1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-31 02:58:12 +00:00
serenity/Userland/Tests/Kernel/setpgid-across-sessions-without-leader.cpp
Andreas Kling 5d180d1f99 Everywhere: Rename ASSERT => VERIFY
(...and ASSERT_NOT_REACHED => VERIFY_NOT_REACHED)

Since all of these checks are done in release builds as well,
let's rename them to VERIFY to prevent confusion, as everyone is
used to assertions being compiled out in release.

We can introduce a new ASSERT macro that is specifically for debug
checks, but I'm doing this wholesale conversion first since we've
accumulated thousands of these already, and it's not immediately
obvious which ones are suitable for ASSERT.
2021-02-23 20:56:54 +01:00

296 lines
9.4 KiB
C++

/*
* Copyright (c) 2020, Ben Wiederhake <BenWiederhake.GitHub@gmx.de>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/Assertions.h>
#include <AK/LogStream.h>
#include <fcntl.h>
#include <serenity.h>
#include <stdio.h>
#include <unistd.h>
/*
* Bug:
* A process can join a process group across sessions if both process groups
* do not have a leader (anymore). This can be used to join a session
* illegitimately. (Or, more harmlessly, to change the own PGID to an unused
* but arbitrary one, for example the PGID 0xDEADBEEF or the one that's going
* to be your program's session ID in the short-term future.)
*
* So what needs to happen:
* - There is session SA
* - There is session SB
* - There is a Process Group PGA in SA
* - There is a Process Group PGB in SB
* - PGA does not have a leader
* - PGB does not have a leader
* - There is a Process PA2 in PGA
* - There is a Process PB2 in PGB
* - PA2 calls setpgid(0, PGB)
* - Now PA2 and PB2 are in the same processgroup, but not in the same session. WHAAAAT! :^)
*
* Here's how to demonstrate the bug:
* - Time 0: PX forks into PA1
* - Time 1: PA1 creates a new session (SA) and pgrp (PGA)
* - Time 2: PA1 forks into PA2
* - Time 3: PA1 dies (PGA now has no leader)
* Note: PA2 never dies. Too much hassle.
* - Time 4: PX forks into PB1
* - Time 5: PB1 creates a new session (SB) and pgrp (PGB)
* - Time 6: PB1 forks into PB2
* - Time 7: PB1 dies (PGB now has no leader)
* - Time 8: PB2 calls pgrp(0, PGA)
* Note: PB2 writes "1" (exploit successful) or "0" (bug is fixed) to a pipe
* - Time 9: If PX hasn't received any message yet through the pipe, it declares the test as failed (for lack of knowledge). Otherwise, it outputs accordingly.
*/
static constexpr useconds_t STEP_SIZE = 1100000;
static void fork_into(void (*fn)(void*), void* arg)
{
const pid_t rc = fork();
if (rc < 0) {
perror("fork");
exit(1);
}
if (rc > 0) {
const int disown_rc = disown(rc);
if (disown_rc < 0) {
perror("disown");
dbgln("This might cause PA1 to remain in the Zombie state, "
"and thus in the process list, meaning the leader is "
"still 'alive' for the purpose of lookup.");
}
return;
}
fn(arg);
dbgln("child finished (?)");
exit(1);
}
static void sleep_steps(useconds_t steps)
{
const int rc = usleep(steps * STEP_SIZE);
if (rc < 0) {
perror("usleep");
VERIFY_NOT_REACHED();
}
}
static void run_pa1(void*);
static void run_pa2(void*);
static void run_pb1(void*);
static void run_pb2(void*);
int main(int, char**)
{
// This entire function is the entirety of process PX.
// Time 0: PX forks into PA1
int fds[2];
// Serenity doesn't support O_NONBLOCK for pipes yet, so
// sadly the test will hang if something goes wrong.
if (pipe2(fds, 0) < 0) {
perror("pipe");
exit(1);
}
dbgln("PX starts with SID={}, PGID={}, PID={}.", getsid(0), getpgid(0), getpid());
dbgln("PX forks into PA1");
fork_into(run_pa1, nullptr);
sleep_steps(4);
// Time 4: PX forks into PB1
dbgln("PX forks into PB1");
fork_into(run_pb1, &(fds[1]));
sleep_steps(5);
// Time 9: If PX hasn't received any message yet through the pipe, it declares
// the test as failed (for lack of knowledge). Otherwise, it outputs accordingly.
dbgln("PX reads from pipe");
unsigned char buf = 42;
ssize_t rc = read(fds[0], &buf, 1);
