mirror of
				https://github.com/RGBCube/serenity
				synced 2025-10-24 22:32:06 +00:00 
			
		
		
		
	 216e21a1fa
			
		
	
	
		216e21a1fa
		
	
	
	
	
		
			
			This isn't a complete conversion to ErrorOr<void>, but a good chunk. The end goal here is to propagate buffer allocation failures to the caller, and allow the use of TRY() with formatting functions.
		
			
				
	
	
		
			1287 lines
		
	
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1287 lines
		
	
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
 | |
|  *
 | |
|  * SPDX-License-Identifier: BSD-2-Clause
 | |
|  */
 | |
| 
 | |
| #include <AK/ScopeGuard.h>
 | |
| #include <AK/Singleton.h>
 | |
| #include <AK/StringBuilder.h>
 | |
| #include <AK/Time.h>
 | |
| #include <Kernel/Arch/SmapDisabler.h>
 | |
| #include <Kernel/Arch/x86/InterruptDisabler.h>
 | |
| #include <Kernel/Arch/x86/TrapFrame.h>
 | |
| #include <Kernel/Debug.h>
 | |
| #include <Kernel/Devices/KCOVDevice.h>
 | |
| #include <Kernel/FileSystem/OpenFileDescription.h>
 | |
| #include <Kernel/KSyms.h>
 | |
| #include <Kernel/Memory/MemoryManager.h>
 | |
| #include <Kernel/Memory/PageDirectory.h>
 | |
| #include <Kernel/Memory/ScopedAddressSpaceSwitcher.h>
 | |
| #include <Kernel/Panic.h>
 | |
| #include <Kernel/PerformanceEventBuffer.h>
 | |
| #include <Kernel/Process.h>
 | |
| #include <Kernel/ProcessExposed.h>
 | |
| #include <Kernel/Scheduler.h>
 | |
| #include <Kernel/Sections.h>
 | |
| #include <Kernel/Thread.h>
 | |
| #include <Kernel/ThreadTracer.h>
 | |
| #include <Kernel/TimerQueue.h>
 | |
| #include <LibC/signal_numbers.h>
 | |
| 
 | |
| namespace Kernel {
 | |
| 
 | |
| static Singleton<SpinlockProtected<Thread::GlobalList>> s_list;
 | |
| 
 | |
| SpinlockProtected<Thread::GlobalList>& Thread::all_instances()
 | |
| {
 | |
|     return *s_list;
 | |
| }
 | |
| 
 | |
| ErrorOr<NonnullRefPtr<Thread>> Thread::try_create(NonnullRefPtr<Process> process)
 | |
| {
 | |
|     auto kernel_stack_region = TRY(MM.allocate_kernel_region(default_kernel_stack_size, {}, Memory::Region::Access::ReadWrite, AllocationStrategy::AllocateNow));
 | |
|     kernel_stack_region->set_stack(true);
 | |
| 
 | |
|     auto block_timer = try_make_ref_counted<Timer>();
 | |
|     if (!block_timer)
 | |
|         return ENOMEM;
 | |
| 
 | |
|     auto name = TRY(KString::try_create(process->name()));
 | |
|     return adopt_nonnull_ref_or_enomem(new (nothrow) Thread(move(process), move(kernel_stack_region), block_timer.release_nonnull(), move(name)));
 | |
| }
 | |
| 
 | |
| Thread::Thread(NonnullRefPtr<Process> process, NonnullOwnPtr<Memory::Region> kernel_stack_region, NonnullRefPtr<Timer> block_timer, NonnullOwnPtr<KString> name)
 | |
|     : m_process(move(process))
 | |
|     , m_kernel_stack_region(move(kernel_stack_region))
 | |
|     , m_name(move(name))
 | |
|     , m_block_timer(move(block_timer))
 | |
| {
 | |
|     bool is_first_thread = m_process->add_thread(*this);
 | |
|     if (is_first_thread) {
 | |
|         // First thread gets TID == PID
 | |
|         m_tid = m_process->pid().value();
 | |
|     } else {
 | |
|         m_tid = Process::allocate_pid().value();
 | |
|     }
 | |
| 
 | |
|     {
 | |
|         // FIXME: Go directly to KString
 | |
|         auto string = String::formatted("Kernel stack (thread {})", m_tid.value());
 | |
|         // FIXME: Handle KString allocation failure.
 | |
|         m_kernel_stack_region->set_name(KString::try_create(string).release_value());
 | |
|     }
 | |
| 
 | |
|     Thread::all_instances().with([&](auto& list) {
 | |
|         list.append(*this);
 | |
|     });
 | |
| 
 | |
|     if constexpr (THREAD_DEBUG)
 | |
|         dbgln("Created new thread {}({}:{})", m_process->name(), m_process->pid().value(), m_tid.value());
 | |
| 
 | |
|     reset_fpu_state();
 | |
| 
 | |
|     // Only IF is set when a process boots.
 | |
|     m_regs.set_flags(0x0202);
 | |
| 
 | |
| #if ARCH(I386)
 | |
|     if (m_process->is_kernel_process()) {
 | |
|         m_regs.cs = GDT_SELECTOR_CODE0;
 | |
|         m_regs.ds = GDT_SELECTOR_DATA0;
 | |
|         m_regs.es = GDT_SELECTOR_DATA0;
 | |
|         m_regs.fs = 0;
 | |
|         m_regs.ss = GDT_SELECTOR_DATA0;
 | |
|         m_regs.gs = GDT_SELECTOR_PROC;
 | |
|     } else {
 | |
|         m_regs.cs = GDT_SELECTOR_CODE3 | 3;
 | |
|         m_regs.ds = GDT_SELECTOR_DATA3 | 3;
 | |
|         m_regs.es = GDT_SELECTOR_DATA3 | 3;
 | |
|         m_regs.fs = GDT_SELECTOR_DATA3 | 3;
 | |
|         m_regs.ss = GDT_SELECTOR_DATA3 | 3;
 | |
|         m_regs.gs = GDT_SELECTOR_TLS | 3;
 | |
|     }
 | |
| #else
 | |
|     if (m_process->is_kernel_process())
 | |
|         m_regs.cs = GDT_SELECTOR_CODE0;
 | |
|     else
 | |
|         m_regs.cs = GDT_SELECTOR_CODE3 | 3;
 | |
| #endif
 | |
| 
 | |
|     m_regs.cr3 = m_process->address_space().page_directory().cr3();
 | |
| 
 | |
|     m_kernel_stack_base = m_kernel_stack_region->vaddr().get();
 | |
|     m_kernel_stack_top = m_kernel_stack_region->vaddr().offset(default_kernel_stack_size).get() & ~(FlatPtr)0x7u;
 | |
| 
 | |
|     if (m_process->is_kernel_process()) {
 | |
|         m_regs.set_sp(m_kernel_stack_top);
 | |
|         m_regs.set_sp0(m_kernel_stack_top);
 | |
|     } else {
 | |
|         // Ring 3 processes get a separate stack for ring 0.
 | |
|         // The ring 3 stack will be assigned by exec().
 | |
| #if ARCH(I386)
 | |
|         m_regs.ss0 = GDT_SELECTOR_DATA0;
 | |
| #endif
 | |
|         m_regs.set_sp0(m_kernel_stack_top);
 | |
|     }
 | |
| 
 | |
|     // We need to add another reference if we could successfully create
 | |
|     // all the resources needed for this thread. The reason for this is that
 | |
|     // we don't want to delete this thread after dropping the reference,
 | |
|     // it may still be running or scheduled to be run.
 | |
|     // The finalizer is responsible for dropping this reference once this
 | |
|     // thread is ready to be cleaned up.
 | |
|     ref();
 | |
| }
 | |
| 
 | |
| Thread::~Thread()
 | |
| {
 | |
|     {
 | |
|         // We need to explicitly remove ourselves from the thread list
 | |
|         // here. We may get preempted in the middle of destructing this
 | |
|         // thread, which causes problems if the thread list is iterated.
