mirror of
				https://github.com/RGBCube/serenity
				synced 2025-10-31 19:32:45 +00:00 
			
		
		
		
	 70ac6918d1
			
		
	
	
		70ac6918d1
		
	
	
	
	
		
			
			NumericLimits<u32>::max + 1 overflowing to 0 caused us to call AK::get_random_uniform(0) which doesn't make sense (the argument is an _exclusive_ bound).
		
			
				
	
	
		
			332 lines
		
	
	
	
		
			9.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			332 lines
		
	
	
	
		
			9.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2023, Martin Janiczek <martin@janiczek.cz>
 | |
|  *
 | |
|  * SPDX-License-Identifier: BSD-2-Clause
 | |
|  */
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <LibTest/Macros.h>
 | |
| #include <LibTest/Randomized/RandomRun.h>
 | |
| 
 | |
| #include <AK/Function.h>
 | |
| #include <AK/Random.h>
 | |
| #include <AK/String.h>
 | |
| #include <AK/StringView.h>
 | |
| #include <AK/Tuple.h>
 | |
| 
 | |
| namespace Test {
 | |
| namespace Randomized {
 | |
| 
 | |
| // Returns a random double value in range 0..1.
 | |
| inline double get_random_probability()
 | |
| {
 | |
|     static constexpr u32 max_u32 = NumericLimits<u32>::max();
 | |
|     u32 random_u32 = AK::get_random_uniform(max_u32);
 | |
|     return static_cast<double>(random_u32) / static_cast<double>(max_u32);
 | |
| }
 | |
| 
 | |
| // Generators take random bits from the RandomnessSource and return a value
 | |
| // back.
 | |
| //
 | |
| // Example:
 | |
| // - Gen::u32(5,10) --> 9, 7, 5, 10, 8, ...
 | |
| namespace Gen {
 | |
| 
 | |
| // An unsigned integer generator.
 | |
| //
 | |
| // The minimum value will always be 0.
 | |
| // The maximum value is given by user in the argument.
 | |
| //
 | |
| // Gen::unsigned_int(10) -> value 5, RandomRun [5]
 | |
| //                       -> value 8, RandomRun [8]
 | |
| //                       etc.
 | |
| //
 | |
| // Shrinks towards 0.
 | |
| inline u32 unsigned_int(u32 max)
 | |
| {
 | |
|     if (max == 0)
 | |
|         return 0;
 | |
| 
 | |
|     u32 random = Test::randomness_source().draw_value(max, [&]() {
 | |
|         // `clamp` to guard against integer overflow and calling get_random_uniform(0).
 | |
|         u32 exclusive_bound = AK::clamp(max + 1, max, NumericLimits<u32>::max());
 | |
|         return AK::get_random_uniform(exclusive_bound);
 | |
|     });
 | |
|     return random;
 | |
| }
 | |
| 
 | |
| // An unsigned integer generator in a particular range.
 | |
| //
 | |
| // Gen::unsigned_int(3,10) -> value 3,  RandomRun [0]
 | |
| //                         -> value 8,  RandomRun [5]
 | |
| //                         -> value 10, RandomRun [7]
 | |
| //                         etc.
 | |
| //
 | |
| // In case `min == max`, the RandomRun footprint will be smaller: no randomness
 | |
| // is needed.
 | |
| //
 | |
| // Gen::unsigned_int(3,3) -> value 3, RandomRun [] (always)
 | |
| //
 | |
| // Shrinks towards the minimum.
 | |
| inline u32 unsigned_int(u32 min, u32 max)
 | |
| {
 | |
|     VERIFY(max >= min);
 | |
|     return unsigned_int(max - min) + min;
 | |
| }
 | |
| 
 | |
| // Randomly (uniformly) selects a value out of the given arguments.
 | |
| //
 | |
| // Gen::one_of(20,5,10) --> value 20, RandomRun [0]
 | |
| //                      --> value 5,  RandomRun [1]
 | |
| //                      --> value 10, RandomRun [2]
 | |
| //
 | |
| // Shrinks towards the earlier arguments (above, towards 20).
 | |
| template<typename... Ts>
 | |
| requires(sizeof...(Ts) > 0)
 | |
| CommonType<Ts...> one_of(Ts... choices)
 | |
| {
 | |
|     Vector<CommonType<Ts...>> choices_vec { choices... };
 | |
| 
 | |
|     constexpr size_t count = sizeof...(choices);
 | |
|     size_t i = unsigned_int(count - 1);
 | |
|     return choices_vec[i];
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| struct Choice {
 | |
|     i32 weight;
 | |
|     T value;
 | |
| };
 | |
| // Workaround for clang bug fixed in clang 17
 | |
| template<typename T>
 | |
| Choice(i32, T) -> Choice<T>;
 | |
| 
 | |
| // Randomly (uniformly) selects a value out of the given weighted arguments.
 | |
| //
 | |
| // Gen::frequency(
 | |
| //   Gen::Choice {5,999},
 | |
| //   Gen::Choice {1,111},
