1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-18 01:55:07 +00:00
serenity/Userland/Libraries/LibVideo/VP9/TreeParser.cpp
Zaggy1024 7d27273dc7 LibVideo: Ensure that syntax element counts don't overflow
Integer overflow could sometimes occur due to counts going above 255,
where the values should instead be clamped at their maximum to avoid
wrapping to 0.
2022-10-09 20:32:40 -06:00

759 lines
29 KiB
C++

/*
* Copyright (c) 2021, Hunter Salyer <thefalsehonesty@gmail.com>
* Copyright (c) 2022, Gregory Bertilson <zaggy1024@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include "TreeParser.h"
#include "LookupTables.h"
#include "Parser.h"
namespace Video::VP9 {
template<typename T>
ErrorOr<T> TreeParser::parse_tree(SyntaxElementType type)
{
auto tree_selection = select_tree(type);
int value;
if (tree_selection.is_single_value()) {
value = tree_selection.get_single_value();
} else {
auto tree = tree_selection.get_tree_value();
int n = 0;
do {
n = tree[n + TRY(m_decoder.m_bit_stream->read_bool(select_tree_probability(type, n >> 1)))];
} while (n > 0);
value = -n;
}
count_syntax_element(type, value);
return static_cast<T>(value);
}
template ErrorOr<int> TreeParser::parse_tree(SyntaxElementType);
template ErrorOr<bool> TreeParser::parse_tree(SyntaxElementType);
template ErrorOr<u8> TreeParser::parse_tree(SyntaxElementType);
template ErrorOr<u32> TreeParser::parse_tree(SyntaxElementType);
template ErrorOr<IntraMode> TreeParser::parse_tree(SyntaxElementType);
template ErrorOr<TXSize> TreeParser::parse_tree(SyntaxElementType);
template ErrorOr<InterpolationFilter> TreeParser::parse_tree(SyntaxElementType);
template ErrorOr<ReferenceMode> TreeParser::parse_tree(SyntaxElementType);
template ErrorOr<Token> TreeParser::parse_tree(SyntaxElementType);
template ErrorOr<MvClass> TreeParser::parse_tree(SyntaxElementType);
template ErrorOr<MvJoint> TreeParser::parse_tree(SyntaxElementType);
/*
* Select a tree value based on the type of syntax element being parsed, as well as some parser state, as specified in section 9.3.1
*/
TreeParser::TreeSelection TreeParser::select_tree(SyntaxElementType type)
{
switch (type) {
case SyntaxElementType::Partition:
if (m_decoder.m_has_rows && m_decoder.m_has_cols)
return { partition_tree };
if (m_decoder.m_has_cols)
return { cols_partition_tree };
if (m_decoder.m_has_rows)
return { rows_partition_tree };
return { PartitionSplit };
case SyntaxElementType::DefaultIntraMode:
case SyntaxElementType::DefaultUVMode:
case SyntaxElementType::IntraMode:
case SyntaxElementType::SubIntraMode:
case SyntaxElementType::UVMode:
return { intra_mode_tree };
case SyntaxElementType::SegmentID:
return { segment_tree };
case SyntaxElementType::Skip:
case SyntaxElementType::SegIDPredicted:
case SyntaxElementType::IsInter:
case SyntaxElementType::CompMode:
case SyntaxElementType::CompRef:
case SyntaxElementType::SingleRefP1:
case SyntaxElementType::SingleRefP2:
case SyntaxElementType::MVSign:
case SyntaxElementType::MVClass0Bit:
case SyntaxElementType::MVBit:
case SyntaxElementType::MoreCoefs:
return { binary_tree };
case SyntaxElementType::TXSize:
if (m_decoder.m_max_tx_size == TX_32x32)
return { tx_size_32_tree };
if (m_decoder.m_max_tx_size == TX_16x16)
return { tx_size_16_tree };
return { tx_size_8_tree };
case SyntaxElementType::InterMode:
return { inter_mode_tree };
case SyntaxElementType::InterpFilter:
return { interp_filter_tree };
case SyntaxElementType::MVJoint:
return { mv_joint_tree };
case SyntaxElementType::MVClass:
return { mv_class_tree };
case SyntaxElementType::MVClass0FR:
case SyntaxElementType::MVFR:
return { mv_fr_tree };
case SyntaxElementType::MVClass0HP:
case SyntaxElementType::MVHP:
if (m_decoder.m_use_hp)
return { binary_tree };