 | |
|         // Specifically, if this is the last thread of a process, checking
 | |
|         // block conditions would access m_process, which would be in
 | |
|         // the middle of being destroyed.
 | |
|         SpinlockLocker lock(g_scheduler_lock);
 | |
|         VERIFY(!m_process_thread_list_node.is_in_list());
 | |
| 
 | |
|         // We shouldn't be queued
 | |
|         VERIFY(m_runnable_priority < 0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Thread::block(Kernel::Mutex& lock, SpinlockLocker<Spinlock>& lock_lock, u32 lock_count)
 | |
| {
 | |
|     VERIFY(!Processor::current_in_irq());
 | |
|     VERIFY(this == Thread::current());
 | |
|     ScopedCritical critical;
 | |
|     VERIFY(!Memory::s_mm_lock.is_locked_by_current_processor());
 | |
| 
 | |
|     SpinlockLocker block_lock(m_block_lock);
 | |
| 
 | |
|     SpinlockLocker scheduler_lock(g_scheduler_lock);
 | |
| 
 | |
|     switch (state()) {
 | |
|     case Thread::Stopped:
 | |
|         // It's possible that we were requested to be stopped!
 | |
|         break;
 | |
|     case Thread::Running:
 | |
|         VERIFY(m_blocker == nullptr);
 | |
|         break;
 | |
|     default:
 | |
|         VERIFY_NOT_REACHED();
 | |
|     }
 | |
| 
 | |
|     // If we're blocking on the big-lock we may actually be in the process
 | |
|     // of unblocking from another lock. If that's the case m_blocking_lock
 | |
|     // is already set
 | |
|     auto& big_lock = process().big_lock();
 | |
|     VERIFY((&lock == &big_lock && m_blocking_lock != &big_lock) || !m_blocking_lock);
 | |
| 
 | |
|     auto* previous_blocking_lock = m_blocking_lock;
 | |
|     m_blocking_lock = &lock;
 | |
|     m_lock_requested_count = lock_count;
 | |
| 
 | |
|     set_state(Thread::Blocked);
 | |
| 
 | |
|     scheduler_lock.unlock();
 | |
|     block_lock.unlock();
 | |
| 
 | |
|     lock_lock.unlock();
 | |
| 
 | |
|     dbgln_if(THREAD_DEBUG, "Thread {} blocking on Mutex {}", *this, &lock);
 | |
| 
 | |
|     for (;;) {
 | |
|         // Yield to the scheduler, and wait for us to resume unblocked.
 | |
|         VERIFY(!g_scheduler_lock.is_locked_by_current_processor());
 | |
|         VERIFY(Processor::in_critical());
 | |
|         if (&lock != &big_lock && big_lock.is_locked_by_current_thread()) {
 | |
|             // We're locking another lock and already hold the big lock...
 | |
|             // We need to release the big lock
 | |
|             yield_and_release_relock_big_lock();
 | |
|         } else {
 | |
|             // By the time we've reached this another thread might have
 | |
|             // marked us as holding the big lock, so this call must not
 | |
|             // verify that we're not holding it.
 | |
|             yield_without_releasing_big_lock(VerifyLockNotHeld::No);
 | |
|         }
 | |
|         VERIFY(Processor::in_critical());
 | |
| 
 | |
|         SpinlockLocker block_lock2(m_block_lock);
 | |
|         if (should_be_stopped() || state() == Stopped) {
 | |
|             dbgln("Thread should be stopped, current state: {}", state_string());
 | |
|             set_state(Thread::Blocked);
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         VERIFY(!m_blocking_lock);
 | |
|         m_blocking_lock = previous_blocking_lock;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     lock_lock.lock();
 | |
| }
 | |
| 
 | |
| u32 Thread::unblock_from_lock(Kernel::Mutex& lock)
 | |
| {
 | |
|     SpinlockLocker block_lock(m_block_lock);
 | |
|     VERIFY(m_blocking_lock == &lock);
 | |
|     auto requested_count = m_lock_requested_count;
 | |
|     block_lock.unlock();
 | |
| 
 | |
|     auto do_unblock = [&]() {
 | |
|         SpinlockLocker scheduler_lock(g_scheduler_lock);
 | |
|         SpinlockLocker block_lock(m_block_lock);
 | |
|         VERIFY(m_blocking_lock == &lock);
 | |
|         VERIFY(!Processor::current_in_irq());
 | |
|         VERIFY(g_scheduler_lock.is_locked_by_current_processor());
 | |
|         VERIFY(m_block_lock.is_locked_by_current_processor());
 | |
|         VERIFY(m_blocking_lock == &lock);
 | |
|         dbgln_if(THREAD_DEBUG, "Thread {} unblocked from Mutex {}", *this, &lock);
 | |
|         m_blocking_lock = nullptr;
 | |
|         if (Thread::current() == this) {
 | |
|             set_state(Thread::Running);
 | |
|             return;
 | |
|         }
 | |
|         VERIFY(m_state != Thread::Runnable && m_state != Thread::Running);
 | |
|         set_state(Thread::Runnable);
 | |
|     };
 | |
|     if (Processor::current_in_irq() != 0) {
 | |
|         Processor::deferred_call_queue([do_unblock = move(do_unblock), self = make_weak_ptr()]() {
 | |
|             if (auto this_thread = self.strong_ref())
 | |
|                 do_unblock();
 | |
|         });
 | |
|     } else {
 | |
|         do_unblock();
 | |
|     }
 | |
|     return requested_count;
 | |
| }
 | |
| 
 | |
| void Thread::unblock_from_blocker(Blocker& blocker)
 | |
| {
 | |
|     auto do_unblock = [&]() {
 | |
|         SpinlockLocker scheduler_lock(g_scheduler_lock);
 | |
|         SpinlockLocker block_lock(m_block_lock);
 | |
|         if (m_blocker != &blocker)
 | |
|             return;
 | |
|         if (!should_be_stopped() && !is_stopped())
 | |
|             unblock();
 | |
|     };
 | |
|     if (Processor::current_in_irq() != 0) {
 | |
|         Processor::deferred_call_queue([do_unblock = move(do_unblock), self = make_weak_ptr()]() {
 | |
|             if (auto this_thread = self.strong_ref())
 | |
|                 do_unblock();
 | |
|         });
 | |
|     } else {
 | |
|         do_unblock();
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Thread::unblock(u8 signal)
 | |
| {
 | |
|     VERIFY(!Processor::current_in_irq());
 | |
|     VERIFY(g_scheduler_lock.is_locked_by_current_processor());
 | |
|     VERIFY(m_block_lock.is_locked_by_current_processor());
 | |
|     if (m_state != Thread::Blocked)
 | |
|         return;
 | |
|     if (m_blocking_lock)
 | |
|         return;
 | |
|     VERIFY(m_blocker);
 | |
|     if (signal != 0) {
 | |
|         if (is_handling_page_fault()) {
 | |
|             // Don't let signals unblock threads that are blocked inside a page fault handler.
 | |
|             // This prevents threads from EINTR'ing the inode read in an inode page fault.
 | |
|             // FIXME: There's probably a better way to solve this.
 | |
|             return;
 | |
|         }
 | |
|         if (!m_blocker->can_be_interrupted() && !m_should_die)
 | |
|             return;
 | |
|         m_blocker->set_interrupted_by_signal(signal);
 | |
|     }
 | |
|     m_blocker = nullptr;
 | |
|     if (Thread::current() == this) {
 | |
|         set_state(Thread::Running);
 | |
|         return;
 | |
|     }
 | |
|     VERIFY(m_state != Thread::Runnable && m_state != Thread::Running);
 | |
|     set_state(Thread::Runnable);
 | |
| }
 | |
| 
 | |
| void Thread::set_should_die()
 | |
| {
 | |
|     if (m_should_die) {
 | |
|         dbgln("{} Should already die", *this);
 | |
|         return;
 | |
|     }
 | |
|     ScopedCritical critical;
 | |
| 
 | |
|     // Remember that we should die instead of returning to
 | |
|     // the userspace.
