe2, 0x24, 0x11, 0x7e, 0x59, 0xef, 0xac, 0x5c, 0xe1, 0x06, 0x89, 0x09, 0xab, 0xf8, 0x90, 0x1c, 0x66
 | |
|         };
 | |
|         test_it(AS_BB(key), AS_BB(ivec), AS_BB(in), AS_BB(out));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void aes_ctr_test_decrypt()
 | |
| {
 | |
|     auto test_it = [](auto key, auto ivec, auto in, auto out_expected) {
 | |
|         // nonce is already included in ivec.
 | |
|         Crypto::Cipher::AESCipher::CTRMode cipher(key, 8 * key.size(), Crypto::Cipher::Intent::Decryption);
 | |
|         ByteBuffer out_actual = ByteBuffer::create_zeroed(in.size());
 | |
|         auto out_span = out_actual.bytes();
 | |
|         cipher.decrypt(in, out_span, ivec);
 | |
|         if (out_expected.size() != out_span.size()) {
 | |
|             FAIL(size mismatch);
 | |
|             printf("Expected %zu bytes but got %zu\n", out_expected.size(), out_span.size());
 | |
|             print_buffer(out_span, Crypto::Cipher::AESCipher::block_size());
 | |
|         } else if (memcmp(out_expected.data(), out_span.data(), out_expected.size()) != 0) {
 | |
|             FAIL(invalid data);
 | |
|             print_buffer(out_span, Crypto::Cipher::AESCipher::block_size());
 | |
|         } else
 | |
|             PASS;
 | |
|     };
 | |
|     // From RFC 3686, Section 6
 | |
|     {
 | |
|         // Test Vector #1
 | |
|         I_TEST((AES CTR 16 octets with 128 bit key | Decrypt))
 | |
|         u8 key[] {
 | |
|             0xae, 0x68, 0x52, 0xf8, 0x12, 0x10, 0x67, 0xcc, 0x4b, 0xf7, 0xa5, 0x76, 0x55, 0x77, 0xf3, 0x9e
 | |
|         };
 | |
|         u8 ivec[] {
 | |
|             0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 + 1 // See CTR.h
 | |
|         };
 | |
|         u8 out[] {
 | |
|             0x53, 0x69, 0x6e, 0x67, 0x6c, 0x65, 0x20, 0x62, 0x6c, 0x6f, 0x63, 0x6b, 0x20, 0x6d, 0x73, 0x67
 | |
|         };
 | |
|         u8 in[] {
 | |
|             0xe4, 0x09, 0x5d, 0x4f, 0xb7, 0xa7, 0xb3, 0x79, 0x2d, 0x61, 0x75, 0xa3, 0x26, 0x13, 0x11, 0xb8
 | |
|         };
 | |
|         test_it(AS_BB(key), AS_BB(ivec), AS_BB(in), AS_BB(out));
 | |
|     }
 | |
|     // If encryption works, then decryption works, too.
 | |
| }
 | |
| 
 | |
| static int md5_tests()
 | |
| {
 | |
|     md5_test_name();
 | |
|     md5_test_hash();
 | |
|     md5_test_consecutive_updates();
 | |
|     return g_some_test_failed ? 1 : 0;
 | |
| }
 | |
| 
 | |
| static void md5_test_name()
 | |
| {
 | |
|     I_TEST((MD5 class name));
 | |
|     Crypto::Hash::MD5 md5;
 | |
|     if (md5.class_name() != "MD5")
 | |
|         FAIL(Invalid class name);
 | |
|     else
 | |
|         PASS;
 | |
| }
 | |
| 
 | |
| static void md5_test_hash()
 | |
| {
 | |
|     {
 | |
|         I_TEST((MD5 Hashing | "Well hello friends"));
 | |
|         u8 result[] {
 | |
|             0xaf, 0x04, 0x3a, 0x08, 0x94, 0x38, 0x6e, 0x7f, 0xbf, 0x73, 0xe4, 0xaa, 0xf0, 0x8e, 0xee, 0x4c
 | |
|         };
 | |
|         auto digest = Crypto::Hash::MD5::hash("Well hello friends");
 | |
| 
 | |
|         if (memcmp(result, digest.data, Crypto::Hash::MD5::digest_size()) != 0) {
 | |
|             FAIL(Invalid hash);
 | |
|             print_buffer({ digest.data, Crypto::Hash::MD5::digest_size() }, -1);
 | |
|         } else {
 | |
|             PASS;
 | |
|         }
 | |
|     }
 | |
|     // RFC tests
 | |
|     {
 | |
|         I_TEST((MD5 Hashing | ""));
 | |
|         u8 result[] {
 | |
|             0xd4, 0x1d, 0x8c, 0xd9, 0x8f, 0x00, 0xb2, 0x04, 0xe9, 0x80, 0x09, 0x98, 0xec, 0xf8, 0x42, 0x7e
 | |
|         };
 | |
|         auto digest = Crypto::Hash::MD5::hash("");
 | |
| 
 | |
|         if (memcmp(result, digest.data, Crypto::Hash::MD5::digest_size()) != 0) {
 | |
|             FAIL(Invalid hash);
 | |
|             print_buffer({ digest.data, Crypto::Hash::MD5::digest_size() }, -1);
 | |
|         } else {
 | |
|             PASS;
 | |
|         }
 | |
|     }
 | |
|     {
 | |
|         I_TEST((MD5 Hashing | "a"));
 | |
|         u8 result[] {
 | |
|             0x0c, 0xc1, 0x75, 0xb9, 0xc0, 0xf1, 0xb6, 0xa8, 0x31, 0xc3, 0x99, 0xe2, 0x69, 0x77, 0x26, 0x61
 | |
|         };
 | |
|         auto digest = Crypto::Hash::MD5::hash("a");
 | |
| 
 | |
|         if (memcmp(result, digest.data, Crypto::Hash::MD5::digest_size()) != 0) {
 | |
|             FAIL(Invalid hash);
 | |
|             print_buffer({ digest.data, Crypto::Hash::MD5::digest_size() }, -1);
 | |
|         } else {
 | |
|             PASS;
 | |
|         }
 | |
|     }
 | |
|     {
 | |
|         I_TEST((MD5 Hashing | "abcdefghijklmnopqrstuvwxyz"));
 | |
|         u8 result[] {
 | |
|             0xc3, 0xfc, 0xd3, 0xd7, 0x61, 0x92, 0xe4, 0x00, 0x7d, 0xfb, 0x49, 0x6c, 0xca, 0x67, 0xe1, 0x3b
 | |
|         };
 | |
|         auto digest = Crypto::Hash::MD5::hash("abcdefghijklmnopqrstuvwxyz");
 | |
| 
 | |
|         if (memcmp(result, digest.data, Crypto::Hash::MD5::digest_size()) != 0) {
 | |
|             FAIL(Invalid hash);
 | |
|             print_buffer({ digest.data, Crypto::Hash::MD5::digest_size() }, -1);
 | |
|         } else {
 | |
|             PASS;
 | |
|         }
 | |
|     }
 | |
|     {
 | |
|         I_TEST((MD5 Hashing | Long Sequence));
 | |
|         u8 result[] {
 | |
|             0x57, 0xed, 0xf4, 0xa2, 0x2b, 0xe3, 0xc9, 0x55, 0xac, 0x49, 0xda, 0x2e, 0x21, 0x07, 0xb6, 0x7a
 | |
|         };
 | |
|         auto digest = Crypto::Hash::MD5::hash("12345678901234567890123456789012345678901234567890123456789012345678901234567890");
 | |
| 
 | |
|         if (memcmp(result, digest.data, Crypto::Hash::MD5::digest_size()) != 0) {
 | |
|             FAIL(Invalid hash);
 | |
|             print_buffer({ digest.data, Crypto::Hash::MD5::digest_size() }, -1);
 | |
|         } else {
 | |
|             PASS;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void md5_test_consecutive_updates()
 | |
| {
 | |
|     {
 | |
|         I_TEST((MD5 Hashing | Multiple Updates));
 | |
|         u8 result[] {
 | |
|             0xaf, 0x04, 0x3a, 0x08, 0x94, 0x38, 0x6e, 0x7f, 0xbf, 0x73, 0xe4, 0xaa, 0xf0, 0x8e, 0xee, 0x4c
 | |
|         };
 | |
|         Crypto::Hash::MD5 md5;
 | |
| 
 | |
|         md5.update("Well");
 | |
|         md5.update(" hello ");
 | |
|         md5.update("friends");
 | |
|         auto digest = md5.digest();
 | |
| 
 | |
|         if (memcmp(result, digest.data, Crypto::Hash::MD5::digest_size()) != 0)
 | |
|             FAIL(Invalid hash);
 | |
|         else
 | |
|             PASS;
 | |
|     }
 | |
|     {
 | |
|         I_TEST((MD5 Hashing | Reuse));
 | |
|         Crypto::Hash::MD5 md5;
 | |
| 
 | |
|         md5.update("Well");
 | |
|         md5.update(" hello ");
 | |
|         md5.update("friends");
 | |
|         auto digest0 = md5.digest();
 | |
| 
 | |
|         md5.update("Well");
 | |
|         md5.update(" hello ");
 | |
|         md5.update("friends");
 | |
|         auto digest1 = md5.digest();
 | |
| 
 | |
