mirror of
https://github.com/RGBCube/serenity
synced 2025-05-28 17:55:09 +00:00

(...and ASSERT_NOT_REACHED => VERIFY_NOT_REACHED) Since all of these checks are done in release builds as well, let's rename them to VERIFY to prevent confusion, as everyone is used to assertions being compiled out in release. We can introduce a new ASSERT macro that is specifically for debug checks, but I'm doing this wholesale conversion first since we've accumulated thousands of these already, and it's not immediately obvious which ones are suitable for ASSERT.
440 lines
17 KiB
C++
440 lines
17 KiB
C++
/*
|
|
* Copyright (c) 2020, Liav A. <liavalb@hotmail.co.il>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <AK/StringView.h>
|
|
#include <Kernel/ACPI/Parser.h>
|
|
#include <Kernel/Debug.h>
|
|
#include <Kernel/Interrupts/InterruptManagement.h>
|
|
#include <Kernel/Time/HPET.h>
|
|
#include <Kernel/Time/HPETComparator.h>
|
|
#include <Kernel/Time/TimeManagement.h>
|
|
#include <Kernel/VM/MemoryManager.h>
|
|
#include <Kernel/VM/TypedMapping.h>
|
|
|
|
namespace Kernel {
|
|
|
|
#define ABSOLUTE_MAXIMUM_COUNTER_TICK_PERIOD 0x05F5E100
|
|
#define NANOSECOND_PERIOD_TO_HERTZ(x) 1000000000 / x
|
|
#define MEGAHERTZ_TO_HERTZ(x) (x / 1000000)
|
|
|
|
namespace HPETFlags {
|
|
enum class Attributes {
|
|
Counter64BitCapable = 1 << 13,
|
|
LegacyReplacementRouteCapable = 1 << 15
|
|
};
|
|
|
|
enum class Configuration {
|
|
Enable = 1 << 0,
|
|
LegacyReplacementRoute = 1 << 1
|
|
};
|
|
|
|
enum class TimerConfiguration : u32 {
|
|
LevelTriggered = 1 << 1,
|
|
InterruptEnable = 1 << 2,
|
|
GeneratePeriodicInterrupt = 1 << 3,
|
|
PeriodicInterruptCapable = 1 << 4,
|
|
Timer64BitsCapable = 1 << 5,
|
|
ValueSet = 1 << 6,
|
|
Force32BitMode = 1 << 8,
|
|
FSBInterruptEnable = 1 << 14,
|
|
FSBInterruptDelivery = 1 << 15
|
|
};
|
|
};
|
|
|
|
struct [[gnu::packed]] HPETRegister {
|
|
volatile u32 low;
|
|
volatile u32 high;
|
|
};
|
|
|
|
struct [[gnu::packed]] TimerStructure {
|
|
volatile u32 capabilities;
|
|
volatile u32 interrupt_routing;
|
|
HPETRegister comparator_value;
|
|
volatile u64 fsb_interrupt_route;
|
|
u64 reserved;
|
|
};
|
|
|
|
struct [[gnu::packed]] HPETCapabilityRegister {
|
|
// Note: We must do a 32 bit access to offsets 0x0, or 0x4 only, according to HPET spec.