 | |
|     SpinlockLocker lock(g_scheduler_lock);
 | |
|     m_should_die = true;
 | |
| 
 | |
|     // NOTE: Even the current thread can technically be in "Stopped"
 | |
|     // state! This is the case when another thread sent a SIGSTOP to
 | |
|     // it while it was running and it calls e.g. exit() before
 | |
|     // the scheduler gets involved again.
 | |
|     if (is_stopped()) {
 | |
|         // If we were stopped, we need to briefly resume so that
 | |
|         // the kernel stacks can clean up. We won't ever return back
 | |
|         // to user mode, though
 | |
|         VERIFY(!process().is_stopped());
 | |
|         resume_from_stopped();
 | |
|     }
 | |
|     if (is_blocked()) {
 | |
|         SpinlockLocker block_lock(m_block_lock);
 | |
|         if (m_blocker) {
 | |
|             // We're blocked in the kernel.
 | |
|             m_blocker->set_interrupted_by_death();
 | |
|             unblock();
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Thread::die_if_needed()
 | |
| {
 | |
|     VERIFY(Thread::current() == this);
 | |
| 
 | |
|     if (!m_should_die)
 | |
|         return;
 | |
| 
 | |
|     u32 unlock_count;
 | |
|     [[maybe_unused]] auto rc = unlock_process_if_locked(unlock_count);
 | |
| 
 | |
|     dbgln_if(THREAD_DEBUG, "Thread {} is dying", *this);
 | |
| 
 | |
|     {
 | |
|         SpinlockLocker lock(g_scheduler_lock);
 | |
|         // It's possible that we don't reach the code after this block if the
 | |
|         // scheduler is invoked and FinalizerTask cleans up this thread, however
 | |
|         // that doesn't matter because we're trying to invoke the scheduler anyway
 | |
|         set_state(Thread::Dying);
 | |
|     }
 | |
| 
 | |
|     ScopedCritical critical;
 | |
| 
 | |
|     // Flag a context switch. Because we're in a critical section,
 | |
|     // Scheduler::yield will actually only mark a pending context switch
 | |
|     // Simply leaving the critical section would not necessarily trigger
 | |
|     // a switch.
 | |
|     Scheduler::yield();
 | |
| 
 | |
|     // Now leave the critical section so that we can also trigger the
 | |
|     // actual context switch
 | |
|     Processor::clear_critical();
 | |
|     dbgln("die_if_needed returned from clear_critical!!! in irq: {}", Processor::current_in_irq());
 | |
|     // We should never get here, but the scoped scheduler lock
 | |
|     // will be released by Scheduler::context_switch again
 | |
|     VERIFY_NOT_REACHED();
 | |
| }
 | |
| 
 | |
| void Thread::exit(void* exit_value)
 | |
| {
 | |
|     VERIFY(Thread::current() == this);
 | |
|     m_join_blocker_set.thread_did_exit(exit_value);
 | |
|     set_should_die();
 | |
|     u32 unlock_count;
 | |
|     [[maybe_unused]] auto rc = unlock_process_if_locked(unlock_count);
 | |
|     if (m_thread_specific_range.has_value()) {
 | |
|         auto* region = process().address_space().find_region_from_range(m_thread_specific_range.value());
 | |
|         process().address_space().deallocate_region(*region);
 | |
|     }
 | |
| #ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
 | |
|     KCOVDevice::free_thread();
 | |
| #endif
 | |
|     die_if_needed();
 | |
| }
 | |
| 
 | |
| void Thread::yield_without_releasing_big_lock(VerifyLockNotHeld verify_lock_not_held)
 | |
| {
 | |
|     VERIFY(!g_scheduler_lock.is_locked_by_current_processor());
 | |
|     VERIFY(verify_lock_not_held == VerifyLockNotHeld::No || !process().big_lock().is_locked_by_current_thread());
 | |
|     // Disable interrupts here. This ensures we don't accidentally switch contexts twice
 | |
|     InterruptDisabler disable;
 | |
|     Scheduler::yield(); // flag a switch
 | |
|     u32 prev_critical = Processor::clear_critical();
 | |
|     // NOTE: We may be on a different CPU now!
 | |
|     Processor::restore_critical(prev_critical);
 | |
| }
 | |
| 
 | |
| void Thread::yield_and_release_relock_big_lock()
 | |
| {
 | |
|     VERIFY(!g_scheduler_lock.is_locked_by_current_processor());
 | |
|     // Disable interrupts here. This ensures we don't accidentally switch contexts twice
 | |
|     InterruptDisabler disable;
 | |
|     Scheduler::yield(); // flag a switch
 | |
|     u32 lock_count_to_restore = 0;
 | |
|     auto previous_locked = unlock_process_if_locked(lock_count_to_restore);
 | |
|     // NOTE: Even though we call Scheduler::yield here, unless we happen
 | |
|     // to be outside of a critical section, the yield will be postponed
 | |
|     // until leaving it in relock_process.
 | |
|     relock_process(previous_locked, lock_count_to_restore);
 | |
| }
 | |
| 
 | |
| LockMode Thread::unlock_process_if_locked(u32& lock_count_to_restore)
 | |
| {
 | |
|     return process().big_lock().force_unlock_if_locked(lock_count_to_restore);
 | |
| }
 | |
| 
 | |
| void Thread::relock_process(LockMode previous_locked, u32 lock_count_to_restore)
 | |
| {
 | |
|     // Clearing the critical section may trigger the context switch
 | |
|     // flagged by calling Scheduler::yield above.
 | |
|     // We have to do it this way because we intentionally
 | |
|     // leave the critical section here to be able to switch contexts.
 | |
|     u32 prev_critical = Processor::clear_critical();
 | |
| 
 | |
|     // CONTEXT SWITCH HAPPENS HERE!
 | |
| 
 | |
|     // NOTE: We may be on a different CPU now!
 | |
|     Processor::restore_critical(prev_critical);
 | |
| 
 | |
|     if (previous_locked != LockMode::Unlocked) {
 | |
|         // We've unblocked, relock the process if needed and carry on.