|         if (memcmp(digest0.data, digest1.data, Crypto::Hash::MD5::digest_size()) != 0)
 | |
|             FAIL(Cannot reuse);
 | |
|         else
 | |
|             PASS;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int hmac_md5_tests()
 | |
| {
 | |
|     hmac_md5_test_name();
 | |
|     hmac_md5_test_process();
 | |
|     return g_some_test_failed ? 1 : 0;
 | |
| }
 | |
| 
 | |
| static int hmac_sha256_tests()
 | |
| {
 | |
|     hmac_sha256_test_name();
 | |
|     hmac_sha256_test_process();
 | |
|     return g_some_test_failed ? 1 : 0;
 | |
| }
 | |
| 
 | |
| static int hmac_sha512_tests()
 | |
| {
 | |
|     hmac_sha512_test_name();
 | |
|     hmac_sha512_test_process();
 | |
|     return g_some_test_failed ? 1 : 0;
 | |
| }
 | |
| 
 | |
| static void hmac_md5_test_name()
 | |
| {
 | |
|     I_TEST((HMAC - MD5 | Class name));
 | |
|     Crypto::Authentication::HMAC<Crypto::Hash::MD5> hmac("Well Hello Friends");
 | |
|     if (hmac.class_name() != "HMAC-MD5")
 | |
|         FAIL(Invalid class name);
 | |
|     else
 | |
|         PASS;
 | |
| }
 | |
| 
 | |
| static void hmac_md5_test_process()
 | |
| {
 | |
|     {
 | |
|         I_TEST((HMAC - MD5 | Basic));
 | |
|         Crypto::Authentication::HMAC<Crypto::Hash::MD5> hmac("Well Hello Friends");
 | |
|         u8 result[] {
 | |
|             0x3b, 0x5b, 0xde, 0x30, 0x3a, 0x54, 0x7b, 0xbb, 0x09, 0xfe, 0x78, 0x89, 0xbc, 0x9f, 0x22, 0xa3
 | |
|         };
 | |
|         auto mac = hmac.process("Some bogus data");
 | |
|         if (memcmp(result, mac.data, hmac.digest_size()) != 0) {
 | |
|             FAIL(Invalid mac);
 | |
|             print_buffer({ mac.data, hmac.digest_size() }, -1);
 | |
|         } else
 | |
|             PASS;
 | |
|     }
 | |
|     {
 | |
|         I_TEST((HMAC - MD5 | Reuse));
 | |
|         Crypto::Authentication::HMAC<Crypto::Hash::MD5> hmac("Well Hello Friends");
 | |
| 
 | |
|         auto mac_0 = hmac.process("Some bogus data");
 | |
|         auto mac_1 = hmac.process("Some bogus data");
 | |
| 
 | |
|         if (memcmp(mac_0.data, mac_1.data, hmac.digest_size()) != 0) {
 | |
|             FAIL(Cannot reuse);
 | |
|         } else
 | |
|             PASS;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int sha1_tests()
 | |
| {
 | |
|     sha1_test_name();
 | |
|     sha1_test_hash();
 | |
|     return g_some_test_failed ? 1 : 0;
 | |
| }
 | |
| 
 | |
| static void sha1_test_name()
 | |
| {
 | |
|     I_TEST((SHA1 class name));
 | |
|     Crypto::Hash::SHA1 sha;
 | |
|     if (sha.class_name() != "SHA1") {
 | |
|         FAIL(Invalid class name);
 | |
|         printf("%s\n", sha.class_name().characters());
 | |
|     } else
 | |
|         PASS;
 | |
| }
 | |
| 
 | |
| static void sha1_test_hash()
 | |
| {
 | |
|     {
 | |
|         I_TEST((SHA256 Hashing | ""));
 | |
|         u8 result[] {
 | |
|             0xda, 0x39, 0xa3, 0xee, 0x5e, 0x6b, 0x4b, 0x0d, 0x32, 0x55, 0xbf, 0xef, 0x95, 0x60, 0x18, 0x90, 0xaf, 0xd8, 0x07, 0x09
 | |
|         };
 | |
|         auto digest = Crypto::Hash::SHA1::hash("");
 | |
|         if (memcmp(result, digest.data, Crypto::Hash::SHA1::digest_size()) != 0) {
 | |
|             FAIL(Invalid hash);
 | |
|             print_buffer({ digest.data, Crypto::Hash::SHA1::digest_size() }, -1);
 | |
|         } else
 | |
|             PASS;
 | |
|     }
 | |
|     {
 | |
|         I_TEST((SHA256 Hashing | Long String));
 | |
|         u8 result[] {
 | |
|             0x12, 0x15, 0x1f, 0xb1, 0x04, 0x44, 0x93, 0xcc, 0xed, 0x54, 0xa6, 0xb8, 0x7e, 0x93, 0x37, 0x7b, 0xb2, 0x13, 0x39, 0xdb
 | |
|         };
 | |
|         auto digest = Crypto::Hash::SHA1::hash("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa");
 | |
|         if (memcmp(result, digest.data, Crypto::Hash::SHA1::digest_size()) != 0) {
 | |
|             FAIL(Invalid hash);
 | |
|             print_buffer({ digest.data, Crypto::Hash::SHA1::digest_size() }, -1);
 | |
|         } else
 | |
|             PASS;
 | |
|     }
 | |
|     {
 | |
|         I_TEST((SHA256 Hashing | Successive Updates));
 | |
|         u8 result[] {
 | |
|             0xd6, 0x6e, 0xce, 0xd1, 0xf4, 0x08, 0xc6, 0xd8, 0x35, 0xab, 0xf0, 0xc9, 0x05, 0x26, 0xa4, 0xb2, 0xb8, 0xa3, 0x7c, 0xd3
 | |
|         };
 | |
|         auto hasher = Crypto::Hash::SHA1 {};
 | |
|         hasher.update("aaaaaaaaaaaaaaa");
 | |
|         hasher.update("aaaaaaaaaaaaaaa");
 | |
|         hasher.update("aaaaaaaaaaaaaaa");
 | |
|         hasher.update("aaaaaaaaaaaaaaa");
 | |
|         hasher.update("aaaaaaaaaaaaaaa");
 | |
|         hasher.update("aaaaaaaaaaaaaaa");
 | |
|         hasher.update("aaaaaaaaaaaaaaa");
 | |
|         hasher.update("aaaaaaaaaaaaaaa");
 | |
|         hasher.update("aaaaaaaaaaaaaaa");
 | |
|         hasher.update("aaaaaaaaaaaaaaa");
 | |
|         hasher.update("aaaaaaaaaaaaaaa");
 | |
|         hasher.update("aaaaaaaaaaaaaaa");
 | |
|         hasher.update("aaaaaaaaa");
 | |
|         auto digest = hasher.digest();
 | |
|         if (memcmp(result, digest.data, Crypto::Hash::SHA1::digest_size()) != 0) {
 | |
|             FAIL(Invalid hash);
 | |
|             print_buffer({ digest.data, Crypto::Hash::SHA1::digest_size() }, -1);
 | |
|         } else
 | |
|             PASS;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int sha256_tests()
 | |
| {
 | |
|     sha256_test_name();
 | |
|     sha256_test_hash();
 | |
|     return g_some_test_failed ? 1 : 0;
 | |
| }
 | |
| 
 | |
| static void sha256_test_name()
 | |
| {
 | |
|     I_TEST((SHA256 class name));
 | |
|     Crypto::Hash::SHA256 sha;
 | |
|     if (sha.class_name() != "SHA256") {
 | |
|         FAIL(Invalid class name);
 | |
|         printf("%s\n", sha.class_name().characters());
 | |
|     } else
 | |
|         PASS;
 | |
| }
 | |
| 
 | |
| static void sha256_test_hash()
 | |
| {
 | |
|     {
 | |
|         I_TEST((SHA256 Hashing | "Well hello friends"));
 | |
|         u8 result[] {
 | |
|             0x9a, 0xcd, 0x50, 0xf9, 0xa2, 0xaf, 0x37, 0xe4, 0x71, 0xf7, 0x61, 0xc3, 0xfe, 0x7b, 0x8d, 0xea, 0x56, 0x17, 0xe5, 0x1d, 0xac, 0x80, 0x2f, 0xe6, 0xc1, 0x77, 0xb7, 0x4a, 0xbf, 0x0a, 0xbb, 0x5a
 | |
|         };
 | |
|         auto digest = Crypto::Hash::SHA256::hash("Well hello friends");
 | |
|         if (memcmp(result, digest.data, Crypto::Hash::SHA256::digest_size()) != 0) {
 | |
|             FAIL(Invalid hash);
 | |
|             print_buffer({ digest.data, Crypto::Hash::SHA256::digest_size() }, -1);
 | |
|         } else
 | |
|             PASS;
 | |
|     }
 | |
|     {
 | |
|         I_TEST((SHA256 Hashing | ""));
 | |
|         u8 result[] {
 | |
|             0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a, 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24, 0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c, 0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55
 | |
|         };
 | |
|         auto digest = Crypto::Hash::SHA256::hash("");
 | |
|         if (memcmp(result, digest.data, Crypto::Hash::SHA256::digest_size()) != 0) {