|
|
volatile u32 attributes;
|
|
volatile u32 main_counter_tick_period;
|
|
u64 reserved;
|
|
};
|
|
|
|
struct [[gnu::packed]] HPETRegistersBlock {
|
|
HPETCapabilityRegister capabilities;
|
|
HPETRegister configuration;
|
|
u64 reserved1;
|
|
HPETRegister interrupt_status;
|
|
u8 reserved2[0xF0 - 0x28];
|
|
HPETRegister main_counter_value;
|
|
u64 reserved3;
|
|
TimerStructure timers[3];
|
|
u8 reserved4[0x400 - 0x160];
|
|
};
|
|
|
|
static_assert(__builtin_offsetof(HPETRegistersBlock, main_counter_value) == 0xf0);
|
|
static_assert(__builtin_offsetof(HPETRegistersBlock, timers[0]) == 0x100);
|
|
static_assert(__builtin_offsetof(HPETRegistersBlock, timers[1]) == 0x120);
|
|
|
|
static u64 read_register_safe64(const HPETRegister& reg)
|
|
{
|
|
// As per 2.4.7 this reads the 64 bit value in a consistent manner
|
|
// using only 32 bit reads
|
|
u32 low, high = reg.high;
|
|
for (;;) {
|
|
low = reg.low;
|
|
u32 new_high = reg.high;
|
|
if (new_high == high)
|
|
break;
|
|
high = new_high;
|
|
}
|
|
return ((u64)high << 32) | (u64)low;
|
|
}
|
|
|
|
static HPET* s_hpet;
|
|
static bool hpet_initialized { false };
|
|
|
|
bool HPET::initialized()
|
|
{
|
|
return hpet_initialized;
|
|
}
|
|
|
|
HPET& HPET::the()
|
|
{
|
|
VERIFY(HPET::initialized());
|
|
VERIFY(s_hpet != nullptr);
|
|
return *s_hpet;
|
|
}
|
|
|
|
UNMAP_AFTER_INIT bool HPET::test_and_initialize()
|
|
{
|
|
VERIFY(!HPET::initialized());
|
|
hpet_initialized = true;
|
|
auto hpet = ACPI::Parser::the()->find_table("HPET");
|
|
if (hpet.is_null())
|
|
return false;
|
|
klog() << "HPET @ " << hpet;
|
|
|
|
auto sdt = map_typed<ACPI::Structures::HPET>(hpet);
|
|
|
|
// Note: HPET is only usable from System Memory
|
|
VERIFY(sdt->event_timer_block.address_space == (u8)ACPI::GenericAddressStructure::AddressSpace::SystemMemory);
|
|
|
|
if (TimeManagement::is_hpet_periodic_mode_allowed()) {
|
|
if (!check_for_exisiting_periodic_timers()) {
|
|
dbgln("HPET: No periodic capable timers");
|
|
return false;
|
|
}
|
|
}
|
|
new HPET(PhysicalAddress(hpet));
|
|
return true;
|
|
}
|
|
|
|
UNMAP_AFTER_INIT bool HPET::check_for_exisiting_periodic_timers()
|
|
{
|
|
auto hpet = ACPI::Parser::the()->find_table("HPET");
|
|
if (hpet.is_null())
|
|
return false;
|
|
|
|
auto sdt = map_typed<ACPI::Structures::HPET>(hpet);
|
|
VERIFY(sdt->event_timer_block.address_space == 0);
|
|
auto registers = map_typed<HPETRegistersBlock>(PhysicalAddress(sdt->event_timer_block.address));
|
|
|
|
size_t timers_count = ((registers->capabilities.attributes >> 8) & 0x1f) + 1;
|
|
for (size_t index = 0; index < timers_count; index++) {
|
|
if (registers->timers[index].capabilities & (u32)HPETFlags::TimerConfiguration::PeriodicInterruptCapable)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void HPET::global_disable()
|
|
{
|
|
auto& regs = registers();
|
|
regs.configuration.low = regs.configuration.low & ~(u32)HPETFlags::Configuration::Enable;
|
|
}
|
|
void HPET::global_enable()
|
|
{
|
|
auto& regs = registers();
|
|
regs.configuration.low = regs.configuration.low | (u32)HPETFlags::Configuration::Enable;
|
|
}
|
|
|
|
void HPET::update_periodic_comparator_value()
|
|
{
|
|
// According to 2.3.9.2.2 the only safe way to change the periodic timer frequency
|
|
// is to disable all periodic timers, reset the main counter and each timer's comparator value.
|
|
// This introduces time drift, so it should be avoided unless absolutely necessary.
|
|
global_disable();
|
|
auto& regs = registers();
|
|
|
|
u64 previous_main_value = (u64)regs.main_counter_value.low | ((u64)regs.main_counter_value.high << 32);
|
|
m_main_counter_drift += previous_main_value - m_main_counter_last_read;
|
|
m_main_counter_last_read = 0;
|
|
regs.main_counter_value.low = 0;
|
|
regs.main_counter_value.high = 0;
|
|
for (auto& comparator : m_comparators) {
|
|
auto& timer = regs.timers[comparator.comparator_number()];
|
|
if (!comparator.is_enabled())
|
|
continue;
|
|
if (comparator.is_periodic()) {
|
|
// Note that this means we're restarting all periodic timers. There is no
|
|
// way to resume periodic timers properly because we reset the main counter
|
|
// and we can only write the period into the comparator value...