 | |
|         process().big_lock().restore_lock(previous_locked, lock_count_to_restore);
 | |
|     }
 | |
| }
 | |
| 
 | |
| // NOLINTNEXTLINE(readability-make-member-function-const) False positive; We call block<SleepBlocker> which is not const
 | |
| auto Thread::sleep(clockid_t clock_id, const Time& duration, Time* remaining_time) -> BlockResult
 | |
| {
 | |
|     VERIFY(state() == Thread::Running);
 | |
|     return Thread::current()->block<Thread::SleepBlocker>({}, Thread::BlockTimeout(false, &duration, nullptr, clock_id), remaining_time);
 | |
| }
 | |
| 
 | |
| // NOLINTNEXTLINE(readability-make-member-function-const) False positive; We call block<SleepBlocker> which is not const
 | |
| auto Thread::sleep_until(clockid_t clock_id, const Time& deadline) -> BlockResult
 | |
| {
 | |
|     VERIFY(state() == Thread::Running);
 | |
|     return Thread::current()->block<Thread::SleepBlocker>({}, Thread::BlockTimeout(true, &deadline, nullptr, clock_id));
 | |
| }
 | |
| 
 | |
| StringView Thread::state_string() const
 | |
| {
 | |
|     switch (state()) {
 | |
|     case Thread::Invalid:
 | |
|         return "Invalid"sv;
 | |
|     case Thread::Runnable:
 | |
|         return "Runnable"sv;
 | |
|     case Thread::Running:
 | |
|         return "Running"sv;
 | |
|     case Thread::Dying:
 | |
|         return "Dying"sv;
 | |
|     case Thread::Dead:
 | |
|         return "Dead"sv;
 | |
|     case Thread::Stopped:
 | |
|         return "Stopped"sv;
 | |
|     case Thread::Blocked: {
 | |
|         SpinlockLocker block_lock(m_block_lock);
 | |
|         if (m_blocking_lock)
 | |
|             return "Mutex"sv;
 | |
|         if (m_blocker)
 | |
|             return m_blocker->state_string();
 | |
|         VERIFY_NOT_REACHED();
 | |
|     }
 | |
|     }
 | |
|     PANIC("Thread::state_string(): Invalid state: {}", (int)state());
 | |
| }
 | |
| 
 | |
| void Thread::finalize()
 | |
| {
 | |
|     VERIFY(Thread::current() == g_finalizer);
 | |
|     VERIFY(Thread::current() != this);
 | |
| 
 | |
| #if LOCK_DEBUG
 | |
|     VERIFY(!m_lock.is_locked_by_current_processor());
 | |
|     if (lock_count() > 0) {
 | |
|         dbgln("Thread {} leaking {} Locks!", *this, lock_count());
 | |
|         SpinlockLocker list_lock(m_holding_locks_lock);
 | |
|         for (auto& info : m_holding_locks_list) {
 | |
|             const auto& location = info.lock_location;
 | |
|             dbgln(" - Mutex: \"{}\" @ {} locked in function \"{}\" at \"{}:{}\" with a count of: {}", info.lock->name(), info.lock, location.function_name(), location.filename(), location.line_number(), info.count);
 | |
|         }
 | |
|         VERIFY_NOT_REACHED();
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     {
 | |
|         SpinlockLocker lock(g_scheduler_lock);
 | |
|         dbgln_if(THREAD_DEBUG, "Finalizing thread {}", *this);
 | |
|         set_state(Thread::State::Dead);
 | |
|         m_join_blocker_set.thread_finalizing();
 | |
|     }
 | |
| 
 | |
|     if (m_dump_backtrace_on_finalization)
 | |
|         dbgln("{}", backtrace());
 | |
| 
 | |
|     drop_thread_count(false);
 | |
| }
 | |
| 
 | |
| void Thread::drop_thread_count(bool initializing_first_thread)
 | |
| {
 | |
|     bool is_last = process().remove_thread(*this);
 | |
| 
 | |
|     if (!initializing_first_thread && is_last)
 | |
|         process().finalize();
 | |
| }
 | |
| 
 | |
| void Thread::finalize_dying_threads()
 | |
| {
 | |
|     VERIFY(Thread::current() == g_finalizer);
 | |
|     Vector<Thread*, 32> dying_threads;
 | |
|     {
 | |
|         SpinlockLocker lock(g_scheduler_lock);
 | |
|         for_each_in_state(Thread::State::Dying, [&](Thread& thread) {
 | |
|             if (thread.is_finalizable())
 | |
|                 dying_threads.append(&thread);
 | |
|         });
 | |
|     }
 | |
|     for (auto* thread : dying_threads) {
 | |
|         RefPtr<Process> process = thread->process();
 | |
|         dbgln_if(PROCESS_DEBUG, "Before finalization, {} has {} refs and its process has {}",
 | |
|             *thread, thread->ref_count(), thread->process().ref_count());
 | |
|         thread->finalize();
 | |
|         dbgln_if(PROCESS_DEBUG, "After finalization, {} has {} refs and its process has {}",
 | |
|             *thread, thread->ref_count(), thread->process().ref_count());
 | |
|         // This thread will never execute again, drop the running reference
 | |
|         // NOTE: This may not necessarily drop the last reference if anything
 | |
|         //       else is still holding onto this thread!
 | |
|         thread->unref();
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Thread::update_time_scheduled(u64 current_scheduler_time, bool is_kernel, bool no_longer_running)
 | |
| {
 | |
|     if (m_last_time_scheduled.has_value()) {
 | |
|         u64 delta;
 | |
|         if (current_scheduler_time >= m_last_time_scheduled.value())
 | |
|             delta = current_scheduler_time - m_last_time_scheduled.value();
 | |
|         else
 | |
|             delta = m_last_time_scheduled.value() - current_scheduler_time; // the unlikely event that the clock wrapped
 | |
|         if (delta != 0) {
 | |
|             // Add it to the global total *before* updating the thread's value!
 | |
|             Scheduler::add_time_scheduled(delta, is_kernel);
 | |
| 
 | |
|             auto& total_time = is_kernel ? m_total_time_scheduled_kernel : m_total_time_scheduled_user;
 | |
|             SpinlockLocker scheduler_lock(g_scheduler_lock);
 | |
|             total_time += delta;
 | |
|         }
 | |
|     }
 | |
|     if (no_longer_running)
 | |
|         m_last_time_scheduled = {};
 | |
|     else
 | |
|         m_last_time_scheduled = current_scheduler_time;
 | |
| }
 | |
| 
 | |
| bool Thread::tick()
 | |
| {
 | |
|     if (previous_mode() == PreviousMode::KernelMode) {
 | |
|         ++m_process->m_ticks_in_kernel;
 | |
|         ++m_ticks_in_kernel;
 | |
|     } else {
 | |
|         ++m_process->m_ticks_in_user;
 | |
|         ++m_ticks_in_user;
 | |
|     }
 | |
|     --m_ticks_left;
 | |
|     return m_ticks_left != 0;
 | |
| }
 | |
| 
 | |
| void Thread::check_dispatch_pending_signal()
 | |
| {
 | |
|     auto result = DispatchSignalResult::Continue;
 | |
|     {
 | |
|         SpinlockLocker scheduler_lock(g_scheduler_lock);
 | |
|         if (pending_signals_for_state() != 0) {
 | |
|             SpinlockLocker lock(m_lock);
 | |
|             result = dispatch_one_pending_signal();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (result == DispatchSignalResult::Yield) {
 | |
|         yield_without_releasing_big_lock();
 | |
|     }
 | |
| }
 | |
| 
 | |
| u32 Thread::pending_signals() const
 | |
| {
 | |
|     SpinlockLocker lock(g_scheduler_lock);
 | |
|     return pending_signals_for_state();
 | |
| }
 | |
| 
 | |
| u32 Thread::pending_signals_for_state() const
 | |
| {
 | |
|     VERIFY(g_scheduler_lock.is_locked_by_current_processor());
 | |
|     constexpr u32 stopped_signal_mask = (1 << (SIGCONT - 1)) | (1 << (SIGKILL - 1)) | (1 << (SIGTRAP - 1));
 | |
|     if (is_handling_page_fault())
 | |
|         return 0;
 | |
|     return m_state != Stopped ? m_pending_signals : m_pending_signals & stopped_signal_mask;
 | |
| }
 | |
| 
 | |
| void Thread::send_signal(u8 signal, [[maybe_unused]] Process* sender)
 | |
| {
 | |
|     VERIFY(signal < 32);
 | |
|     SpinlockLocker scheduler_lock(g_scheduler_lock);
 | |
| 
 | |
|     // FIXME: Figure out what to do for masked signals. Should we also ignore them here?