if (rc == 0) {
// In fact, we only reach this branch when *all* processes have died,
// including this one. So … should be unreachable.
printf("DOUBLE FAIL: pipe is closed, but we still have it open.\n"
"See debug log, some process probably crashed.\n");
exit(1);
}
if (rc < 0) {
if (errno == EAGAIN) {
printf("FAIL: pipe has no data. See debug log, some process os probably hanging.\n");
} else {
perror("read (unknown)");
}
exit(1);
}
VERIFY(rc == 1);
if (buf == 0) {
printf("PASS\n");
return 0;
}
if (buf == 1) {
printf("FAIL (exploit successful)\n");
return 1;
}
printf("FAIL, for some reason %c\n", buf);
return 1;
}
static void run_pa1(void*)
{
// Time 0: PX forks into PA1
sleep_steps(1);
// Time 1: PA1 creates a new session (SA) and pgrp (PGA)
dbgln("PA1 starts with SID={}, PGID={}, PID={}.", getsid(0), getpgid(0), getpid());
dbgln("PA1 calls setsid()");
int rc = setsid();
if (rc < 0) {
perror("setsid (PA)");
VERIFY_NOT_REACHED();
}
dbgln("PA1 did setsid() -> PGA={}, SA={}, yay!", rc, getsid(0));
sleep_steps(1);
// Time 2: PA1 forks into PA2
dbgln("PA1 forks into PA2");
fork_into(run_pa2, nullptr);
sleep_steps(1);
// Time 3: PA1 dies (PGA now has no leader)
dbgln("PA1 dies. You should see a 'Reaped unparented process' "
"message with my ID next, OR THIS TEST IS MEANINGLESS "
"(see fork_into()).");
exit(0);
}
static void run_pa2(void*)
{
// Time 2: PA1 forks into PA2
dbgln("PA2 starts with SID={}, PGID={}, PID={}.", getsid(0), getpgid(0), getpid());
sleep_steps(18);
// pa_2 never *does* anything.
dbgln("PA2 dies from boredom.");
exit(1);
}
static void run_pb1(void* pipe_fd_ptr)
{
// Time 4: PX forks into PB1
sleep_steps(1);
// Time 5: PB1 creates a new session (SB) and pgrp (PGB)
dbgln("PB1 starts with SID={}, PGID={}, PID={}.", getsid(0), getpgid(0), getpid());
dbgln("PB1 calls setsid()");
int rc = setsid();
if (rc < 0) {
perror("setsid (PB)");
VERIFY_NOT_REACHED();
}
dbgln("PB1 did setsid() -> PGB={}, SB={}, yay!", rc, getsid(0));
sleep_steps(1);
// Time 6: PB1 forks into PB2
dbgln("PB1 forks into PB2");
fork_into(run_pb2, pipe_fd_ptr);
sleep_steps(1);
// Time 7: PB1 dies (PGB now has no leader)
dbgln("PB1 dies. You should see a 'Reaped unparented process' "
"message with my ID next, OR THIS TEST IS MEANINGLESS "
"(see fork_into()).");
exit(0);
}
static void simulate_sid_from_pgid(pid_t pgid)
{
pid_t rc = getpgid(pgid); // Same confusion as in the Kernel
int saved_errno = errno;
if (rc < 0 && saved_errno == ESRCH) {
dbgln("The old get_sid_from_pgid({}) would return -1", pgid);
} else if (rc >= 0) {
dbgln("FAIL: Process {} still exists?! PGID is {}.", pgid, rc);
} else {
perror("pgid (probably fail)");
}
}
static void run_pb2(void* pipe_fd_ptr)
{
// Time 6: PB1 forks into PB2
sleep_steps(2);
// Time 8: PB2 calls pgrp(0, PGA)
// Note: PB2 writes "1" (exploit successful) or "0" (bug is fixed) to a pipe
dbgln("PB2 starts with SID={}, PGID={}, PID={}.", getsid(0), getpgid(0), getpid());
dbgln("PB2 calls pgrp(0, PGA)");
int pga = getpid() - 3;
dbgln("PB2: Actually, what is PGA? I guess it's {}?", pga);
simulate_sid_from_pgid(pga);
int rc = setpgid(0, pga);
unsigned char to_write = 123;
if (rc == 0) {
dbgln("PB2: setgpid SUCCESSFUL! CHANGED PGROUP!");
to_write = 1;
} else {
VERIFY(rc == -1);
switch (errno) {
case EACCES:
dbgln("PB2: Failed with EACCES. Huh?!");
to_write = 101;
break;
case EINVAL:
dbgln("PB2: Failed with EINVAL. Huh?!");
to_write = 102;
break;
case ESRCH:
dbgln("PB2: Failed with ESRCH. Huh?!");
to_write = 103;
break;
case EPERM:
dbgln("PB2: Failed with EPERM. Aww, no exploit today :^)");
to_write = 0;
break;
default:
dbgln("PB2: Failed with errno={}?!", errno);
perror("setpgid");
to_write = 104;
break;
}
}
dbgln("PB2 ends with SID={}, PGID={}, PID={}.", getsid(0), getpgid(0), getpid());
int* pipe_fd = static_cast<int*>(pipe_fd_ptr);
VERIFY(*pipe_fd);
rc = write(*pipe_fd, &to_write, 1);
if (rc != 1) {
dbgln("Wrote only {} bytes instead of 1?!", rc);
exit(1);
}
exit(0);
}