 | |
| // )
 | |
| //     --> value 999 (5 out of 6 times), RandomRun [0]
 | |
| //     --> value 111 (1 out of 6 times), RandomRun [1]
 | |
| //
 | |
| // Shrinks towards the earlier arguments (above, towards 'x').
 | |
| template<typename... Ts>
 | |
| requires(sizeof...(Ts) > 0)
 | |
| CommonType<Ts...> frequency(Choice<Ts>... choices)
 | |
| {
 | |
|     Vector<Choice<CommonType<Ts...>>> choices_vec { choices... };
 | |
| 
 | |
|     u32 sum = 0;
 | |
|     for (auto const& choice : choices_vec) {
 | |
|         VERIFY(choice.weight > 0);
 | |
|         sum += static_cast<u32>(choice.weight);
 | |
|     }
 | |
| 
 | |
|     u32 target = unsigned_int(sum);
 | |
|     size_t i = 0;
 | |
|     for (auto const& choice : choices_vec) {
 | |
|         u32 weight = static_cast<u32>(choice.weight);
 | |
|         if (weight >= target) {
 | |
|             return choice.value;
 | |
|         }
 | |
|         target -= weight;
 | |
|         ++i;
 | |
|     }
 | |
|     return choices_vec[i - 1].value;
 | |
| }
 | |
| 
 | |
| // An unsigned integer generator in the full u32 range.
 | |
| //
 | |
| // 8/17 (47%) of the time it will bias towards 8bit numbers,
 | |
| // 4/17 (23%) towards 4bit numbers,
 | |
| // 2/17 (12%) towards 16bit numbers,
 | |
| // 1/17 (6%) towards 32bit numbers,
 | |
| // 2/17 (12%) towards edge cases like 0 and NumericLimits::max() of various unsigned int types.
 | |
| //
 | |
| // Gen::unsigned_int() -> value 3,     RandomRun [0,3]
 | |
| //                     -> value 8,     RandomRun [1,8]
 | |
| //                     -> value 100,   RandomRun [2,100]
 | |
| //                     -> value 5,     RandomRun [3,5]
 | |
| //                     -> value 255,   RandomRun [4,1]
 | |
| //                     -> value 65535, RandomRun [4,2]
 | |
| //                     etc.
 | |
| //
 | |
| // Shrinks towards 0.
 | |
| inline u32 unsigned_int()
 | |
| {
 | |
|     u32 bits = frequency(
 | |
|         // weight, bits
 | |
|         Choice { 4, 4 },
 | |
|         Choice { 8, 8 },
 | |
|         Choice { 2, 16 },
 | |
|         Choice { 1, 32 },
 | |
|         Choice { 2, 0 });
 | |
| 
 | |
|     // The special cases go last as they can be the most extreme (large) values.
 | |
| 
 | |
|     if (bits == 0) {
 | |
|         // Special cases, eg. max integers for u8, u16, u32.
 | |
|         return one_of(
 | |
|             0U,
 | |
|             NumericLimits<u8>::max(),
 | |
|             NumericLimits<u16>::max(),
 | |
|             NumericLimits<u32>::max());
 | |
|     }
 | |
| 
 | |
|     u32 max = ((u64)1 << bits) - 1;
 | |
|     return unsigned_int(max);
 | |
| }
 | |
| 
 | |
| // A generator returning `true` with the given `probability` (0..1).
 | |
| //
 | |
| // If probability <= 0, doesn't use any randomness and returns false.
 | |
| // If probability >= 1, doesn't use any randomness and returns true.
 | |
| //
 | |
| // In general case:
 | |
| // Gen::weighted_boolean(0.75)
 | |
| //   -> value false, RandomRun [0]
 | |
| //   -> value true,  RandomRun [1]
 | |
| //
 | |
| // Shrinks towards false.
 | |
| inline bool weighted_boolean(double probability)
 | |
| {
 | |
|     if (probability <= 0)
 | |
|         return false;
 | |
|     if (probability >= 1)
 | |
|         return true;
 | |
| 
 | |
|     u32 random_int = Test::randomness_source().draw_value(1, [&]() {
 | |
|         double drawn_probability = get_random_probability();
 | |
|         return drawn_probability <= probability ? 1 : 0;
 | |
|     });
 | |
|     bool random_bool = random_int == 1;
 | |
|     return random_bool;
 | |
| }
 | |
| 
 | |
| // A (fair) boolean generator.
 | |
| //
 | |
| // Gen::boolean()
 | |
| //   -> value false, RandomRun [0]
 | |
| //   -> value true,  RandomRun [1]
 | |
| //
 | |
| // Shrinks towards false.
 | |
| inline bool boolean()
 | |
| {
 | |
|     return weighted_boolean(0.5);
 | |
| }
 | |
| 
 | |
| // A vector generator of a random length between the given limits.
 | |
| //
 | |
| // Gen::vector(2,3,[]() { return Gen::unsigned_int(5); })
 | |
| //   -> value [1,5],      RandomRun [1,1,1,5,0]
 | |
| //   -> value [1,5,0],    RandomRun [1,1,1,5,1,0,0]
 | |