 | |
|     if (should_ignore_signal(signal)) {
 | |
|         dbgln_if(SIGNAL_DEBUG, "Signal {} was ignored by {}", signal, process());
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if constexpr (SIGNAL_DEBUG) {
 | |
|         if (sender)
 | |
|             dbgln("Signal: {} sent {} to {}", *sender, signal, process());
 | |
|         else
 | |
|             dbgln("Signal: Kernel send {} to {}", signal, process());
 | |
|     }
 | |
| 
 | |
|     m_pending_signals |= 1 << (signal - 1);
 | |
|     m_have_any_unmasked_pending_signals.store((pending_signals_for_state() & ~m_signal_mask) != 0, AK::memory_order_release);
 | |
| 
 | |
|     if (m_state == Stopped) {
 | |
|         SpinlockLocker lock(m_lock);
 | |
|         if (pending_signals_for_state() != 0) {
 | |
|             dbgln_if(SIGNAL_DEBUG, "Signal: Resuming stopped {} to deliver signal {}", *this, signal);
 | |
|             resume_from_stopped();
 | |
|         }
 | |
|     } else {
 | |
|         SpinlockLocker block_lock(m_block_lock);
 | |
|         dbgln_if(SIGNAL_DEBUG, "Signal: Unblocking {} to deliver signal {}", *this, signal);
 | |
|         unblock(signal);
 | |
|     }
 | |
| }
 | |
| 
 | |
| u32 Thread::update_signal_mask(u32 signal_mask)
 | |
| {
 | |
|     SpinlockLocker lock(g_scheduler_lock);
 | |
|     auto previous_signal_mask = m_signal_mask;
 | |
|     m_signal_mask = signal_mask;
 | |
|     m_have_any_unmasked_pending_signals.store((pending_signals_for_state() & ~m_signal_mask) != 0, AK::memory_order_release);
 | |
|     return previous_signal_mask;
 | |
| }
 | |
| 
 | |
| u32 Thread::signal_mask() const
 | |
| {
 | |
|     SpinlockLocker lock(g_scheduler_lock);
 | |
|     return m_signal_mask;
 | |
| }
 | |
| 
 | |
| u32 Thread::signal_mask_block(sigset_t signal_set, bool block)
 | |
| {
 | |
|     SpinlockLocker lock(g_scheduler_lock);
 | |
|     auto previous_signal_mask = m_signal_mask;
 | |
|     if (block)
 | |
|         m_signal_mask &= ~signal_set;
 | |
|     else
 | |
|         m_signal_mask |= signal_set;
 | |
|     m_have_any_unmasked_pending_signals.store((pending_signals_for_state() & ~m_signal_mask) != 0, AK::memory_order_release);
 | |
|     return previous_signal_mask;
 | |
| }
 | |
| 
 | |
| void Thread::clear_signals()
 | |
| {
 | |
|     SpinlockLocker lock(g_scheduler_lock);
 | |
|     m_signal_mask = 0;
 | |
|     m_pending_signals = 0;
 | |
|     m_have_any_unmasked_pending_signals.store(false, AK::memory_order_release);
 | |
|     m_signal_action_data.fill({});
 | |
| }
 | |
| 
 | |
| // Certain exceptions, such as SIGSEGV and SIGILL, put a
 | |
| // thread into a state where the signal handler must be
 | |
| // invoked immediately, otherwise it will continue to fault.
 | |
| // This function should be used in an exception handler to
 | |
| // ensure that when the thread resumes, it's executing in
 | |
| // the appropriate signal handler.
 | |
| void Thread::send_urgent_signal_to_self(u8 signal)
 | |
| {
 | |
|     VERIFY(Thread::current() == this);
 | |
|     DispatchSignalResult result;
 | |
|     {
 | |
|         SpinlockLocker lock(g_scheduler_lock);
 | |
|         result = dispatch_signal(signal);
 | |
|     }
 | |
|     if (result == DispatchSignalResult::Yield)
 | |
|         yield_and_release_relock_big_lock();
 | |
| }
 | |
| 
 | |
| DispatchSignalResult Thread::dispatch_one_pending_signal()
 | |
| {
 | |
|     VERIFY(m_lock.is_locked_by_current_processor());
 | |
|     u32 signal_candidates = pending_signals_for_state() & ~m_signal_mask;
 | |
|     if (signal_candidates == 0)
 | |
|         return DispatchSignalResult::Continue;
 | |
| 
 | |
|     u8 signal = 1;
 | |
|     for (; signal < 32; ++signal) {
 | |
|         if ((signal_candidates & (1 << (signal - 1))) != 0) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return dispatch_signal(signal);
 | |
| }
 | |
| 
 | |
| DispatchSignalResult Thread::try_dispatch_one_pending_signal(u8 signal)
 | |
| {
 | |
|     VERIFY(signal != 0);
 | |
|     SpinlockLocker scheduler_lock(g_scheduler_lock);
 | |
|     SpinlockLocker lock(m_lock);
 | |
|     u32 signal_candidates = pending_signals_for_state() & ~m_signal_mask;
 | |
|     if ((signal_candidates & (1 << (signal - 1))) == 0)
 | |
|         return DispatchSignalResult::Continue;
 | |
|     return dispatch_signal(signal);
 | |
| }
 | |
| 
 | |
| enum class DefaultSignalAction {
 | |
|     Terminate,
 | |
|     Ignore,
 | |
|     DumpCore,
 | |
|     Stop,
 | |
|     Continue,
 | |
| };
 | |
| 
 | |
| static DefaultSignalAction default_signal_action(u8 signal)
 | |
| {
 | |
|     VERIFY(signal && signal < NSIG);
 | |
| 
 | |
|     switch (signal) {
 | |
|     case SIGHUP:
 | |
|     case SIGINT:
 | |
|     case SIGKILL:
 | |
|     case SIGPIPE:
 | |
|     case SIGALRM:
 | |
|     case SIGUSR1:
 | |
|     case SIGUSR2:
 | |
|     case SIGVTALRM:
 | |
|     case SIGSTKFLT:
 | |
|     case SIGIO:
 | |
|     case SIGPROF:
 | |
|     case SIGTERM:
 | |
|         return DefaultSignalAction::Terminate;
 | |
|     case SIGCHLD:
 | |
|     case SIGURG:
 | |
|     case SIGWINCH:
 | |
|     case SIGINFO:
 | |
|         return DefaultSignalAction::Ignore;
 | |
|     case SIGQUIT:
 | |
|     case SIGILL:
 | |
|     case SIGTRAP:
 | |
|     case SIGABRT:
 | |
|     case SIGBUS:
 | |
|     case SIGFPE:
 | |
|     case SIGSEGV:
 | |
|     case SIGXCPU:
 | |
|     case SIGXFSZ:
 | |
|     case SIGSYS:
 | |
|         return DefaultSignalAction::DumpCore;
 | |
|     case SIGCONT:
 | |
|         return DefaultSignalAction::Continue;
 | |
|     case SIGSTOP:
 | |
|     case SIGTSTP:
 | |
|     case SIGTTIN:
 | |
|     case SIGTTOU:
 | |
|         return DefaultSignalAction::Stop;
 | |
|     default:
 | |
|         VERIFY_NOT_REACHED();
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool Thread::should_ignore_signal(u8 signal) const
 | |
| {
 | |
|     VERIFY(signal < 32);
 | |
|     auto const& action = m_signal_action_data[signal];
 | |
|     if (action.handler_or_sigaction.is_null())
 | |
|         return default_signal_action(signal) == DefaultSignalAction::Ignore;
 | |
|     return ((sighandler_t)action.handler_or_sigaction.get() == SIG_IGN);
 | |
| }
 | |
| 
 | |
| bool Thread::has_signal_handler(u8 signal) const
 | |
| {
 | |
|     VERIFY(signal < 32);
 | |
|     auto const& action = m_signal_action_data[signal];
 | |
|     return !action.handler_or_sigaction.is_null();
 | |
| }
 | |
| 
 | |
| static void push_value_on_user_stack(FlatPtr& stack, FlatPtr data)
 | |
| {
 | |
|     stack -= sizeof(FlatPtr);
 | |
|     auto result = copy_to_user((FlatPtr*)stack, &data);
 | |
|     VERIFY(!result.is_error());
 | |
| }
 | |
| 
 | |
| void Thread::resume_from_stopped()
 | |
| {
 | |
|     VERIFY(is_stopped());
 | |
|     VERIFY(m_stop_state != State::Invalid);
 | |
|     VERIFY(g_scheduler_lock.is_locked_by_current_processor());
 | |
|     if (m_stop_state == Blocked) {
 | |
|         SpinlockLocker block_lock(m_block_lock);
 | |
|         if (m_blocker || m_blocking_lock) {
 | |
|             // Hasn't been unblocked yet
 | |
|             set_state(Blocked, 0);
 | |
|         } else {
 | |
|             // Was unblocked while stopped
 | |
|             set_state(Runnable);
 | |
|         }
 | |
|     } else {
 | |
|         set_state(m_stop_state, 0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| DispatchSignalResult Thread::dispatch_signal(u8 signal)
 | |
| {
 | |
|     VERIFY_INTERRUPTS_DISABLED();
 | |
|     VERIFY(g_scheduler_lock.is_locked_by_current_processor());
 | |
|     VERIFY(signal > 0 && signal <= 32);
 | |
|     VERIFY(process().is_user_process());
 | |
|     VERIFY(this == Thread::current());
 | |
| 
 | |
|     dbgln_if(SIGNAL_DEBUG, "Dispatch signal {} to {}, state: {}", signal, *this, state_string());
 | |
| 
 | |
|     if (m_state == Invalid || !is_initialized()) {
 | |
|         // Thread has barely been created, we need to wait until it is
 | |
|         // at least in Runnable state and is_initialized() returns true,
 | |
|         // which indicates that it is fully set up an we actually have
 | |
|         // a register state on the stack that we can modify
 | |
|         return DispatchSignalResult::Deferred;
 | |
|     }
 | |
| 
 | |
|     VERIFY(previous_mode() == PreviousMode::UserMode);
 | |
| 
 | |
|     auto& action = m_signal_action_data[signal];
 | |
|     // FIXME: Implement SA_SIGINFO signal handlers.