 | |
|             FAIL(Invalid hash);
 | |
|             print_buffer({ digest.data, Crypto::Hash::SHA256::digest_size() }, -1);
 | |
|         } else
 | |
|             PASS;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void hmac_sha256_test_name()
 | |
| {
 | |
|     I_TEST((HMAC - SHA256 | Class name));
 | |
|     Crypto::Authentication::HMAC<Crypto::Hash::SHA256> hmac("Well Hello Friends");
 | |
|     if (hmac.class_name() != "HMAC-SHA256")
 | |
|         FAIL(Invalid class name);
 | |
|     else
 | |
|         PASS;
 | |
| }
 | |
| 
 | |
| static void hmac_sha256_test_process()
 | |
| {
 | |
|     {
 | |
|         I_TEST((HMAC - SHA256 | Basic));
 | |
|         Crypto::Authentication::HMAC<Crypto::Hash::SHA256> hmac("Well Hello Friends");
 | |
|         u8 result[] {
 | |
|             0x1a, 0xf2, 0x20, 0x62, 0xde, 0x3b, 0x84, 0x65, 0xc1, 0x25, 0x23, 0x99, 0x76, 0x15, 0x1b, 0xec, 0x15, 0x21, 0x82, 0x1f, 0x23, 0xca, 0x11, 0x66, 0xdd, 0x8c, 0x6e, 0xf1, 0x81, 0x3b, 0x7f, 0x1b
 | |
|         };
 | |
|         auto mac = hmac.process("Some bogus data");
 | |
|         if (memcmp(result, mac.data, hmac.digest_size()) != 0) {
 | |
|             FAIL(Invalid mac);
 | |
|             print_buffer({ mac.data, hmac.digest_size() }, -1);
 | |
|         } else
 | |
|             PASS;
 | |
|     }
 | |
|     {
 | |
|         I_TEST((HMAC - SHA256 | DataSize > FinalBlockDataSize));
 | |
|         Crypto::Authentication::HMAC<Crypto::Hash::SHA256> hmac("Well Hello Friends");
 | |
|         u8 result[] = {
 | |
|             0x9b, 0xa3, 0x9e, 0xf3, 0xb4, 0x30, 0x5f, 0x6f, 0x67, 0xd0, 0xa8, 0xb0, 0xf0, 0xcb, 0x12, 0xf5, 0x85, 0xe2, 0x19, 0xba, 0x0c, 0x8b, 0xe5, 0x43, 0xf0, 0x93, 0x39, 0xa8, 0xa3, 0x07, 0xf1, 0x95
 | |
|         };
 | |
|         auto mac = hmac.process("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa");
 | |
|         if (memcmp(result, mac.data, hmac.digest_size()) != 0) {
 | |
|             FAIL(Invalid mac);
 | |
|             print_buffer({ mac.data, hmac.digest_size() }, -1);
 | |
|         } else
 | |
|             PASS;
 | |
|     }
 | |
|     {
 | |
|         I_TEST((HMAC - SHA256 | DataSize == BlockSize));
 | |
|         Crypto::Authentication::HMAC<Crypto::Hash::SHA256> hmac("Well Hello Friends");
 | |
|         u8 result[] = {
 | |
|             0x1d, 0x90, 0xce, 0x68, 0x45, 0x0b, 0xba, 0xd6, 0xbe, 0x1c, 0xb2, 0x3a, 0xea, 0x7f, 0xac, 0x4b, 0x68, 0x08, 0xa4, 0x77, 0x81, 0x2a, 0xad, 0x5d, 0x05, 0xe2, 0x15, 0xe8, 0xf4, 0xcb, 0x06, 0xaf
 | |
|         };
 | |
|         auto mac = hmac.process("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa");
 | |
|         if (memcmp(result, mac.data, hmac.digest_size()) != 0) {
 | |
|             FAIL(Invalid mac);
 | |
|             print_buffer({ mac.data, hmac.digest_size() }, -1);
 | |
|         } else
 | |
|             PASS;
 | |
|     }
 | |
|     {
 | |
|         I_TEST((HMAC - SHA256 | Reuse));
 | |
|         Crypto::Authentication::HMAC<Crypto::Hash::SHA256> hmac("Well Hello Friends");
 | |
| 
 | |
|         auto mac_0 = hmac.process("Some bogus data");
 | |
|         auto mac_1 = hmac.process("Some bogus data");
 | |
| 
 | |
|         if (memcmp(mac_0.data, mac_1.data, hmac.digest_size()) != 0) {
 | |
|             FAIL(Cannot reuse);
 | |
|         } else
 | |
|             PASS;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int sha512_tests()
 | |
| {
 | |
|     sha512_test_name();
 | |
|     sha512_test_hash();
 | |
|     return g_some_test_failed ? 1 : 0;
 | |
| }
 | |
| 
 | |
| static void sha512_test_name()
 | |
| {
 | |
|     I_TEST((SHA512 class name));
 | |
|     Crypto::Hash::SHA512 sha;
 | |
|     if (sha.class_name() != "SHA512") {
 | |
|         FAIL(Invalid class name);
 | |
|         printf("%s\n", sha.class_name().characters());
 | |
|     } else
 | |
|         PASS;
 | |
| }
 | |
| 
 | |
| static void sha512_test_hash()
 | |
| {
 | |
|     {
 | |
|         I_TEST((SHA512 Hashing | "Well hello friends"));
 | |
|         u8 result[] {
 | |
|             0x00, 0xfe, 0x68, 0x09, 0x71, 0x0e, 0xcb, 0x2b, 0xe9, 0x58, 0x00, 0x13, 0x69, 0x6a, 0x9e, 0x9e, 0xbd, 0x09, 0x1b, 0xfe, 0x14, 0xc9, 0x13, 0x82, 0xc7, 0x40, 0x34, 0xfe, 0xca, 0xe6, 0x87, 0xcb, 0x26, 0x36, 0x92, 0xe6, 0x34, 0x94, 0x3a, 0x11, 0xe5, 0xbb, 0xb5, 0xeb, 0x8e, 0x70, 0xef, 0x64, 0xca, 0xf7, 0x21, 0xb1, 0xde, 0xf2, 0x34, 0x85, 0x6f, 0xa8, 0x56, 0xd8, 0x23, 0xa1, 0x3b, 0x29
 | |
|         };
 | |
|         auto digest = Crypto::Hash::SHA512::hash("Well hello friends");
 | |
|         if (memcmp(result, digest.data, Crypto::Hash::SHA512::digest_size()) != 0) {
 | |
|             FAIL(Invalid hash);
 | |
|             print_buffer({ digest.data, Crypto::Hash::SHA512::digest_size() }, -1);
 | |
|         } else
 | |
|             PASS;
 | |
|     }
 | |
|     {
 | |
|         I_TEST((SHA512 Hashing | ""));
 | |
|         u8 result[] {
 | |
|             0xcf, 0x83, 0xe1, 0x35, 0x7e, 0xef, 0xb8, 0xbd, 0xf1, 0x54, 0x28, 0x50, 0xd6, 0x6d, 0x80, 0x07, 0xd6, 0x20, 0xe4, 0x05, 0x0b, 0x57, 0x15, 0xdc, 0x83, 0xf4, 0xa9, 0x21, 0xd3, 0x6c, 0xe9, 0xce, 0x47, 0xd0, 0xd1, 0x3c, 0x5d, 0x85, 0xf2, 0xb0, 0xff, 0x83, 0x18, 0xd2, 0x87, 0x7e, 0xec, 0x2f, 0x63, 0xb9, 0x31, 0xbd, 0x47, 0x41, 0x7a, 0x81, 0xa5, 0x38, 0x32, 0x7a, 0xf9, 0x27, 0xda, 0x3e
 | |
|         };
 | |
|         auto digest = Crypto::Hash::SHA512::hash("");
 | |
|         if (memcmp(result, digest.data, Crypto::Hash::SHA512::digest_size()) != 0) {
 | |
|             FAIL(Invalid hash);
 | |
|             print_buffer({ digest.data, Crypto::Hash::SHA512::digest_size() }, -1);
 | |
|         } else
 | |
|             PASS;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void hmac_sha512_test_name()
 | |
| {
 | |
|     I_TEST((HMAC - SHA512 | Class name));
 | |
|     Crypto::Authentication::HMAC<Crypto::Hash::SHA512> hmac("Well Hello Friends");
 | |
|     if (hmac.class_name() != "HMAC-SHA512")
 | |
|         FAIL(Invalid class name);
 | |
|     else
 | |
|         PASS;
 | |
| }
 | |
| 
 | |
| static void hmac_sha512_test_process()
 | |
| {
 | |
|     {
 | |
|         I_TEST((HMAC - SHA512 | Basic));
 | |
|         Crypto::Authentication::HMAC<Crypto::Hash::SHA512> hmac("Well Hello Friends");
 | |
|         u8 result[] {
 | |
|             0xeb, 0xa8, 0x34, 0x11, 0xfd, 0x5b, 0x46, 0x5b, 0xef, 0xbb, 0x67, 0x5e, 0x7d, 0xc2, 0x7c, 0x2c, 0x6b, 0xe1, 0xcf, 0xe6, 0xc7, 0xe4, 0x7d, 0xeb, 0xca, 0x97, 0xb7, 0x4c, 0xd3, 0x4d, 0x6f, 0x08, 0x9f, 0x0d, 0x3a, 0xf1, 0xcb, 0x00, 0x79, 0x78, 0x2f, 0x05, 0x8e, 0xeb, 0x94, 0x48, 0x0d, 0x50, 0x64, 0x3b, 0xca, 0x70, 0xe2, 0x69, 0x38, 0x4f, 0xe4, 0xb0, 0x49, 0x0f, 0xc5, 0x4c, 0x7a, 0xa7
 | |
|         };
 | |
|         auto mac = hmac.process("Some bogus data");
 | |
|         if (memcmp(result, mac.data, hmac.digest_size()) != 0) {
 | |
|             FAIL(Invalid mac);
 | |
|             print_buffer({ mac.data, hmac.digest_size() }, -1);
 | |
|         } else
 | |