| //   etc.
 | |
| //
 | |
| // In case `min == max`, the RandomRun footprint will be smaller, as there will
 | |
| // be no randomness involved in figuring out the length:
 | |
| //
 | |
| // Gen::vector(3,3,[]() { return Gen::unsigned_int(5); })
 | |
| //   -> value [1,3], RandomRun [1,3]
 | |
| //   -> value [5,2], RandomRun [5,2]
 | |
| //   etc.
 | |
| //
 | |
| // Shrinks towards shorter vectors, with simpler elements inside.
 | |
| template<typename Fn>
 | |
| inline Vector<InvokeResult<Fn>> vector(size_t min, size_t max, Fn item_gen)
 | |
| {
 | |
|     VERIFY(max >= min);
 | |
| 
 | |
|     size_t size = 0;
 | |
|     Vector<InvokeResult<Fn>> acc;
 | |
| 
 | |
|     // Special case: no randomness for the boolean
 | |
|     if (min == max) {
 | |
|         while (size < min) {
 | |
|             acc.append(item_gen());
 | |
|             ++size;
 | |
|         }
 | |
|         return acc;
 | |
|     }
 | |
| 
 | |
|     // General case: before each item we "flip a coin" to decide whether to
 | |
|     // generate another one.
 | |
|     //
 | |
|     // This algorithm is used instead of the more intuitive "generate length,
 | |
|     // then generate that many items" algorithm, because it produces RandomRun
 | |
|     // patterns that shrink more easily.
 | |
|     //
 | |
|     // See the Hypothesis paper [1], section 3.3, around the paragraph starting
 | |
|     // with "More commonly".
 | |
|     //
 | |
|     // [1]: https://drops.dagstuhl.de/opus/volltexte/2020/13170/pdf/LIPIcs-ECOOP-2020-13.pdf
 | |
|     while (size < min) {
 | |
|         acc.append(item_gen());
 | |
|         ++size;
 | |
|     }
 | |
| 
 | |
|     double average = static_cast<double>(min + max) / 2.0;
 | |
|     VERIFY(average > 0);
 | |
| 
 | |
|     // A geometric distribution: https://en.wikipedia.org/wiki/Geometric_distribution#Moments_and_cumulants
 | |
|     // The below derives from the E(X) = 1/p formula.
 | |
|     //
 | |
|     // We need to flip the `p` to `1-p` as our success ("another item!") is
 | |
|     // a "failure" in the geometric distribution's interpretation ("we fail X
 | |
|     // times before succeeding the first time").
 | |
|     //
 | |
|     // That gives us `1 - 1/p`. Then, E(X) also contains the final success, so we
 | |
|     // need to say `1 + average` instead of `average`, as it will mean "our X
 | |
|     // items + the final failure that stops the process".
 | |
|     double probability = 1.0 - 1.0 / (1.0 + average);
 | |
| 
 | |
|     while (size < max) {
 | |
|         if (weighted_boolean(probability)) {
 | |
|             acc.append(item_gen());
 | |
|             ++size;
 | |
|         } else {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return acc;
 | |
| }
 | |
| 
 | |
| // A vector generator of a given length.
 | |
| //
 | |
| // Gen::vector_of_length(3,[]() { return Gen::unsigned_int(5); })
 | |
| //   -> value [1,5,0],    RandomRun [1,1,1,5,1,0,0]
 | |
| //   -> value [2,9,3],    RandomRun [1,2,1,9,1,3,0]
 | |
| //   etc.
 | |
| //
 | |
| // Shrinks towards shorter vectors, with simpler elements inside.
 | |
| template<typename Fn>
 | |
| inline Vector<InvokeResult<Fn>> vector(size_t length, Fn item_gen)
 | |
| {
 | |
|     return vector(length, length, item_gen);
 | |
| }
 | |
| 
 | |
| // A vector generator of a random length between 0 and 32 elements.
 | |
| //
 | |
| // If you need a different length, use vector(max,item_gen) or
 | |
| // vector(min,max,item_gen).
 | |
| //
 | |
| // Gen::vector([]() { return Gen::unsigned_int(5); })
 | |
| //   -> value [],         RandomRun [0]
 | |
| //   -> value [1],        RandomRun [1,1,0]
 | |
| //   -> value [1,5],      RandomRun [1,1,1,5,0]
 | |
| //   -> value [1,5,0],    RandomRun [1,1,1,5,1,0,0]
 | |
| //   -> value [1,5,0,2],  RandomRun [1,1,1,5,1,0,1,2,0]
 | |
| //   etc.
 | |
| //
 | |
| // Shrinks towards shorter vectors, with simpler elements inside.
 | |
| template<typename Fn>
 | |
| inline Vector<InvokeResult<Fn>> vector(Fn item_gen)
 | |
| {
 | |
|     return vector(0, 32, item_gen);
 | |
| }
 | |
| 
 | |
| } // namespace Gen
 | |
| } // namespace Randomized
 | |
| } // namespace Test
 |