 | |
|     VERIFY(!(action.flags & SA_SIGINFO));
 | |
| 
 | |
|     // Mark this signal as handled.
 | |
|     m_pending_signals &= ~(1 << (signal - 1));
 | |
|     m_have_any_unmasked_pending_signals.store((m_pending_signals & ~m_signal_mask) != 0, AK::memory_order_release);
 | |
| 
 | |
|     auto& process = this->process();
 | |
|     auto* tracer = process.tracer();
 | |
|     if (signal == SIGSTOP || (tracer && default_signal_action(signal) == DefaultSignalAction::DumpCore)) {
 | |
|         dbgln_if(SIGNAL_DEBUG, "Signal {} stopping this thread", signal);
 | |
|         set_state(State::Stopped, signal);
 | |
|         return DispatchSignalResult::Yield;
 | |
|     }
 | |
| 
 | |
|     if (signal == SIGCONT) {
 | |
|         dbgln("signal: SIGCONT resuming {}", *this);
 | |
|     } else {
 | |
|         if (tracer) {
 | |
|             // when a thread is traced, it should be stopped whenever it receives a signal
 | |
|             // the tracer is notified of this by using waitpid()
 | |
|             // only "pending signals" from the tracer are sent to the tracee
 | |
|             if (!tracer->has_pending_signal(signal)) {
 | |
|                 dbgln("signal: {} stopping {} for tracer", signal, *this);
 | |
|                 set_state(Stopped, signal);
 | |
|                 return DispatchSignalResult::Yield;
 | |
|             }
 | |
|             tracer->unset_signal(signal);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     auto handler_vaddr = action.handler_or_sigaction;
 | |
|     if (handler_vaddr.is_null()) {
 | |
|         switch (default_signal_action(signal)) {
 | |
|         case DefaultSignalAction::Stop:
 | |
|             set_state(Stopped, signal);
 | |
|             return DispatchSignalResult::Yield;
 | |
|         case DefaultSignalAction::DumpCore:
 | |
|             process.set_should_generate_coredump(true);
 | |
|             process.for_each_thread([](auto& thread) {
 | |
|                 thread.set_dump_backtrace_on_finalization();
 | |
|             });
 | |
|             [[fallthrough]];
 | |
|         case DefaultSignalAction::Terminate:
 | |
|             m_process->terminate_due_to_signal(signal);
 | |
|             return DispatchSignalResult::Terminate;
 | |
|         case DefaultSignalAction::Ignore:
 | |
|             VERIFY_NOT_REACHED();
 | |
|         case DefaultSignalAction::Continue:
 | |
|             return DispatchSignalResult::Continue;
 | |
|         }
 | |
|         VERIFY_NOT_REACHED();
 | |
|     }
 | |
| 
 | |
|     if ((sighandler_t)handler_vaddr.as_ptr() == SIG_IGN) {
 | |
|         dbgln_if(SIGNAL_DEBUG, "Ignored signal {}", signal);
 | |
|         return DispatchSignalResult::Continue;
 | |
|     }
 | |
| 
 | |
|     VERIFY(previous_mode() == PreviousMode::UserMode);
 | |
|     VERIFY(current_trap());
 | |
| 
 | |
|     ScopedAddressSpaceSwitcher switcher(m_process);
 | |
| 
 | |
|     u32 old_signal_mask = m_signal_mask;
 | |
|     u32 new_signal_mask = action.mask;
 | |
|     if ((action.flags & SA_NODEFER) == SA_NODEFER)
 | |
|         new_signal_mask &= ~(1 << (signal - 1));
 | |
|     else
 | |
|         new_signal_mask |= 1 << (signal - 1);
 | |
| 
 | |
|     m_signal_mask |= new_signal_mask;
 | |
|     m_have_any_unmasked_pending_signals.store((m_pending_signals & ~m_signal_mask) != 0, AK::memory_order_release);
 | |
| 
 | |
|     auto setup_stack = [&](RegisterState& state) {
 | |
|         FlatPtr stack = state.userspace_sp();
 | |
|         FlatPtr old_sp = stack;
 | |
|         FlatPtr ret_ip = state.ip();
 | |
|         FlatPtr ret_flags = state.flags();
 | |
| 
 | |
|         dbgln_if(SIGNAL_DEBUG, "Setting up user stack to return to IP {:p}, SP {:p}", ret_ip, old_sp);
 | |
| 
 | |
| #if ARCH(I386)
 | |
|         // Align the stack to 16 bytes.
 | |
|         // Note that we push 52 bytes (4 * 13) on to the stack
 | |
|         // before the return address, so we need to account for this here.
 | |
|         // 56 % 16 = 4, so we only need to take 4 bytes into consideration for
 | |
|         // the stack alignment.
 | |
|         FlatPtr stack_alignment = (stack - 4) % 16;
 | |
|         stack -= stack_alignment;
 | |
| 
 | |
|         push_value_on_user_stack(stack, ret_flags);
 | |
| 
 | |
|         push_value_on_user_stack(stack, ret_ip);
 | |
|         push_value_on_user_stack(stack, state.eax);
 | |
|         push_value_on_user_stack(stack, state.ecx);
 | |
|         push_value_on_user_stack(stack, state.edx);
 | |
|         push_value_on_user_stack(stack, state.ebx);
 | |
|         push_value_on_user_stack(stack, old_sp);
 | |
|         push_value_on_user_stack(stack, state.ebp);
 | |
|         push_value_on_user_stack(stack, state.esi);
 | |
|         push_value_on_user_stack(stack, state.edi);
 | |
| #else
 | |
|         // Align the stack to 16 bytes.
 | |
|         // Note that we push 168 bytes (8 * 21) on to the stack
 | |
|         // before the return address, so we need to account for this here.
 | |
|         // 168 % 16 = 8, so we only need to take 8 bytes into consideration for
 | |
|         // the stack alignment.