|             PASS;
 | |
|     }
 | |
|     {
 | |
|         I_TEST((HMAC - SHA512 | Reuse));
 | |
|         Crypto::Authentication::HMAC<Crypto::Hash::SHA512> hmac("Well Hello Friends");
 | |
| 
 | |
|         auto mac_0 = hmac.process("Some bogus data");
 | |
|         auto mac_1 = hmac.process("Some bogus data");
 | |
| 
 | |
|         if (memcmp(mac_0.data, mac_1.data, hmac.digest_size()) != 0) {
 | |
|             FAIL(Cannot reuse);
 | |
|         } else
 | |
|             PASS;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int rsa_tests()
 | |
| {
 | |
|     rsa_test_encrypt();
 | |
|     rsa_test_der_parse();
 | |
|     bigint_test_number_theory();
 | |
|     rsa_test_encrypt_decrypt();
 | |
|     rsa_emsa_pss_test_create();
 | |
|     return g_some_test_failed ? 1 : 0;
 | |
| }
 | |
| 
 | |
| static void rsa_test_encrypt()
 | |
| {
 | |
|     {
 | |
|         I_TEST((RSA RAW | Encryption));
 | |
|         ByteBuffer data { "hellohellohellohellohellohellohellohellohellohellohellohello123-"_b };
 | |
|         u8 result[] { 0x6f, 0x7b, 0xe2, 0xd3, 0x95, 0xf8, 0x8d, 0x87, 0x6d, 0x10, 0x5e, 0xc3, 0xcd, 0xf7, 0xbb, 0xa6, 0x62, 0x8e, 0x45, 0xa0, 0xf1, 0xe5, 0x0f, 0xdf, 0x69, 0xcb, 0xb6, 0xd5, 0x42, 0x06, 0x7d, 0x72, 0xa9, 0x5e, 0xae, 0xbf, 0xbf, 0x0f, 0xe0, 0xeb, 0x31, 0x31, 0xca, 0x8a, 0x81, 0x1e, 0xb9, 0xec, 0x6d, 0xcc, 0xb8, 0xa4, 0xac, 0xa3, 0x31, 0x05, 0xa9, 0xac, 0xc9, 0xd3, 0xe6, 0x2a, 0x18, 0xfe };
 | |
|         Crypto::PK::RSA rsa(
 | |
|             "8126832723025844890518845777858816391166654950553329127845898924164623511718747856014227624997335860970996746552094406240834082304784428582653994490504519"_bigint,
 | |
|             "4234603516465654167360850580101327813936403862038934287300450163438938741499875303761385527882335478349599685406941909381269804396099893549838642251053393"_bigint,
 | |
|             "65537"_bigint);
 | |
|         u8 buffer[rsa.output_size()];
 | |
|         auto buf = ByteBuffer::wrap(buffer, sizeof(buffer));
 | |
|         rsa.encrypt(data, buf);
 | |
|         if (memcmp(result, buf.data(), buf.size())) {
 | |
|             FAIL(Invalid encryption result);
 | |
|             print_buffer(buf, 16);
 | |
|         } else {
 | |
|             PASS;
 | |
|         }
 | |
|     }
 | |
|     {
 | |
|         I_TEST((RSA PKCS #1 1.5 | Encryption));
 | |
|         ByteBuffer data { "hellohellohellohellohellohellohellohellohello123-"_b };
 | |
|         Crypto::PK::RSA_PKCS1_EME rsa(
 | |
|             "8126832723025844890518845777858816391166654950553329127845898924164623511718747856014227624997335860970996746552094406240834082304784428582653994490504519"_bigint,
 | |
|             "4234603516465654167360850580101327813936403862038934287300450163438938741499875303761385527882335478349599685406941909381269804396099893549838642251053393"_bigint,
 | |
|             "65537"_bigint);
 | |
|         u8 buffer[rsa.output_size()];
 | |
|         auto buf = ByteBuffer::wrap(buffer, sizeof(buffer));
 | |
|         rsa.encrypt(data, buf);
 | |
|         rsa.decrypt(buf, buf);
 | |
| 
 | |
|         if (memcmp(buf.data(), "hellohellohellohellohellohellohellohellohello123-", 49))
 | |
|             FAIL(Invalid encryption);
 | |
|         else {
 | |
|             dbg() << "out size " << buf.size() << " values: " << StringView { (char*)buf.data(), buf.size() };
 | |
| 
 | |
|             PASS;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void bigint_test_number_theory()
 | |
| {
 | |
|     {
 | |
|         I_TEST((Number Theory | Modular Inverse));
 | |
|         if (Crypto::NumberTheory::ModularInverse(7, 87) == 25) {
 | |
|             PASS;
 | |
|         } else {
 | |
|             FAIL(Invalid result);
 | |
|         }
 | |
|     }
 | |
|     {
 | |
|         struct {
 | |
|             Crypto::UnsignedBigInteger base;
 | |
|             Crypto::UnsignedBigInteger exp;
 | |
|             Crypto::UnsignedBigInteger mod;
 | |
|             Crypto::UnsignedBigInteger expected;
 | |
|         } mod_pow_tests[] = {
 | |
|             { "2988348162058574136915891421498819466320163312926952423791023078876139"_bigint, "2351399303373464486466122544523690094744975233415544072992656881240319"_bigint, "10000"_bigint, "3059"_bigint },
 | |
|             { "24231"_bigint, "12448"_bigint, "14679"_bigint, "4428"_bigint },
 | |
|             { "1005404"_bigint, "8352654"_bigint, "8161408"_bigint, "2605696"_bigint },
 | |
|             { "3665005778"_bigint, "3244425589"_bigint, "565668506"_bigint, "524766494"_bigint },
 | |
|             { "10662083169959689657"_bigint, "11605678468317533000"_bigint, "1896834583057209739"_bigint, "1292743154593945858"_bigint },
 | |
|             { "99667739213529524852296932424683448520"_bigint, "123394910770101395416306279070921784207"_bigint, "238026722756504133786938677233768788719"_bigint, "197165477545023317459748215952393063201"_bigint },
 | |
|             { "49368547511968178788919424448914214709244872098814465088945281575062739912239"_bigint, "25201856190991298572337188495596990852134236115562183449699512394891190792064"_bigint, "45950460777961491021589776911422805972195170308651734432277141467904883064645"_bigint, "39917885806532796066922509794537889114718612292469285403012781055544152450051"_bigint },
 | |
|             { "48399385336454791246880286907257136254351739111892925951016159217090949616810"_bigint, "5758661760571644379364752528081901787573279669668889744323710906207949658569"_bigint, "32812120644405991429173950312949738783216437173380339653152625840449006970808"_bigint, "7948464125034399875323770213514649646309423451213282653637296324080400293584"_bigint },
 | |
|         };
 | |
| 
 | |
|         for (auto test_case : mod_pow_tests) {
 | |
|             I_TEST((Number Theory | Modular Power));
 | |
|             auto actual = Crypto::NumberTheory::ModularPower(
 | |
|                 test_case.base, test_case.exp, test_case.mod);
 | |
| 
 | |
|             if (actual == test_case.expected) {
 | |
|                 PASS;
 | |
|             } else {
 | |
|                 FAIL(Wrong result);
 | |
|                 printf("b: %s\ne: %s\nm: %s\nexpect: %s\nactual: %s\n",
 | |
|                     test_case.base.to_base10().characters(), test_case.exp.to_base10().characters(), test_case.mod.to_base10().characters(), test_case.expected.to_base10().characters(), actual.to_base10().characters());
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     {
 | |
|         struct {
 | |
|             Crypto::UnsignedBigInteger candidate;
 | |
|             bool expected_result;
 | |
|         } primality_tests[] = {
 | |
|             { "1180591620717411303424"_bigint, false },                  // 2**70
 | |
|             { "620448401733239439360000"_bigint, false },                // 25!
 | |
|             { "953962166440690129601298432"_bigint, false },             // 12**25
 | |
|             { "620448401733239439360000"_bigint, false },                // 25!