|
|
timer.capabilities = timer.capabilities | (u32)HPETFlags::TimerConfiguration::ValueSet;
|
|
u64 value = frequency() / comparator.ticks_per_second();
|
|
dbgln_if(HPET_DEBUG, "HPET: Update periodic comparator {} comparator value to {} main value was: {}",
|
|
comparator.comparator_number(),
|
|
value,
|
|
previous_main_value);
|
|
timer.comparator_value.low = (u32)value;
|
|
timer.capabilities = timer.capabilities | (u32)HPETFlags::TimerConfiguration::ValueSet;
|
|
timer.comparator_value.high = (u32)(value >> 32);
|
|
} else {
|
|
// Set the new target comparator value to the delta to the remaining ticks
|
|
u64 current_value = (u64)timer.comparator_value.low | ((u64)timer.comparator_value.high << 32);
|
|
u64 value = current_value - previous_main_value;
|
|
dbgln_if(HPET_DEBUG, "HPET: Update non-periodic comparator {} comparator value from {} to {} main value was: {}",
|
|
comparator.comparator_number(),
|
|
current_value,
|
|
value,
|
|
previous_main_value);
|
|
timer.comparator_value.low = (u32)value;
|
|
timer.comparator_value.high = (u32)(value >> 32);
|
|
}
|
|
}
|
|
|
|
global_enable();
|
|
}
|
|
|
|
void HPET::update_non_periodic_comparator_value(const HPETComparator& comparator)
|
|
{
|
|
VERIFY_INTERRUPTS_DISABLED();
|
|
VERIFY(!comparator.is_periodic());
|
|
VERIFY(comparator.comparator_number() <= m_comparators.size());
|
|
auto& regs = registers();
|
|
auto& timer = regs.timers[comparator.comparator_number()];
|
|
u64 value = frequency() / comparator.ticks_per_second();
|
|
// NOTE: If the main counter passes this new value before we finish writing it, we will never receive an interrupt!
|
|
u64 new_counter_value = read_register_safe64(regs.main_counter_value) + value;
|
|
timer.comparator_value.high = (u32)(new_counter_value >> 32);
|
|
timer.comparator_value.low = (u32)new_counter_value;
|
|
}
|
|
|
|
u64 HPET::update_time(u64& seconds_since_boot, u32& ticks_this_second, bool query_only)
|
|
{
|
|
// Should only be called by the time keeper interrupt handler!
|
|
u64 current_value = read_register_safe64(registers().main_counter_value);
|
|
u64 delta_ticks = m_main_counter_drift;
|
|
if (current_value >= m_main_counter_last_read)
|
|
delta_ticks += current_value - m_main_counter_last_read;
|
|
else
|
|
delta_ticks += m_main_counter_last_read - current_value; // the counter wrapped around
|
|
u64 ticks_since_last_second = (u64)ticks_this_second + delta_ticks;
|
|
auto ticks_per_second = frequency();
|
|
if (ticks_since_last_second >= ticks_per_second) {
|
|
seconds_since_boot += ticks_since_last_second / ticks_per_second;
|
|
ticks_this_second = ticks_since_last_second % ticks_per_second;
|
|
} else {
|
|
ticks_this_second = ticks_since_last_second;
|
|
}
|
|
|
|
if (!query_only) {
|
|
m_main_counter_drift = 0;
|
|
m_main_counter_last_read = current_value;
|
|
}
|
|
|
|
// Return the time passed (in ns) since last time update_time was called
|
|
return (delta_ticks * 1000000000ull) / ticks_per_second;
|
|
}
|
|
|
|
u64 HPET::read_main_counter() const
|
|
{
|
|
auto& main_counter = registers().main_counter_value;
|
|
return ((u64)main_counter.high << 32) | (u64)main_counter.low;
|
|
}
|
|
|
|
void HPET::enable_periodic_interrupt(const HPETComparator& comparator)
|
|
{
|
|
#if HPET_DEBUG
|
|
klog() << "HPET: Set comparator " << comparator.comparator_number() << " to be periodic.";
|
|
#endif
|
|
disable(comparator);
|
|
VERIFY(comparator.comparator_number() <= m_comparators.size());
|
|
auto& timer = registers().timers[comparator.comparator_number()];
|
|
auto capabilities = timer.capabilities;
|
|