 | |
|         // We also are not allowed to touch the thread's red-zone of 128 bytes
 | |
|         FlatPtr stack_alignment = (stack - 8) % 16;
 | |
|         stack -= 128 + stack_alignment;
 | |
| 
 | |
|         push_value_on_user_stack(stack, ret_flags);
 | |
| 
 | |
|         push_value_on_user_stack(stack, ret_ip);
 | |
|         push_value_on_user_stack(stack, state.r15);
 | |
|         push_value_on_user_stack(stack, state.r14);
 | |
|         push_value_on_user_stack(stack, state.r13);
 | |
|         push_value_on_user_stack(stack, state.r12);
 | |
|         push_value_on_user_stack(stack, state.r11);
 | |
|         push_value_on_user_stack(stack, state.r10);
 | |
|         push_value_on_user_stack(stack, state.r9);
 | |
|         push_value_on_user_stack(stack, state.r8);
 | |
|         push_value_on_user_stack(stack, state.rax);
 | |
|         push_value_on_user_stack(stack, state.rcx);
 | |
|         push_value_on_user_stack(stack, state.rdx);
 | |
|         push_value_on_user_stack(stack, state.rbx);
 | |
|         push_value_on_user_stack(stack, old_sp);
 | |
|         push_value_on_user_stack(stack, state.rbp);
 | |
|         push_value_on_user_stack(stack, state.rsi);
 | |
|         push_value_on_user_stack(stack, state.rdi);
 | |
| #endif
 | |
| 
 | |
|         // PUSH old_signal_mask
 | |
|         push_value_on_user_stack(stack, old_signal_mask);
 | |
| 
 | |
|         push_value_on_user_stack(stack, signal);
 | |
|         push_value_on_user_stack(stack, handler_vaddr.get());
 | |
| 
 | |
|         VERIFY((stack % 16) == 0);
 | |
| 
 | |
|         push_value_on_user_stack(stack, 0); // push fake return address
 | |
| 
 | |
|         // We write back the adjusted stack value into the register state.
 | |
|         // We have to do this because we can't just pass around a reference to a packed field, as it's UB.
 | |
|         state.set_userspace_sp(stack);
 | |
|     };
 | |
| 
 | |
|     // We now place the thread state on the userspace stack.
 | |
|     // Note that we use a RegisterState.
 | |
|     // Conversely, when the thread isn't blocking the RegisterState may not be
 | |
|     // valid (fork, exec etc) but the tss will, so we use that instead.
 | |
|     auto& regs = get_register_dump_from_stack();
 | |
|     setup_stack(regs);
 | |
|     auto signal_trampoline_addr = process.signal_trampoline().get();
 | |
|     regs.set_ip(signal_trampoline_addr);
 | |
| 
 | |
|     dbgln_if(SIGNAL_DEBUG, "Thread in state '{}' has been primed with signal handler {:#04x}:{:p} to deliver {}", state_string(), m_regs.cs, m_regs.ip(), signal);
 | |
| 
 | |
|     return DispatchSignalResult::Continue;
 | |
| }
 | |
| 
 | |
| RegisterState& Thread::get_register_dump_from_stack()
 | |
| {
 | |
|     auto* trap = current_trap();
 | |
| 
 | |
|     // We should *always* have a trap. If we don't we're probably a kernel
 | |
|     // thread that hasn't been preempted. If we want to support this, we
 | |
|     // need to capture the registers probably into m_regs and return it
 | |
|     VERIFY(trap);
 | |
| 
 | |
|     while (trap) {
 | |
|         if (!trap->next_trap)
 | |
|             break;
 | |
|         trap = trap->next_trap;
 | |
|     }
 | |
|     return *trap->regs;
 | |
| }
 | |
| 
 | |
| ErrorOr<NonnullRefPtr<Thread>> Thread::try_clone(Process& process)
 | |
| {
 | |
|     auto clone = TRY(Thread::try_create(process));
 | |
|     auto signal_action_data_span = m_signal_action_data.span();
 | |
|     signal_action_data_span.copy_to(clone->m_signal_action_data.span());
 | |
|     clone->m_signal_mask = m_signal_mask;
 | |
|     clone->m_fpu_state = m_fpu_state;
 | |
|     clone->m_thread_specific_data = m_thread_specific_data;
 | |
|     return clone;
 | |
| }
 | |
| 
 | |
| void Thread::set_state(State new_state, u8 stop_signal)
 | |
| {
 | |
|     State previous_state;
 | |
|     VERIFY(g_scheduler_lock.is_locked_by_current_processor());
 | |
|     if (new_state == m_state)
 | |
|         return;
 | |
| 
 | |
|     {
 | |
|         SpinlockLocker thread_lock(m_lock);
 | |
|         previous_state = m_state;
 | |
|         if (previous_state == Invalid) {
 | |
|             // If we were *just* created, we may have already pending signals
 | |
|             if (has_unmasked_pending_signals()) {
 | |
|                 dbgln_if(THREAD_DEBUG, "Dispatch pending signals to new thread {}", *this);
 | |
|                 dispatch_one_pending_signal();
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         m_state = new_state;
 | |
|         dbgln_if(THREAD_DEBUG, "Set thread {} state to {}", *this, state_string());
 | |
|     }
 | |
| 
 | |
|     if (previous_state == Runnable) {
 | |
|         Scheduler::dequeue_runnable_thread(*this);
 | |
|     } else if (previous_state == Stopped) {
 | |
|         m_stop_state = State::Invalid;
 | |
|         auto& process = this->process();
 | |
|         if (process.set_stopped(false)) {
 | |
|             process.for_each_thread([&](auto& thread) {
 | |
|                 if (&thread == this)
 | |
|                     return;
 | |
|                 if (!thread.is_stopped())
 | |
|                     return;
 | |
|                 dbgln_if(THREAD_DEBUG, "Resuming peer thread {}", thread);
 | |
|                 thread.resume_from_stopped();
 | |
|             });
 | |
|             process.unblock_waiters(Thread::WaitBlocker::UnblockFlags::Continued);
 | |
|             // Tell the parent process (if any) about this change.
 | |
|             if (auto parent = Process::from_pid(process.ppid())) {
 | |
|                 [[maybe_unused]] auto result = parent->send_signal(SIGCHLD, &process);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (m_state == Runnable) {
 | |
|         Scheduler::enqueue_runnable_thread(*this);
 | |
|         Processor::smp_wake_n_idle_processors(1);
 | |
|     } else if (m_state == Stopped) {
 | |
|         // We don't want to restore to Running state, only Runnable!
 | |
|         m_stop_state = previous_state != Running ? previous_state : Runnable;
 | |
|         auto& process = this->process();
 | |
|         if (!process.set_stopped(true)) {
 | |
|             process.for_each_thread([&](auto& thread) {
 | |
|                 if (&thread == this)
 | |
|                     return;
 | |
|                 if (thread.is_stopped())
 | |
|                     return;
 | |
|                 dbgln_if(THREAD_DEBUG, "Stopping peer thread {}", thread);
 | |
|                 thread.set_state(Stopped, stop_signal);
 | |
|             });
 | |
|             process.unblock_waiters(Thread::WaitBlocker::UnblockFlags::Stopped, stop_signal);
 | |
|             // Tell the parent process (if any) about this change.