 | |
|             { "147926426347074375"_bigint, false },                      // 35! / 2**32
 | |
|             { "340282366920938429742726440690708343523"_bigint, false }, // 2 factors near 2^64
 | |
|             { "73"_bigint, true },
 | |
|             { "6967"_bigint, true },
 | |
|             { "787649"_bigint, true },
 | |
|             { "73513949"_bigint, true },
 | |
|             { "6691236901"_bigint, true },
 | |
|             { "741387182759"_bigint, true },
 | |
|             { "67466615915827"_bigint, true },
 | |
|             { "9554317039214687"_bigint, true },
 | |
|             { "533344522150170391"_bigint, true },
 | |
|             { "18446744073709551557"_bigint, true }, // just below 2**64
 | |
|         };
 | |
| 
 | |
|         for (auto test_case : primality_tests) {
 | |
|             I_TEST((Number Theory | Primality));
 | |
|             bool actual_result = Crypto::NumberTheory::is_probably_prime(test_case.candidate);
 | |
|             if (test_case.expected_result == actual_result) {
 | |
|                 PASS;
 | |
|             } else {
 | |
|                 FAIL(Wrong primality guess);
 | |
|                 printf("The number %s is %sa prime, but the test said it is %sa prime!\n",
 | |
|                     test_case.candidate.to_base10().characters(), test_case.expected_result ? "" : "not ", actual_result ? "" : "not ");
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     {
 | |
|         struct {
 | |
|             Crypto::UnsignedBigInteger min;
 | |
|             Crypto::UnsignedBigInteger max;
 | |
|         } primality_tests[] = {
 | |
|             { "1"_bigint, "1000000"_bigint },
 | |
|             { "10000000000"_bigint, "20000000000"_bigint },
 | |
|             { "1000"_bigint, "200000000000000000"_bigint },
 | |
|             { "200000000000000000"_bigint, "200000000000010000"_bigint },
 | |
|         };
 | |
| 
 | |
|         for (auto test_case : primality_tests) {
 | |
|             I_TEST((Number Theory | Random numbers));
 | |
|             auto actual_result = Crypto::NumberTheory::random_number(test_case.min, test_case.max);
 | |
|             if (actual_result < test_case.min) {
 | |
|                 FAIL(Too small);
 | |
|                 printf("The generated number %s is smaller than the requested minimum %s. (max = %s)\n", actual_result.to_base10().characters(), test_case.min.to_base10().characters(), test_case.max.to_base10().characters());
 | |
|             } else if (!(actual_result < test_case.max)) {
 | |
|                 FAIL(Too large);
 | |
|                 printf("The generated number %s is larger-or-equal to the requested maximum %s. (min = %s)\n", actual_result.to_base10().characters(), test_case.max.to_base10().characters(), test_case.min.to_base10().characters());
 | |
|             } else {
 | |
|                 PASS;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     {
 | |
|         I_TEST((Number Theory | Random distribution));
 | |
|         auto actual_result = Crypto::NumberTheory::random_number(
 | |
|             "1"_bigint,
 | |
|             "100000000000000000000000000000"_bigint);         // 10**29
 | |
|         if (actual_result < "100000000000000000000"_bigint) { // 10**20
 | |
|             FAIL(Too small);
 | |
|             printf("The generated number %s is extremely small. This *can* happen by pure chance, but should happen only once in a billion times. So it's probably an error.\n", actual_result.to_base10().characters());
 | |
|         } else if ("99999999900000000000000000000"_bigint < actual_result) { // 10**29 - 10**20
 | |
|             FAIL(Too large);
 | |
|             printf("The generated number %s is extremely large. This *can* happen by pure chance, but should happen only once in a billion times. So it's probably an error.\n", actual_result.to_base10().characters());
 | |
|         } else {
 | |
|             PASS;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void rsa_emsa_pss_test_create()
 | |
| {
 | |
|     {
 | |
|         // This is a template validity test
 | |
|         I_TEST((RSA EMSA_PSS | Construction));
 | |
|         Crypto::PK::RSA rsa;
 | |
|         Crypto::PK::RSA_EMSA_PSS<Crypto::Hash::SHA256> rsa_esma_pss(rsa);
 | |
|         PASS;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void rsa_test_der_parse()
 | |
| {
 | |
|     I_TEST((RSA | ASN1 DER / PEM encoded Key import));
 | |
|     auto privkey = R"(-----BEGIN RSA PRIVATE KEY-----
 | |
| MIIBOgIBAAJBAJsrIYHxs1YL9tpfodaWs1lJoMdF4kgFisUFSj6nvBhJUlmBh607AlgTaX0E
 | |
| DGPYycXYGZ2n6rqmms5lpDXBpUcCAwEAAQJAUNpPkmtEHDENxsoQBUXvXDYeXdePSiIBJhpU
 | |
| joNOYoR5R9z5oX2cpcyykQ58FC2vKKg+x8N6xczG7qO95tw5UQIhAN354CP/FA+uTeJ6KJ+i
 | |
| zCBCl58CjNCzO0s5HTc56el5AiEAsvPKXo5/9gS/S4UzDRP6abq7GreixTfjR8LXidk3FL8C
 | |
| IQCTjYI861Y+hjMnlORkGSdvWlTHUj6gjEOh4TlWeJzQoQIgAxMZOQKtxCZUuxFwzRq4xLRG
 | |
| nrDlBQpuxz7bwSyQO7UCIHrYMnDohgNbwtA5ZpW3H1cKKQQvueWm6sxW9P5sUrZ3
 | |
| -----END RSA PRIVATE KEY-----)";
 | |
| 
 | |
|     Crypto::PK::RSA rsa(privkey);
 | |
|     if (rsa.public_key().public_exponent() == 65537) {
 | |
|         if (rsa.private_key().private_exponent() == "4234603516465654167360850580101327813936403862038934287300450163438938741499875303761385527882335478349599685406941909381269804396099893549838642251053393"_bigint) {
 | |
|             PASS;
 | |
|         } else
 | |
|             FAIL(Invalid private exponent);
 | |
|     } else {
 | |
|         FAIL(Invalid public exponent);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void rsa_test_encrypt_decrypt()
 | |
| {
 | |
|     I_TEST((RSA | Encrypt));
 | |
|     dbg() << " creating rsa object";
 | |
|     Crypto::PK::RSA rsa(
 | |
|         "9527497237087650398000977129550904920919162360737979403539302312977329868395261515707123424679295515888026193056908173564681660256268221509339074678416049"_bigint,
 | |
|         "39542231845947188736992321577701849924317746648774438832456325878966594812143638244746284968851807975097653255909707366086606867657273809465195392910913"_bigint,
 | |
|         "65537"_bigint);
 | |
|     dbg() << "Output size: " << rsa.output_size();
 | |
|     auto dec = ByteBuffer::create_zeroed(rsa.output_size());
 | |
|     auto enc = ByteBuffer::create_zeroed(rsa.output_size());
 | |
|     enc.overwrite(0, "WellHelloFriendsWellHelloFriendsWellHelloFriendsWellHelloFriends", 64);
 | |
| 
 | |
|     rsa.encrypt(enc, dec);
 | |
|     rsa.decrypt(dec, enc);
 | |
| 
 | |
|     dbg() << "enc size " << enc.size() << " dec size " << dec.size();
 | |
| 
 | |
|     if (memcmp(enc.data(), "WellHelloFriendsWellHelloFriendsWellHelloFriendsWellHelloFriends", 64) != 0) {
 | |
|         FAIL(Could not encrypt then decrypt);
 | |
|     } else {
 | |
|         PASS;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int tls_tests()
 | |
| {
 | |
|     tls_test_client_hello();
 | |
|     return g_some_test_failed ? 1 : 0;
 | |
| }
 | |
| 
 | |
| static void tls_test_client_hello()
 | |
| {
 | |
|     I_TEST((TLS | Connect and Data Transfer));
 | |
|     Core::EventLoop loop;
 | |
|     RefPtr<TLS::TLSv12> tls = TLS::TLSv12::construct(nullptr);
 | |
|     bool sent_request = false;
 | |
|     ByteBuffer contents = ByteBuffer::create_uninitialized(0);
 | |
|     tls->on_tls_ready_to_write = [&](TLS::TLSv12& tls) {
 | |
|         if (sent_request)
 | |
|             return;
 | |
|         sent_request = true;
 | |
|         if (!tls.write("GET / HTTP/1.1\r\nHost: github.com\r\nConnection: close\r\n\r\n"_b)) {
 | |
|             FAIL(write() failed);
 | |
|             loop.quit(0);
 | |
|         }
 | |
|     };
 | |
|     tls->on_tls_ready_to_read = [&](TLS::TLSv12& tls) {
 | |
|         auto data = tls.read();
 | |
|         if (!data.has_value()) {
 | |
|             FAIL(No data received);
 | |
|             loop.quit(1);
 | |
|         } else {
 | |
|             //            print_buffer(data.value(), 16);
 | |
|             contents.append(data.value().data(), data.value().size());
 | |
|         }
 | |
|     };
 | |
|     tls->on_tls_finished = [&] {
 | |
|         PASS;
 | |
|         auto file = Core::File::open("foo.response", Core::IODevice::WriteOnly);
 | |
|         if (file.is_error()) {
 | |
|             printf("Can't write there, %s\n", file.error().characters());
 | |
|             loop.quit(2);
 | |
|             return;
 | |
|         }
 | |
|         file.value()->write(contents);
 | |
|         file.value()->close();
 | |
|         loop.quit(0);
 | |
|     };
 | |
|     tls->on_tls_error = [&](TLS::AlertDescription) {
 | |
|         FAIL(Connection failure);
 | |
|         loop.quit(1);
 | |
|     };
 | |
|     if (!tls->connect("github.com", 443)) {
 | |
|         FAIL(connect() failed);
 | |
|         return;
 | |
|     }
 | |
|     loop.exec();
 | |
| }
 | |
| 
 | |