VERIFY(capabilities & (u32)HPETFlags::TimerConfiguration::PeriodicInterruptCapable);
|
|
timer.capabilities = capabilities | (u32)HPETFlags::TimerConfiguration::GeneratePeriodicInterrupt;
|
|
if (comparator.is_enabled())
|
|
enable(comparator);
|
|
}
|
|
void HPET::disable_periodic_interrupt(const HPETComparator& comparator)
|
|
{
|
|
#if HPET_DEBUG
|
|
klog() << "HPET: Disable periodic interrupt in comparator " << comparator.comparator_number() << ".";
|
|
#endif
|
|
disable(comparator);
|
|
VERIFY(comparator.comparator_number() <= m_comparators.size());
|
|
auto& timer = registers().timers[comparator.comparator_number()];
|
|
auto capabilities = timer.capabilities;
|
|
VERIFY(capabilities & (u32)HPETFlags::TimerConfiguration::PeriodicInterruptCapable);
|
|
timer.capabilities = capabilities & ~(u32)HPETFlags::TimerConfiguration::GeneratePeriodicInterrupt;
|
|
if (comparator.is_enabled())
|
|
enable(comparator);
|
|
}
|
|
|
|
void HPET::disable(const HPETComparator& comparator)
|
|
{
|
|
#if HPET_DEBUG
|
|
klog() << "HPET: Disable comparator " << comparator.comparator_number() << ".";
|
|
#endif
|
|
VERIFY(comparator.comparator_number() <= m_comparators.size());
|
|
auto& timer = registers().timers[comparator.comparator_number()];
|
|
timer.capabilities = timer.capabilities & ~(u32)HPETFlags::TimerConfiguration::InterruptEnable;
|
|
}
|
|
void HPET::enable(const HPETComparator& comparator)
|
|
{
|
|
#if HPET_DEBUG
|
|
klog() << "HPET: Enable comparator " << comparator.comparator_number() << ".";
|
|
#endif
|
|
VERIFY(comparator.comparator_number() <= m_comparators.size());
|
|
auto& timer = registers().timers[comparator.comparator_number()];
|
|
timer.capabilities = timer.capabilities | (u32)HPETFlags::TimerConfiguration::InterruptEnable;
|
|
}
|
|
|
|
Vector<unsigned> HPET::capable_interrupt_numbers(const HPETComparator& comparator)
|
|
{
|
|
VERIFY(comparator.comparator_number() <= m_comparators.size());
|
|
Vector<unsigned> capable_interrupts;
|
|
auto& comparator_registers = registers().timers[comparator.comparator_number()];
|
|
u32 interrupt_bitfield = comparator_registers.interrupt_routing;
|
|
for (size_t index = 0; index < 32; index++) {
|
|
if (interrupt_bitfield & 1)
|
|
capable_interrupts.append(index);
|
|
interrupt_bitfield >>= 1;
|
|
}
|
|
return capable_interrupts;
|
|
}
|
|
|
|
Vector<unsigned> HPET::capable_interrupt_numbers(u8 comparator_number)
|
|
{
|
|
VERIFY(comparator_number <= m_comparators.size());
|
|
Vector<unsigned> capable_interrupts;
|
|
auto& comparator_registers = registers().timers[comparator_number];
|
|
u32 interrupt_bitfield = comparator_registers.interrupt_routing;
|
|
for (size_t index = 0; index < 32; index++) {
|
|
if (interrupt_bitfield & 1)
|
|
capable_interrupts.append(index);
|
|
interrupt_bitfield >>= 1;
|
|
}
|
|
return capable_interrupts;
|
|
}
|
|
|
|
void HPET::set_comparator_irq_vector(u8 comparator_number, u8 irq_vector)
|
|
{
|
|
VERIFY(comparator_number <= m_comparators.size());
|
|
auto& comparator_registers = registers().timers[comparator_number];
|
|
comparator_registers.capabilities = comparator_registers.capabilities | (irq_vector << 9);
|
|
}
|
|
|
|
bool HPET::is_periodic_capable(u8 comparator_number) const
|
|
{
|
|
VERIFY(comparator_number <= m_comparators.size());
|
|
auto& comparator_registers = registers().timers[comparator_number];
|
|
return comparator_registers.capabilities & (u32)HPETFlags::TimerConfiguration::PeriodicInterruptCapable;
|
|
}
|
|
|
|
void HPET::set_comparators_to_optimal_interrupt_state(size_t)
|
|
{
|
|
// FIXME: Implement this method for allowing to use HPET timers 2-31...