 | |
|             if (auto parent = Process::from_pid(process.ppid())) {
 | |
|                 [[maybe_unused]] auto result = parent->send_signal(SIGCHLD, &process);
 | |
|             }
 | |
|         }
 | |
|     } else if (m_state == Dying) {
 | |
|         VERIFY(previous_state != Blocked);
 | |
|         if (this != Thread::current() && is_finalizable()) {
 | |
|             // Some other thread set this thread to Dying, notify the
 | |
|             // finalizer right away as it can be cleaned up now
 | |
|             Scheduler::notify_finalizer();
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| struct RecognizedSymbol {
 | |
|     FlatPtr address;
 | |
|     const KernelSymbol* symbol { nullptr };
 | |
| };
 | |
| 
 | |
| static bool symbolicate(RecognizedSymbol const& symbol, Process& process, StringBuilder& builder)
 | |
| {
 | |
|     if (symbol.address == 0)
 | |
|         return false;
 | |
| 
 | |
|     bool mask_kernel_addresses = !process.is_superuser();
 | |
|     if (!symbol.symbol) {
 | |
|         if (!Memory::is_user_address(VirtualAddress(symbol.address))) {
 | |
|             builder.append("0xdeadc0de\n");
 | |
|         } else {
 | |
|             if (auto* region = process.address_space().find_region_containing({ VirtualAddress(symbol.address), sizeof(FlatPtr) })) {
 | |
|                 size_t offset = symbol.address - region->vaddr().get();
 | |
|                 if (auto region_name = region->name(); !region_name.is_null() && !region_name.is_empty())
 | |
|                     builder.appendff("{:p}  {} + {:#x}\n", (void*)symbol.address, region_name, offset);
 | |
|                 else
 | |
|                     builder.appendff("{:p}  {:p} + {:#x}\n", (void*)symbol.address, region->vaddr().as_ptr(), offset);
 | |
|             } else {
 | |
|                 builder.appendff("{:p}\n", symbol.address);
 | |
|             }
 | |
|         }
 | |
|         return true;
 | |
|     }
 | |
|     unsigned offset = symbol.address - symbol.symbol->address;
 | |
|     if (symbol.symbol->address == g_highest_kernel_symbol_address && offset > 4096) {
 | |
|         builder.appendff("{:p}\n", (void*)(mask_kernel_addresses ? 0xdeadc0de : symbol.address));
 | |
|     } else {
 | |
|         builder.appendff("{:p}  {} + {:#x}\n", (void*)(mask_kernel_addresses ? 0xdeadc0de : symbol.address), symbol.symbol->name, offset);
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| String Thread::backtrace()
 | |
| {
 | |
|     Vector<RecognizedSymbol, 128> recognized_symbols;
 | |
| 
 | |
|     auto& process = const_cast<Process&>(this->process());
 | |
|     auto stack_trace = Processor::capture_stack_trace(*this);
 | |
|     VERIFY(!g_scheduler_lock.is_locked_by_current_processor());
 | |
|     ScopedAddressSpaceSwitcher switcher(process);
 | |
|     for (auto& frame : stack_trace) {
 | |
|         if (Memory::is_user_range(VirtualAddress(frame), sizeof(FlatPtr) * 2)) {
 | |
|             recognized_symbols.append({ frame });
 | |
|         } else {
 | |
|             recognized_symbols.append({ frame, symbolicate_kernel_address(frame) });
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     StringBuilder builder;
 | |
|     for (auto& symbol : recognized_symbols) {
 | |
|         if (!symbolicate(symbol, process, builder))
 | |
|             break;
 | |
|     }
 | |
|     return builder.to_string();
 | |
| }
 | |
| 
 | |
| size_t Thread::thread_specific_region_alignment() const
 | |
| {
 | |
|     return max(process().m_master_tls_alignment, alignof(ThreadSpecificData));
 | |
| }
 | |
| 
 | |
| size_t Thread::thread_specific_region_size() const
 | |
| {
 | |
|     return align_up_to(process().m_master_tls_size, thread_specific_region_alignment()) + sizeof(ThreadSpecificData);
 | |
| }
 | |
| 
 | |
| ErrorOr<void> Thread::make_thread_specific_region(Badge<Process>)
 | |
| {
 | |
|     // The process may not require a TLS region, or allocate TLS later with sys$allocate_tls (which is what dynamically loaded programs do)
 | |
|     if (!process().m_master_tls_region)
 | |
|         return {};
 | |
| 
 | |
|     auto range = TRY(process().address_space().try_allocate_range({}, thread_specific_region_size()));
 | |
|     auto* region = TRY(process().address_space().allocate_region(range, "Thread-specific", PROT_READ | PROT_WRITE));
 | |
| 
 | |
|     m_thread_specific_range = range;
 | |
| 
 | |
|     SmapDisabler disabler;
 | |
|     auto* thread_specific_data = (ThreadSpecificData*)region->vaddr().offset(align_up_to(process().m_master_tls_size, thread_specific_region_alignment())).as_ptr();
 | |
|     auto* thread_local_storage = (u8*)((u8*)thread_specific_data) - align_up_to(process().m_master_tls_size, process().m_master_tls_alignment);
 | |
|     m_thread_specific_data = VirtualAddress(thread_specific_data);
 | |
|     thread_specific_data->self = thread_specific_data;
 | |
| 
 | |
|     if (process().m_master_tls_size != 0)
 | |
|         memcpy(thread_local_storage, process().m_master_tls_region.unsafe_ptr()->vaddr().as_ptr(), process().m_master_tls_size);
 | |
| 
 | |
|     return {};
 | |
| }
 | |
| 
 | |
| RefPtr<Thread> Thread::from_tid(ThreadID tid)
 | |
| {
 | |
|     return Thread::all_instances().with([&](auto& list) -> RefPtr<Thread> {
 | |
|         for (Thread& thread : list) {
 | |
|             if (thread.tid() == tid)
 | |
|                 return thread;
 | |
|         }
 | |
|         return nullptr;
 | |
|     });
 | |
| }
 | |
| 
 | |
| void Thread::reset_fpu_state()
 | |
| {
 | |
|     memcpy(&m_fpu_state, &Processor::clean_fpu_state(), sizeof(FPUState));
 | |
| }
 | |
| 
 | |
| bool Thread::should_be_stopped() const
 | |
| {
 | |
|     return process().is_stopped();
 | |
| }
 | |
| 
 | |
| void Thread::track_lock_acquire(LockRank rank)
 | |
| {
 | |
|     // Nothing to do for locks without a rank.
 | |
|     if (rank == LockRank::None)
 | |
|         return;
 | |
| 
 | |
|     if (m_lock_rank_mask != LockRank::None) {
 | |
|         // Verify we are only attempting to take a lock of a higher rank.
 | |
|         VERIFY(m_lock_rank_mask > rank);
 | |
|     }
 | |
| 
 | |
|     m_lock_rank_mask |= rank;
 | |
| }
 | |
| 
 | |
| void Thread::track_lock_release(LockRank rank)
 | |
| {
 | |
|     // Nothing to do for locks without a rank.
 | |
|     if (rank == LockRank::None)
 | |
|         return;
 | |
| 
 | |
|     // The rank value from the caller should only contain a single bit, otherwise
 | |
|     // we are disabling the tracking for multiple locks at once which will corrupt
 | |
|     // the lock tracking mask, and we will assert somewhere else.
 | |
|     auto rank_is_a_single_bit = [](auto rank_enum) -> bool {
 | |
|         auto rank = to_underlying(rank_enum);
 | |
|         auto rank_without_least_significant_bit = rank - 1;
 | |
|         return (rank & rank_without_least_significant_bit) == 0;
 | |
|     };
 | |
| 
 | |
|     // We can't release locks out of order, as that would violate the ranking.
 | |
|     // This is validated by toggling the least significant bit of the mask, and
 | |
|     // then bit wise or-ing the rank we are trying to release with the resulting
 | |
|     // mask. If the rank we are releasing is truly the highest rank then the mask
 | |
|     // we get back will be equal to the current mask of stored on the thread.
 | |
|     auto rank_is_in_order = [](auto mask_enum, auto rank_enum) -> bool {
 | |
|         auto mask = to_underlying(mask_enum);
 | |
|         auto rank = to_underlying(rank_enum);
 | |
|         auto mask_without_least_significant_bit = mask - 1;
 | |
|         return ((mask & mask_without_least_significant_bit) | rank) == mask;
 | |
|     };
 | |
| 
 | |
|     VERIFY(has_flag(m_lock_rank_mask, rank));
 | |
|     VERIFY(rank_is_a_single_bit(rank));
 | |
|     VERIFY(rank_is_in_order(m_lock_rank_mask, rank));
 | |
| 
 | |
|     m_lock_rank_mask ^= rank;
 | |
| }
 | |
| 
 | |
| }
 | |
| 
 | |
| ErrorOr<void> AK::Formatter<Kernel::Thread>::format(FormatBuilder& builder, Kernel::Thread const& value)
 | |
| {
 | |
|     return AK::Formatter<FormatString>::format(
 | |
|         builder,
 | |
|         "{}({}:{})", value.process().name(), value.pid().value(), value.tid().value());
 | |
| }
 |