| static int adler32_tests()
 | |
| {
 | |
|     auto do_test = [](ReadonlyBytes input, u32 expected_result) {
 | |
|         I_TEST((CRC32));
 | |
| 
 | |
|         auto pass = Crypto::Checksum::Adler32(input).digest() == expected_result;
 | |
| 
 | |
|         if (pass) {
 | |
|             PASS;
 | |
|         } else {
 | |
|             FAIL(Incorrect Result);
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     do_test(String("").bytes(), 0x1);
 | |
|     do_test(String("a").bytes(), 0x00620062);
 | |
|     do_test(String("abc").bytes(), 0x024d0127);
 | |
|     do_test(String("message digest").bytes(), 0x29750586);
 | |
|     do_test(String("abcdefghijklmnopqrstuvwxyz").bytes(), 0x90860b20);
 | |
| 
 | |
|     return g_some_test_failed ? 1 : 0;
 | |
| }
 | |
| 
 | |
| static int crc32_tests()
 | |
| {
 | |
|     auto do_test = [](ReadonlyBytes input, u32 expected_result) {
 | |
|         I_TEST((Adler32));
 | |
| 
 | |
|         auto pass = Crypto::Checksum::CRC32(input).digest() == expected_result;
 | |
| 
 | |
|         if (pass) {
 | |
|             PASS;
 | |
|         } else {
 | |
|             FAIL(Incorrect Result);
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     do_test(String("").bytes(), 0x0);
 | |
|     do_test(String("The quick brown fox jumps over the lazy dog").bytes(), 0x414FA339);
 | |
|     do_test(String("various CRC algorithms input data").bytes(), 0x9BD366AE);
 | |
| 
 | |
|     return g_some_test_failed ? 1 : 0;
 | |
| }
 | |
| 
 | |
| static int bigint_tests()
 | |
| {
 | |
|     bigint_test_fibo500();
 | |
|     bigint_addition_edgecases();
 | |
|     bigint_subtraction();
 | |
|     bigint_multiplication();
 | |
|     bigint_division();
 | |
|     bigint_base10();
 | |
|     bigint_import_export();
 | |
|     bigint_bitwise();
 | |
| 
 | |
|     bigint_test_signed_fibo500();
 | |
|     bigint_signed_addition_edgecases();
 | |
|     bigint_signed_subtraction();
 | |
|     bigint_signed_multiplication();
 | |
|     bigint_signed_division();
 | |
|     bigint_signed_base10();
 | |
|     bigint_signed_import_export();
 | |
|     bigint_signed_bitwise();
 | |
| 
 | |
|     return g_some_test_failed ? 1 : 0;
 | |
| }
 | |
| 
 | |
| static Crypto::UnsignedBigInteger bigint_fibonacci(size_t n)
 | |
| {
 | |
|     Crypto::UnsignedBigInteger num1(0);
 | |
|     Crypto::UnsignedBigInteger num2(1);
 | |
|     for (size_t i = 0; i < n; ++i) {
 | |
|         Crypto::UnsignedBigInteger t = num1.plus(num2);
 | |
|         num2 = num1;
 | |
|         num1 = t;
 | |
|     }
 | |
|     return num1;
 | |
| }
 | |
| 
 | |
| static Crypto::SignedBigInteger bigint_signed_fibonacci(size_t n)
 | |
| {
 | |
|     Crypto::SignedBigInteger num1(0);
 | |
|     Crypto::SignedBigInteger num2(1);
 | |
|     for (size_t i = 0; i < n; ++i) {
 | |
|         Crypto::SignedBigInteger t = num1.plus(num2);
 | |
|         num2 = num1;
 | |
|         num1 = t;
 | |
|     }
 | |
|     return num1;
 | |
| }
 | |
| static void bigint_test_fibo500()
 | |
| {
 | |
|     {
 | |
|         I_TEST((BigInteger | Fibonacci500));
 | |
|         bool pass = (bigint_fibonacci(500).words() == AK::Vector<u32> { 315178285, 505575602, 1883328078, 125027121, 3649625763, 347570207, 74535262, 3832543808, 2472133297, 1600064941, 65273441 });
 | |
| 
 | |
|         if (pass) {
 | |
|             PASS;
 | |
|         } else {
 | |
|             FAIL(Incorrect Result);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void bigint_addition_edgecases()
 | |
| {
 | |
|     {
 | |
|         I_TEST((BigInteger | Edge Cases));
 | |
|         Crypto::UnsignedBigInteger num1;
 | |
|         Crypto::UnsignedBigInteger num2(70);
 | |
|         Crypto::UnsignedBigInteger num3 = num1.plus(num2);
 | |
|         bool pass = (num3 == num2);
 | |
|         pass &= (num1 == Crypto::UnsignedBigInteger(0));
 | |
| 
 | |
|         if (pass) {
 | |
|             PASS;
 | |
|         } else {
 | |
|             FAIL(Incorrect Result);
 | |
|         }
 | |
|     }
 | |
|     {
 | |
|         I_TEST((BigInteger | Borrow with zero));
 | |
|         Crypto::UnsignedBigInteger num1({ UINT32_MAX - 3, UINT32_MAX });
 | |
|         Crypto::UnsignedBigInteger num2({ UINT32_MAX - 2, 0 });
 | |
|         if (num1.plus(num2).words() == Vector<u32> { 4294967289, 0, 1 }) {
 | |
|             PASS;
 | |
|         } else {
 | |
|             FAIL(Incorrect Result);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void bigint_subtraction()
 | |
| {
 | |
|     {
 | |
|         I_TEST((BigInteger | Simple Subtraction 1));
 | |
|         Crypto::UnsignedBigInteger num1(80);
 | |
|         Crypto::UnsignedBigInteger num2(70);
 | |
| 
 | |
|         if (num1.minus(num2) == Crypto::UnsignedBigInteger(10)) {
 | |
|             PASS;
 | |
|         } else {
 | |
|             FAIL(Incorrect Result);
 | |
|         }
 | |
|     }
 | |
|     {
 | |
|         I_TEST((BigInteger | Simple Subtraction 2));
 | |
|         Crypto::UnsignedBigInteger num1(50);
 | |
|         Crypto::UnsignedBigInteger num2(70);
 | |
| 
 | |
|         if (num1.minus(num2).is_invalid()) {
 | |
|             PASS;
 | |
|         } else {
 | |
|             FAIL(Incorrect Result);
 | |
|         }
 | |
|     }
 | |
|     {
 | |
|         I_TEST((BigInteger | Subtraction with borrow));
 | |
|         Crypto::UnsignedBigInteger num1(UINT32_MAX);
 | |
|         Crypto::UnsignedBigInteger num2(1);
 | |
|         Crypto::UnsignedBigInteger num3 = num1.plus(num2);
 | |
|         Crypto::UnsignedBigInteger result = num3.minus(num2);
 | |
|         if (result == num1) {
 | |
|             PASS;
 | |
|         } else {
 | |
|             FAIL(Incorrect Result);
 | |
|         }
 | |
|     }
 | |
|     {
 | |
|         I_TEST((BigInteger | Subtraction with large numbers));
 | |
|         Crypto::UnsignedBigInteger num1 = bigint_fibonacci(343);
 | |
|         Crypto::UnsignedBigInteger num2 = bigint_fibonacci(218);
 | |
|         Crypto::UnsignedBigInteger result = num1.minus(num2);
 | |
|         if ((result.plus(num2) == num1)
 | |
|             && (result.words() == Vector<u32> { 811430588, 2958904896, 1130908877, 2830569969, 3243275482, 3047460725, 774025231, 7990 })) {
 | |
|             PASS;
 | |
|         } else {
 | |
|             FAIL(Incorrect Result);
 | |
|         }
 | |
|     }
 | |
|     {
 | |
|         I_TEST((BigInteger | Subtraction with large numbers 2));
 | |
|         Crypto::UnsignedBigInteger num1(Vector<u32> { 1483061863, 446680044, 1123294122, 191895498, 3347106536, 16, 0, 0, 0 });
 | |
|         Crypto::UnsignedBigInteger num2(Vector<u32> { 4196414175, 1117247942, 1123294122, 191895498, 3347106536, 16 });
 | |
|         Crypto::UnsignedBigInteger result = num1.minus(num2);
 | |
|         // this test only verifies that we don't crash on an assertion
 | |
|         PASS;
 | |
|     }
 | |
|     {
 | |
|         I_TEST((BigInteger | Subtraction Regression 1));
 | |
|         auto num = Crypto::UnsignedBigInteger { 1 }.shift_left(256);
 | |
|         if (num.minus(1).words() == Vector<u32> { 4294967295, 4294967295, 4294967295, 4294967295, 4294967295, 4294967295, 4294967295, 4294967295, 0 }) {
 | |
|             PASS;
 | |
|         } else {
 | |
|             FAIL(Incorrect Result);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void bigint_multiplication()
 | |
| {
 | |
|     {
 | |
|         I_TEST((BigInteger | Simple Multiplication));
 | |
|         Crypto::UnsignedBigInteger num1(8);
 | |
|         Crypto::UnsignedBigInteger num2(251);
 | |
|         Crypto::UnsignedBigInteger result = num1.multiplied_by(num2);
 | |
|         if (result.words() == Vector<u32> { 2008 }) {
 | |
|             PASS;
 | |
|         } else {
 | |
|             FAIL(Incorrect Result);
 | |
|         }
 | |
|     }
 | |
|     {
 | |
|         I_TEST((BigInteger | Multiplications with big numbers 1));
 | |
|         Crypto::UnsignedBigInteger num1 = bigint_fibonacci(200);
 | |
|         Crypto::UnsignedBigInteger num2(12345678);
 | |
|         Crypto::UnsignedBigInteger result = num1.multiplied_by(num2);
 | |
|         if (result.words() == Vector<u32> { 669961318, 143970113, 4028714974, 3164551305, 1589380278, 2 }) {
 | |
|             PASS;
 | |
|         } else {
 | |
|             FAIL(Incorrect Result);
 | |
|         }
 | |
|     }
 | |
|     {
 | |
|         I_TEST((BigInteger | Multiplications with big numbers 2));
 | |
|         Crypto::UnsignedBigInteger num1 = bigint_fibonacci(200);
 | |
|         Crypto::UnsignedBigInteger num2 = bigint_fibonacci(341);
 | |
|         Crypto::UnsignedBigInteger result = num1.multiplied_by(num2);
 | |
|         if (result.words() == Vector<u32> { 3017415433, 2741793511, 1957755698, 3731653885, 3154681877, 785762127, 3200178098, 4260616581, 529754471, 3632684436, 1073347813, 2516430 }) {
 | |
|             PASS;
 | |
|         } else {
