1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-31 13:48:12 +00:00
serenity/Meta/Lagom/Fuzzers/FuzzilliJs.cpp
Luke Wilde 631bbcd00a LibJS: Refactor interpreter to use Script and Source Text Modules
This also refactors interpreter creation to follow
InitializeHostDefinedRealm, but I couldn't fit it in the title :^)

This allows us to follow the spec much more closely rather than being
completely ad-hoc with just the parse node instead of having all the
surrounding data such as the realm of the parse node.

The interpreter creation refactor creates the global execution context
once and doesn't take it off the stack. This allows LibWeb to take the
global execution context and manually handle it, following the HTML
spec. The HTML spec calls this the "realm execution context" of the
environment settings object.

It also allows us to specify the globalThis type, as it can be
different from the global object type. For example, on the web, Window
global objects use a WindowProxy global this value to enforce the same
origin policy on operations like [[GetOwnProperty]].

Finally, it allows us to directly call Program::execute in perform_eval
and perform_shadow_realm_eval as this moves
global_declaration_instantiation into Interpreter::run
(ScriptEvaluation) as per the spec.

Note that this doesn't evalulate Source Text Modules yet or refactor
the bytecode interpreter, that's work for future us :^)

This patch was originally build by Luke for the environment settings
object change but was also needed for modules. So I (davidot) have
modified it with the new completion changes and setup for that.