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
|
|
PhysicalAddress HPET::find_acpi_hpet_registers_block()
|
|
{
|
|
auto sdt = map_typed<const volatile ACPI::Structures::HPET>(m_physical_acpi_hpet_table);
|
|
VERIFY(sdt->event_timer_block.address_space == (u8)ACPI::GenericAddressStructure::AddressSpace::SystemMemory);
|
|
return PhysicalAddress(sdt->event_timer_block.address);
|
|
}
|
|
|
|
const HPETRegistersBlock& HPET::registers() const
|
|
{
|
|
return *(const HPETRegistersBlock*)m_hpet_mmio_region->vaddr().offset(m_physical_acpi_hpet_registers.offset_in_page()).as_ptr();
|
|
}
|
|
|
|
HPETRegistersBlock& HPET::registers()
|
|
{
|
|
return *(HPETRegistersBlock*)m_hpet_mmio_region->vaddr().offset(m_physical_acpi_hpet_registers.offset_in_page()).as_ptr();
|
|
}
|
|
|
|
u64 HPET::calculate_ticks_in_nanoseconds() const
|
|
{
|
|
// ABSOLUTE_MAXIMUM_COUNTER_TICK_PERIOD == 100 nanoseconds
|
|
return ((u64)registers().capabilities.main_counter_tick_period * 100ull) / ABSOLUTE_MAXIMUM_COUNTER_TICK_PERIOD;
|
|
}
|
|
|
|
UNMAP_AFTER_INIT HPET::HPET(PhysicalAddress acpi_hpet)
|
|
: m_physical_acpi_hpet_table(acpi_hpet)
|
|
, m_physical_acpi_hpet_registers(find_acpi_hpet_registers_block())
|
|
, m_hpet_mmio_region(MM.allocate_kernel_region(m_physical_acpi_hpet_registers.page_base(), PAGE_SIZE, "HPET MMIO", Region::Access::Read | Region::Access::Write))
|
|
{
|
|
s_hpet = this; // Make available as soon as possible so that IRQs can use it
|
|
|
|
auto sdt = map_typed<const volatile ACPI::Structures::HPET>(m_physical_acpi_hpet_table);
|
|
m_vendor_id = sdt->pci_vendor_id;
|
|
m_minimum_tick = sdt->mininum_clock_tick;
|
|
klog() << "HPET: Minimum clock tick - " << m_minimum_tick;
|
|
|
|
auto& regs = registers();
|
|
|
|
// Note: We must do a 32 bit access to offsets 0x0, or 0x4 only.
|
|
size_t timers_count = ((regs.capabilities.attributes >> 8) & 0x1f) + 1;
|
|
klog() << "HPET: Timers count - " << timers_count;
|
|
klog() << "HPET: Main counter size: " << ((regs.capabilities.attributes & (u32)HPETFlags::Attributes::Counter64BitCapable) ? "64 bit" : "32 bit");
|
|
for (size_t i = 0; i < timers_count; i++) {
|
|
bool capable_64_bit = regs.timers[i].capabilities & (u32)HPETFlags::TimerConfiguration::Timer64BitsCapable;
|
|
klog() << "HPET: Timer[" << i << "] comparator size: " << (capable_64_bit ? "64 bit" : "32 bit") << " mode: " << ((!capable_64_bit || (regs.timers[i].capabilities & (u32)HPETFlags::TimerConfiguration::Force32BitMode)) ? "32 bit" : "64 bit");
|
|
}
|
|
VERIFY(timers_count >= 2);
|
|
|
|
global_disable();
|
|
|
|
m_frequency = NANOSECOND_PERIOD_TO_HERTZ(calculate_ticks_in_nanoseconds());
|
|
klog() << "HPET: frequency " << m_frequency << " Hz (" << MEGAHERTZ_TO_HERTZ(m_frequency) << " MHz) resolution: " << calculate_ticks_in_nanoseconds() << "ns";
|
|
VERIFY(regs.capabilities.main_counter_tick_period <= ABSOLUTE_MAXIMUM_COUNTER_TICK_PERIOD);
|
|
|
|
// Reset the counter, just in case... (needs to match m_main_counter_last_read)
|
|
regs.main_counter_value.high = 0;
|
|
regs.main_counter_value.low = 0;
|
|
if (regs.capabilities.attributes & (u32)HPETFlags::Attributes::LegacyReplacementRouteCapable)
|
|
regs.configuration.low = regs.configuration.low | (u32)HPETFlags::Configuration::LegacyReplacementRoute;
|
|
|
|
m_comparators.append(HPETComparator::create(0, 0, is_periodic_capable(0)));
|
|
m_comparators.append(HPETComparator::create(1, 8, is_periodic_capable(1)));
|
|
|
|
global_enable();
|
|
}
|
|
}
|