 | |
|             FAIL(Incorrect Result);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| static void bigint_division()
 | |
| {
 | |
|     {
 | |
|         I_TEST((BigInteger | Simple Division));
 | |
|         Crypto::UnsignedBigInteger num1(27194);
 | |
|         Crypto::UnsignedBigInteger num2(251);
 | |
|         auto result = num1.divided_by(num2);
 | |
|         Crypto::UnsignedDivisionResult expected = { Crypto::UnsignedBigInteger(108), Crypto::UnsignedBigInteger(86) };
 | |
|         if (result.quotient == expected.quotient && result.remainder == expected.remainder) {
 | |
|             PASS;
 | |
|         } else {
 | |
|             FAIL(Incorrect Result);
 | |
|         }
 | |
|     }
 | |
|     {
 | |
|         I_TEST((BigInteger | Division with big numbers));
 | |
|         Crypto::UnsignedBigInteger num1 = bigint_fibonacci(386);
 | |
|         Crypto::UnsignedBigInteger num2 = bigint_fibonacci(238);
 | |
|         auto result = num1.divided_by(num2);
 | |
|         Crypto::UnsignedDivisionResult expected = {
 | |
|             Crypto::UnsignedBigInteger(Vector<u32> { 2300984486, 2637503534, 2022805584, 107 }),
 | |
|             Crypto::UnsignedBigInteger(Vector<u32> { 1483061863, 446680044, 1123294122, 191895498, 3347106536, 16, 0, 0, 0 })
 | |
|         };
 | |
|         if (result.quotient == expected.quotient && result.remainder == expected.remainder) {
 | |
|             PASS;
 | |
|         } else {
 | |
|             FAIL(Incorrect Result);
 | |
|         }
 | |
|     }
 | |
|     {
 | |
|         I_TEST((BigInteger | Combined test));
 | |
|         auto num1 = bigint_fibonacci(497);
 | |
|         auto num2 = bigint_fibonacci(238);
 | |
|         auto div_result = num1.divided_by(num2);
 | |
|         if (div_result.quotient.multiplied_by(num2).plus(div_result.remainder) == num1) {
 | |
|             PASS;
 | |
|         } else {
 | |
|             FAIL(Incorrect Result);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void bigint_base10()
 | |
| {
 | |
|     {
 | |
|         I_TEST((BigInteger | From String));
 | |
|         auto result = Crypto::UnsignedBigInteger::from_base10("57195071295721390579057195715793");
 | |
|         if (result.words() == Vector<u32> { 3806301393, 954919431, 3879607298, 721 }) {
 | |
|             PASS;
 | |
|         } else {
 | |
|             FAIL(Incorrect Result);
 | |
|         }
 | |
|     }
 | |
|     {
 | |
|         I_TEST((BigInteger | To String));
 | |
|         auto result = Crypto::UnsignedBigInteger { Vector<u32> { 3806301393, 954919431, 3879607298, 721 } }.to_base10();
 | |
|         if (result == "57195071295721390579057195715793") {
 | |
|             PASS;
 | |
|         } else {
 | |
|             FAIL(Incorrect Result);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void bigint_import_export()
 | |
| {
 | |
|     {
 | |
|         I_TEST((BigInteger | BigEndian Decode / Encode roundtrip));
 | |
|         u8 random_bytes[128];
 | |
|         u8 target_buffer[128];
 | |
|         AK::fill_with_random(random_bytes, 128);
 | |
|         auto encoded = Crypto::UnsignedBigInteger::import_data(random_bytes, 128);
 | |
|         encoded.export_data({ target_buffer, 128 });
 | |
|         if (memcmp(target_buffer, random_bytes, 128) != 0)
 | |
|             FAIL(Could not roundtrip);
 | |
|         else
 | |
|             PASS;
 | |
|     }
 | |
|     {
 | |
|         I_TEST((BigInteger | BigEndian Encode / Decode roundtrip));
 | |
|         u8 target_buffer[128];
 | |
|         auto encoded = "12345678901234567890"_bigint;
 | |
|         auto size = encoded.export_data({ target_buffer, 128 });
 | |
|         auto decoded = Crypto::UnsignedBigInteger::import_data(target_buffer, size);
 | |
|         if (encoded != decoded)
 | |
|             FAIL(Could not roundtrip);
 | |
|         else
 | |
|             PASS;
 | |
|     }
 | |
|     {
 | |
|         I_TEST((BigInteger | BigEndian Import));
 | |
|         auto number = Crypto::UnsignedBigInteger::import_data("hello");
 | |
|         if (number == "448378203247"_bigint) {
 | |
|             PASS;
 | |
|         } else {
 | |
|             FAIL(Invalid value);
 | |
|         }
 | |
|     }
 | |
|     {
 | |
|         I_TEST((BigInteger | BigEndian Export));
 | |
|         auto number = "448378203247"_bigint;
 | |
|         char exported[8] { 0 };
 | |
|         auto exported_length = number.export_data({ exported, 8 }, true);
 | |
|         if (exported_length == 5 && memcmp(exported + 3, "hello", 5) == 0) {
 | |
|             PASS;
 | |
|         } else {
 | |
|             FAIL(Invalid value);
 | |
|             print_buffer({ exported - exported_length + 8, exported_length }, -1);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void bigint_bitwise()
 | |
| {
 | |
|     {
 | |
|         I_TEST((BigInteger | Basic bitwise or));
 | |
|         auto num1 = "1234567"_bigint;
 | |
|         auto num2 = "1234567"_bigint;
 | |
|         if (num1.bitwise_or(num2) == num1) {
 | |
|             PASS;
 | |
|         } else {
 | |
|             FAIL(Invalid value);
 | |
|         }
 | |
|     }
 | |
|     {
 | |
|         I_TEST((BigInteger | Bitwise or handles different lengths));
 | |
|         auto num1 = "1234567"_bigint;
 | |
|         auto num2 = "123456789012345678901234567890"_bigint;
 | |
|         auto expected = "123456789012345678901234622167"_bigint;
 | |
|         auto result = num1.bitwise_or(num2);
 | |
|         if (result == expected) {
 | |
|             PASS;
 | |
|         } else {
 | |
|             FAIL(Invalid value);
 | |
|         }
 | |
|     }
 | |
|     {
 | |
|         I_TEST((BigInteger | Basic bitwise and));
 | |
|         auto num1 = "1234567"_bigint;
 | |
|         auto num2 = "1234561"_bigint;
 | |
|         if (num1.bitwise_and(num2) == "1234561"_bigint) {
 | |
|             PASS;
 | |
|         } else {
 | |
|             FAIL(Invalid value);
 | |
|         }
 | |
|     }
 | |
|     {
 | |
|         I_TEST((BigInteger | Bitwise and handles different lengths));
 | |
|         auto num1 = "1234567"_bigint;
 | |
|         auto num2 = "123456789012345678901234567890"_bigint;
 | |
|         if (num1.bitwise_and(num2) == "1180290"_bigint) {
 | |
|             PASS;
 | |
|         } else {
 | |
|             FAIL(Invalid value);
 | |
|         }
 | |
|     }
 | |
|     {
 | |
|         I_TEST((BigInteger | Basic bitwise xor));
 | |
|         auto num1 = "1234567"_bigint;
 | |
|         auto num2 = "1234561"_bigint;
 | |
|         if (num1.bitwise_xor(num2) == 6) {
 | |
|             PASS;
 | |
|         } else {
 | |
|             FAIL(Invalid value);
 | |
|         }
 | |
|     }
 | |
|     {
 | |
|         I_TEST((BigInteger | Bitwise xor handles different lengths));
 | |
|         auto num1 = "1234567"_bigint;
 | |
|         auto num2 = "123456789012345678901234567890"_bigint;
 | |
|         if (num1.bitwise_xor(num2) == "123456789012345678901233441877"_bigint) {
 | |
|             PASS;
 | |
|         } else {
 | |
|             FAIL(Invalid value);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void bigint_test_signed_fibo500()
 | |
| {
 | |
|     {
 | |
|         I_TEST((Signed BigInteger | Fibonacci500));
 | |
|         bool pass = (bigint_signed_fibonacci(500).unsigned_value().words() == AK::Vector<u32> { 315178285, 505575602, 1883328078, 125027121, 3649625763, 347570207, 74535262, 3832543808, 2472133297, 1600064941, 65273441 });
 | |
| 
 | |
|         if (pass) {
 | |
|             PASS;
 | |
|         } else {
 | |
|             FAIL(Incorrect Result);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void bigint_signed_addition_edgecases()
 | |
| {
 | |
|     {
 | |
|         I_TEST((Signed BigInteger | Borrow with zero));
 | |
|         Crypto::SignedBigInteger num1 { Crypto::UnsignedBigInteger { { UINT32_MAX - 3, UINT32_MAX } }, false };
 | |
|         Crypto::SignedBigInteger num2 { Crypto::UnsignedBigInteger { UINT32_MAX - 2 }, false };
 | |
|         if (num1.plus(num2).unsigned_value().words() == Vector<u32> { 4294967289, 0, 1 }) {
 | |
|             PASS;
 | |
|         } else {
 | |
|             FAIL(Incorrect Result);
 | |
|         }
 | |
|     }
 | |
|     {
 | |
|         I_TEST((Signed BigInteger | Addition to other sign));
 | |
|         Crypto::SignedBigInteger num1 = INT32_MAX;
 | |
|         Crypto::SignedBigInteger num2 = num1;
 | |
|         num2.negate();
 | |
|         if (num1.plus(num2) == Crypto::SignedBigInteger { 0 }) {
 | |
|             PASS;
 | |
|         } else {
 | |
|             FAIL(Incorrect Result);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void bigint_signed_subtraction()
 | |
| {
 | |
|     {
 | |
|         I_TEST((Signed BigInteger | Simple Subtraction 1));
 | |
|         Crypto::SignedBigInteger num1(80);
 | |
|         Crypto::SignedBigInteger num2(70);