Co-authored-by: davidot <davidot@serenityos.org>
2022-01-22 01:21:18 +00:00

230 lines
6.3 KiB
C++

/*
* Copyright (c) 2020, the SerenityOS developers.
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Function.h>
#include <AK/String.h>
#include <AK/StringView.h>
#include <LibJS/Forward.h>
#include <LibJS/Interpreter.h>
#include <LibJS/Lexer.h>
#include <LibJS/Parser.h>
#include <LibJS/Runtime/GlobalObject.h>
#include <errno.h>
#include <stddef.h>
#include <stdint.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>
//
// BEGIN FUZZING CODE
//
#define REPRL_CRFD 100
#define REPRL_CWFD 101
#define REPRL_DRFD 102
#define REPRL_DWFD 103
#define REPRL_MAX_DATA_SIZE (16 * 1024 * 1024)
#define SHM_SIZE 0x100000
#define MAX_EDGES ((SHM_SIZE - 4) * 8)
#define CHECK(cond) \
if (!(cond)) { \
fprintf(stderr, "\"" #cond "\" failed\n"); \
_exit(-1); \
}
struct shmem_data {
uint32_t num_edges;
unsigned char edges[];
};
struct shmem_data* __shmem;
uint32_t *__edges_start, *__edges_stop;
void __sanitizer_cov_reset_edgeguards()
{
uint64_t N = 0;
for (uint32_t* x = __edges_start; x < __edges_stop && N < MAX_EDGES; x++)
*x = ++N;
}
extern "C" void __sanitizer_cov_trace_pc_guard_init(uint32_t* start, uint32_t* stop)
{
// Avoid duplicate initialization
if (start == stop || *start)
return;
if (__edges_start != NULL || __edges_stop != NULL) {
fprintf(stderr, "Coverage instrumentation is only supported for a single module\n");
_exit(-1);
}
__edges_start = start;
__edges_stop = stop;
// Map the shared memory region
const char* shm_key = getenv("SHM_ID");
if (!shm_key) {
puts("[COV] no shared memory bitmap available, skipping");
__shmem = (struct shmem_data*)malloc(SHM_SIZE);
} else {
int fd = shm_open(shm_key, O_RDWR, S_IREAD | S_IWRITE);
if (fd <= -1) {
fprintf(stderr, "Failed to open shared memory region: %s\n", strerror(errno));
_exit(-1);
}
__shmem = (struct shmem_data*)mmap(0, SHM_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
if (__shmem == MAP_FAILED) {
fprintf(stderr, "Failed to mmap shared memory region\n");
_exit(-1);
}
}
__sanitizer_cov_reset_edgeguards();
__shmem->num_edges = stop - start;
printf("[COV] edge counters initialized. Shared memory: %s with %u edges\n", shm_key, __shmem->num_edges);
}
extern "C" void __sanitizer_cov_trace_pc_guard(uint32_t* guard)
{
// There's a small race condition here: if this function executes in two threads for the same
// edge at the same time, the first thread might disable the edge (by setting the guard to zero)
// before the second thread fetches the guard value (and thus the index). However, our
// instrumentation ignores the first edge (see libcoverage.c) and so the race is unproblematic.
uint32_t index = *guard;
// If this function is called before coverage instrumentation is properly initialized we want to return early.
if (!index)
return;
__shmem->edges[index / 8] |= 1 << (index % 8);
*guard = 0;
}
//
// END FUZZING CODE
//
class TestRunnerGlobalObject final : public JS::GlobalObject {
JS_OBJECT(TestRunnerGlobalObject, JS::GlobalObject);
public:
TestRunnerGlobalObject();
virtual ~TestRunnerGlobalObject() override;
virtual void initialize_global_object() override;
private:
JS_DECLARE_NATIVE_FUNCTION(fuzzilli);
};
TestRunnerGlobalObject::TestRunnerGlobalObject()
{
}
TestRunnerGlobalObject::~TestRunnerGlobalObject()
{
}
JS_DEFINE_NATIVE_FUNCTION(TestRunnerGlobalObject::fuzzilli)
{
if (!vm.argument_count())
return JS::js_undefined();
auto operation = TRY(vm.argument(0).to_string(global_object));
if (operation == "FUZZILLI_CRASH") {
auto type = TRY(vm.argument(1).to_i32(global_object));
switch (type) {
case 0:
*((int*)0x41414141) = 0x1337;
break;
default:
VERIFY_NOT_REACHED();
break;
}
} else if (operation == "FUZZILLI_PRINT") {
static FILE* fzliout = fdopen(REPRL_DWFD, "w");
if (!fzliout) {
dbgln("Fuzzer output not available");
fzliout = stdout;
}
auto string = TRY(vm.argument(1).to_string(global_object));
fprintf(fzliout, "%s\n", string.characters());
fflush(fzliout);
}
return JS::js_undefined();
}
void TestRunnerGlobalObject::initialize_global_object()
{
Base::initialize_global_object();
define_direct_property("global", this, JS::Attribute::Enumerable);
define_native_function("fuzzilli", fuzzilli, 2, JS::default_attributes);
}
int main(int, char**)
{
char* reprl_input = nullptr;
char helo[] = "HELO";
if (write(REPRL_CWFD, helo, 4) != 4 || read(REPRL_CRFD, helo, 4) != 4) {
VERIFY_NOT_REACHED();
}
VERIFY(memcmp(helo, "HELO", 4) == 0);
reprl_input = (char*)mmap(0, REPRL_MAX_DATA_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, REPRL_DRFD, 0);
VERIFY(reprl_input != MAP_FAILED);
auto vm = JS::VM::create();
auto interpreter = JS::Interpreter::create<TestRunnerGlobalObject>(*vm);
while (true) {
unsigned action;
VERIFY(read(REPRL_CRFD, &action, 4) == 4);
VERIFY(action == 'cexe');
size_t script_size;
VERIFY(read(REPRL_CRFD, &script_size, 8) == 8);
VERIFY(script_size < REPRL_MAX_DATA_SIZE);
ByteBuffer data_buffer;
data_buffer.resize(script_size);
VERIFY(data_buffer.size() >= script_size);
memcpy(data_buffer.data(), reprl_input, script_size);
int result = 0;
auto js = StringView(static_cast<const unsigned char*>(data_buffer.data()), script_size);
auto parse_result = JS::Script::parse(js, interpreter->realm());
if (parse_result.is_error()) {
result = 1;
} else {
auto completion = interpreter->run(parse_result.value());
if (completion.is_error()) {
result = 1;
vm->clear_exception();
}
}
fflush(stdout);
fflush(stderr);
int status = (result & 0xff) << 8;
VERIFY(write(REPRL_CWFD, &status, 4) == 4);
__sanitizer_cov_reset_edgeguards();
}
return 0;
}