mirror of
https://github.com/RGBCube/serenity
synced 2025-05-16 23:15:07 +00:00

AK's version should see better inlining behaviors, than the LibM one. We avoid mixed usage for now though. Also clean up some stale math includes and improper floatingpoint usage.
127 lines
4.3 KiB
C++
127 lines
4.3 KiB
C++
/*
|
|
* Copyright (c) 2020, the SerenityOS developers.
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "Color.h"
|
|
#include <AK/Math.h>
|
|
#include <xmmintrin.h>
|
|
|
|
#include <AK/SIMD.h>
|
|
|
|
#define GAMMA 2.2
|
|
|
|
// Most computer graphics are stored in the sRGB color space, which stores something close to
|
|
// the square root of the display intensity of each color channel. This is problematic for most
|
|
// operations that we want to perform on colors, since they typically assume that color scales
|
|
// linearly (e.g. rgb(127, 0, 0) is half as bright as rgb(255, 0, 0)). This causes incorrect
|
|
// results that look more gray than they should, to fix this we have to convert colors to the linear
|
|
// color space before performing these operations, then convert back before displaying.
|
|
//
|
|
// Conversion between linear and sRGB spaces are somewhat expensive to do on the CPU, so we instead
|
|
// interpret sRGB colors as gamma2.2 colors, which are close enough in most cases to be indistinguishable.
|
|
// Gamma 2.2 colors follow the simple rule of `display_intensity = pow(stored_intensity, 2.2)`.
|
|
// This module implements some fast color space transforms between the gamma2.2 and linear color spaces, plus
|
|
// some common primitive operations like blending.
|
|
//
|
|
// For a more in-depth overview of how gamma-adjustment works, check out:
|
|
// https://blog.johnnovak.net/2016/09/21/what-every-coder-should-know-about-gamma/
|
|
|
|
namespace Gfx {
|
|
|
|
using AK::SIMD::f32x4;
|
|
|
|
#ifndef NO_FPU
|
|
|
|
# ifdef __SSE__
|
|
|
|
// Transform f32x4 from gamma2.2 space to linear space
|
|
// Assumes x is in range [0, 1]
|
|
// FIXME: Remove this hack once clang-11 is available as the default in Github Actions.
|
|
// This is apparently sometime mid-December. https://github.com/actions/virtual-environments/issues/2130
|
|
# if !defined(__clang__) || __clang_major__ >= 11
|
|
constexpr f32x4 gamma_to_linear4(f32x4 x)
|
|
# else
|
|
inline f32x4 gamma_to_linear4(f32x4 x)
|
|
# endif
|
|
{
|
|
return (0.8f + 0.2f * x) * x * x;
|
|
}
|
|
|
|
// Transform f32x4 from linear space to gamma2.2 space
|
|
// Assumes x is in range [0, 1]
|
|
inline f32x4 linear_to_gamma4(f32x4 x)
|
|
{
|
|
// Source for approximation: https://mimosa-pudica.net/fast-gamma/
|
|
constexpr float a = 0.00279491f;
|
|
constexpr float b = 1.15907984f;
|
|
float c = (b / AK::sqrt(1.0f + a)) - 1;
|
|
return ((b * __builtin_ia32_rsqrtps(x + a)) - c) * x;
|
|
}
|
|
|
|
// Linearize v1 and v2, lerp them by mix factor, then convert back.
|
|
// The output is entirely v1 when mix = 0 and entirely v2 when mix = 1
|
|
inline f32x4 gamma_accurate_lerp4(f32x4 v1, f32x4 v2, float mix)
|
|
{
|
|
return linear_to_gamma4(gamma_to_linear4(v1) * (1 - mix) + gamma_to_linear4(v2) * mix);
|
|
}
|
|
|
|
# endif
|
|
|
|
// Transform scalar from gamma2.2 space to linear space
|
|
// Assumes x is in range [0, 1]
|
|
constexpr float gamma_to_linear(float x)
|
|
{
|
|
return (0.8f + 0.2f * x) * x * x;
|
|
}
|
|
|
|
// Transform scalar from linear space to gamma2.2 space
|
|
// Assumes x is in range [0, 1]
|
|
inline float linear_to_gamma(float x)
|
|
{
|
|
// Source for approximation: https://mimosa-pudica.net/fast-gamma/
|
|
constexpr float a = 0.00279491;
|
|
constexpr float b = 1.15907984;
|
|
float c = (b / AK::sqrt(1 + a)) - 1;
|
|
return ((b / AK::sqrt(x + a)) - c) * x;
|
|
}
|
|
|
|
// Linearize v1 and v2, lerp them by mix factor, then convert back.
|
|
// The output is entirely v1 when mix = 0 and entirely v2 when mix = 1
|
|
inline float gamma_accurate_lerp(float v1, float v2, float mix)
|
|
{
|
|
return linear_to_gamma(gamma_to_linear(v1) * (1 - mix) + gamma_to_linear(v2) * mix);
|
|
}
|
|
|
|
// Convert a and b to linear space, blend them by mix factor, then convert back.
|
|
// The output is entirely a when mix = 0 and entirely b when mix = 1
|
|
inline Color gamma_accurate_blend(Color a, Color b, float mix)
|
|
{
|
|
# ifdef __SSE__
|
|
f32x4 ac = {
|
|
(float)a.red(),
|
|
(float)a.green(),
|
|
(float)a.blue(),
|
|
};
|
|
f32x4 bc = {
|
|
(float)b.red(),
|
|
(float)b.green(),
|
|
(float)b.blue(),
|
|
};
|
|
f32x4 out = 255.f * gamma_accurate_lerp4(ac * (1.f / 255.f), bc * (1.f / 255.f), mix);
|
|
return Color(out[0], out[1], out[2]);
|
|
# else
|
|
return {
|
|
static_cast<u8>(255.f * gamma_accurate_lerp(a.red() / 255.f, b.red() / 255.f, mix)),
|
|
static_cast<u8>(255.f * gamma_accurate_lerp(a.green() / 255.f, b.green() / 255.f, mix)),
|
|
static_cast<u8>(255.f * gamma_accurate_lerp(a.blue() / 255.f, b.blue() / 255.f, mix)),
|
|
};
|
|
# endif
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|