 | |
| 
 | |
|         if (num1.minus(num2) == Crypto::SignedBigInteger(10)) {
 | |
|             PASS;
 | |
|         } else {
 | |
|             FAIL(Incorrect Result);
 | |
|         }
 | |
|     }
 | |
|     {
 | |
|         I_TEST((Signed BigInteger | Simple Subtraction 2));
 | |
|         Crypto::SignedBigInteger num1(50);
 | |
|         Crypto::SignedBigInteger num2(70);
 | |
| 
 | |
|         if (num1.minus(num2) == Crypto::SignedBigInteger { -20 }) {
 | |
|             PASS;
 | |
|         } else {
 | |
|             FAIL(Incorrect Result);
 | |
|         }
 | |
|     }
 | |
|     {
 | |
|         I_TEST((Signed BigInteger | Subtraction with borrow));
 | |
|         Crypto::SignedBigInteger num1(Crypto::UnsignedBigInteger { UINT32_MAX });
 | |
|         Crypto::SignedBigInteger num2(1);
 | |
|         Crypto::SignedBigInteger num3 = num1.plus(num2);
 | |
|         Crypto::SignedBigInteger result = num2.minus(num3);
 | |
|         num1.negate();
 | |
|         if (result == num1) {
 | |
|             PASS;
 | |
|         } else {
 | |
|             FAIL(Incorrect Result);
 | |
|         }
 | |
|     }
 | |
|     {
 | |
|         I_TEST((Signed BigInteger | Subtraction with large numbers));
 | |
|         Crypto::SignedBigInteger num1 = bigint_signed_fibonacci(343);
 | |
|         Crypto::SignedBigInteger num2 = bigint_signed_fibonacci(218);
 | |
|         Crypto::SignedBigInteger result = num2.minus(num1);
 | |
|         auto expected = Crypto::UnsignedBigInteger { Vector<u32> { 811430588, 2958904896, 1130908877, 2830569969, 3243275482, 3047460725, 774025231, 7990 } };
 | |
|         if ((result.plus(num1) == num2)
 | |
|             && (result.unsigned_value() == expected)) {
 | |
|             PASS;
 | |
|         } else {
 | |
|             FAIL(Incorrect Result);
 | |
|         }
 | |
|     }
 | |
|     {
 | |
|         I_TEST((Signed BigInteger | Subtraction with large numbers 2));
 | |
|         Crypto::SignedBigInteger num1(Crypto::UnsignedBigInteger { Vector<u32> { 1483061863, 446680044, 1123294122, 191895498, 3347106536, 16, 0, 0, 0 } });
 | |
|         Crypto::SignedBigInteger num2(Crypto::UnsignedBigInteger { Vector<u32> { 4196414175, 1117247942, 1123294122, 191895498, 3347106536, 16 } });
 | |
|         Crypto::SignedBigInteger result = num1.minus(num2);
 | |
|         // this test only verifies that we don't crash on an assertion
 | |
|         PASS;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void bigint_signed_multiplication()
 | |
| {
 | |
|     {
 | |
|         I_TEST((Signed BigInteger | Simple Multiplication));
 | |
|         Crypto::SignedBigInteger num1(8);
 | |
|         Crypto::SignedBigInteger num2(-251);
 | |
|         Crypto::SignedBigInteger result = num1.multiplied_by(num2);
 | |
|         if (result == Crypto::SignedBigInteger { -2008 }) {
 | |
|             PASS;
 | |
|         } else {
 | |
|             FAIL(Incorrect Result);
 | |
|         }
 | |
|     }
 | |
|     {
 | |
|         I_TEST((Signed BigInteger | Multiplications with big numbers 1));
 | |
|         Crypto::SignedBigInteger num1 = bigint_signed_fibonacci(200);
 | |
|         Crypto::SignedBigInteger num2(-12345678);
 | |
|         Crypto::SignedBigInteger result = num1.multiplied_by(num2);
 | |
|         if (result.unsigned_value().words() == Vector<u32> { 669961318, 143970113, 4028714974, 3164551305, 1589380278, 2 } && result.is_negative()) {
 | |
|             PASS;
 | |
|         } else {
 | |
|             FAIL(Incorrect Result);
 | |
|         }
 | |
|     }
 | |
|     {
 | |
|         I_TEST((Signed BigInteger | Multiplications with big numbers 2));
 | |
|         Crypto::SignedBigInteger num1 = bigint_signed_fibonacci(200);
 | |
|         Crypto::SignedBigInteger num2 = bigint_signed_fibonacci(341);
 | |
|         num1.negate();
 | |
|         Crypto::SignedBigInteger result = num1.multiplied_by(num2);
 | |
|         if (result.unsigned_value().words() == Vector<u32> { 3017415433, 2741793511, 1957755698, 3731653885, 3154681877, 785762127, 3200178098, 4260616581, 529754471, 3632684436, 1073347813, 2516430 } && result.is_negative()) {
 | |
|             PASS;
 | |
|         } else {
 | |
|             FAIL(Incorrect Result);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| static void bigint_signed_division()
 | |
| {
 | |
|     {
 | |
|         I_TEST((Signed BigInteger | Simple Division));
 | |
|         Crypto::SignedBigInteger num1(27194);
 | |
|         Crypto::SignedBigInteger num2(-251);
 | |
|         auto result = num1.divided_by(num2);
 | |
|         Crypto::SignedDivisionResult expected = { Crypto::SignedBigInteger(-108), Crypto::SignedBigInteger(86) };
 | |
|         if (result.quotient == expected.quotient && result.remainder == expected.remainder) {
 | |
|             PASS;
 | |
|         } else {
 | |
|             FAIL(Incorrect Result);
 | |
|         }
 | |
|     }
 | |
|     {
 | |
|         I_TEST((Signed BigInteger | Division with big numbers));
 | |
|         Crypto::SignedBigInteger num1 = bigint_signed_fibonacci(386);
 | |
|         Crypto::SignedBigInteger num2 = bigint_signed_fibonacci(238);
 | |
|         num1.negate();
 | |
|         auto result = num1.divided_by(num2);
 | |
|         Crypto::SignedDivisionResult expected = {
 | |
|             Crypto::SignedBigInteger(Crypto::UnsignedBigInteger { Vector<u32> { 2300984486, 2637503534, 2022805584, 107 } }, true),
 | |
|             Crypto::SignedBigInteger(Crypto::UnsignedBigInteger { Vector<u32> { 1483061863, 446680044, 1123294122, 191895498, 3347106536, 16, 0, 0, 0 } }, true)
 | |
|         };
 | |
|         if (result.quotient == expected.quotient && result.remainder == expected.remainder) {
 | |
|             PASS;
 | |
|         } else {
 | |
|             FAIL(Incorrect Result);
 | |
|         }
 | |
|     }
 | |
|     {
 | |
|         I_TEST((Signed BigInteger | Combined test));
 | |
|         auto num1 = bigint_signed_fibonacci(497);
 | |
|         auto num2 = bigint_signed_fibonacci(238);
 | |
|         num1.negate();
 | |
|         auto div_result = num1.divided_by(num2);
 | |
|         if (div_result.quotient.multiplied_by(num2).plus(div_result.remainder) == num1) {
 | |
|             PASS;
 | |
|         } else {
 | |
|             FAIL(Incorrect Result);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void bigint_signed_base10()
 | |
| {
 | |
|     {
 | |
|         I_TEST((Signed BigInteger | From String));
 | |
|         auto result = Crypto::SignedBigInteger::from_base10("-57195071295721390579057195715793");
 | |
|         if (result.unsigned_value().words() == Vector<u32> { 3806301393, 954919431, 3879607298, 721 } && result.is_negative()) {
 | |
|             PASS;
 | |
|         } else {
 | |
|             FAIL(Incorrect Result);
 | |
|         }
 | |
|     }
 | |
|     {
 | |
|         I_TEST((Signed BigInteger | To String));
 | |
|         auto result = Crypto::SignedBigInteger { Crypto::UnsignedBigInteger { Vector<u32> { 3806301393, 954919431, 3879607298, 721 } }, true }.to_base10();
 | |
|         if (result == "-57195071295721390579057195715793") {
 | |
|             PASS;
 | |
|         } else {
 | |
|             FAIL(Incorrect Result);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void bigint_signed_import_export()
 | |
| {
 | |
|     {
 | |
|         I_TEST((Signed BigInteger | BigEndian Decode / Encode roundtrip));
 | |
|         u8 random_bytes[129];
 | |
|         u8 target_buffer[129];
 | |
|         random_bytes[0] = 1;
 | |
|         AK::fill_with_random(random_bytes + 1, 128);
 | |
|         auto encoded = Crypto::SignedBigInteger::import_data(random_bytes, 129);
 | |
|         encoded.export_data({ target_buffer, 129 });
 | |
|         if (memcmp(target_buffer, random_bytes, 129) != 0)
 | |
|             FAIL(Could not roundtrip);
 | |
|         else
 | |
|             PASS;
 | |
|     }
 | |
|     {
 | |
|         I_TEST((Signed BigInteger | BigEndian Encode / Decode roundtrip));
 | |
|         u8 target_buffer[128];
 | |
|         auto encoded = "-12345678901234567890"_sbigint;
 | |
|         auto size = encoded.export_data({ target_buffer, 128 });
 | |
|         auto decoded = Crypto::SignedBigInteger::import_data(target_buffer, size);
 | |
|         if (encoded != decoded)
 | |
|             FAIL(Could not roundtrip);
 | |
|         else
 | |
|             PASS;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void bigint_signed_bitwise()
 | |
| {
 | |
|     {
 | |
|         I_TEST((Signed BigInteger | Bitwise or handles sign));
 | |
|         auto num1 = "-1234567"_sbigint;
 | |
|         auto num2 = "1234567"_sbigint;
 | |
|         if (num1.bitwise_or(num2) == num1) {
 | |
|             PASS;
 | |
|         } else {
 | |
|             FAIL(Invalid value);
 | |
|         }
 | |
|     }
 | |
| }
 | 