return { 1 };
case SyntaxElementType::Token:
return { token_tree };
}
VERIFY_NOT_REACHED();
}
/*
* Select a probability with which to read a boolean when decoding a tree, as specified in section 9.3.2
*/
u8 TreeParser::select_tree_probability(SyntaxElementType type, u8 node)
{
switch (type) {
case SyntaxElementType::Partition:
return calculate_partition_probability(node);
case SyntaxElementType::DefaultIntraMode:
return calculate_default_intra_mode_probability(node);
case SyntaxElementType::DefaultUVMode:
return calculate_default_uv_mode_probability(node);
case SyntaxElementType::IntraMode:
return calculate_intra_mode_probability(node);
case SyntaxElementType::SubIntraMode:
return calculate_sub_intra_mode_probability(node);
case SyntaxElementType::UVMode:
return calculate_uv_mode_probability(node);
case SyntaxElementType::SegmentID:
return calculate_segment_id_probability(node);
case SyntaxElementType::Skip:
return calculate_skip_probability();
case SyntaxElementType::SegIDPredicted:
return calculate_seg_id_predicted_probability();
case SyntaxElementType::IsInter:
return calculate_is_inter_probability();
case SyntaxElementType::CompMode:
return calculate_comp_mode_probability();
case SyntaxElementType::CompRef:
return calculate_comp_ref_probability();
case SyntaxElementType::SingleRefP1:
return calculate_single_ref_p1_probability();
case SyntaxElementType::SingleRefP2:
return calculate_single_ref_p2_probability();
case SyntaxElementType::MVSign:
return m_decoder.m_probability_tables->mv_sign_prob()[m_mv_component];
case SyntaxElementType::MVClass0Bit:
return m_decoder.m_probability_tables->mv_class0_bit_prob()[m_mv_component];
case SyntaxElementType::MVBit:
VERIFY(m_mv_bit < MV_OFFSET_BITS);
return m_decoder.m_probability_tables->mv_bits_prob()[m_mv_component][m_mv_bit];
case SyntaxElementType::TXSize:
return calculate_tx_size_probability(node);
case SyntaxElementType::InterMode:
return calculate_inter_mode_probability(node);
case SyntaxElementType::InterpFilter:
return calculate_interp_filter_probability(node);
case SyntaxElementType::MVJoint:
return m_decoder.m_probability_tables->mv_joint_probs()[node];
case SyntaxElementType::MVClass:
// Spec doesn't mention node, but the probabilities table has an extra dimension
// so we will use node for that.
return m_decoder.m_probability_tables->mv_class_probs()[m_mv_component][node];
case SyntaxElementType::MVClass0FR:
VERIFY(m_mv_class0_bit < CLASS0_SIZE);
return m_decoder.m_probability_tables->mv_class0_fr_probs()[m_mv_component][m_mv_class0_bit][node];
case SyntaxElementType::MVClass0HP:
return m_decoder.m_probability_tables->mv_class0_hp_prob()[m_mv_component];
case SyntaxElementType::MVFR:
return m_decoder.m_probability_tables->mv_fr_probs()[m_mv_component][node];
case SyntaxElementType::MVHP:
return m_decoder.m_probability_tables->mv_hp_prob()[m_mv_component];
case SyntaxElementType::Token:
return calculate_token_probability(node);
case SyntaxElementType::MoreCoefs:
return calculate_more_coefs_probability();
}
TODO();
}
#define ABOVE_FRAME_0 m_decoder.m_above_ref_frame[0]
#define ABOVE_FRAME_1 m_decoder.m_above_ref_frame[1]
#define LEFT_FRAME_0 m_decoder.m_left_ref_frame[0]
#define LEFT_FRAME_1 m_decoder.m_left_ref_frame[1]
#define AVAIL_U m_decoder.m_available_u
#define AVAIL_L m_decoder.m_available_l
#define ABOVE_INTRA m_decoder.m_above_intra
#define LEFT_INTRA m_decoder.m_left_intra
#define ABOVE_SINGLE m_decoder.m_above_single
#define LEFT_SINGLE m_decoder.m_left_single
u8 TreeParser::calculate_partition_probability(u8 node)
{
int node2;
if (m_decoder.m_has_rows && m_decoder.m_has_cols) {
node2 = node;
} else if (m_decoder.m_has_cols) {
node2 = 1;
} else {
node2 = 2;
}
u32 above = 0;
u32 left = 0;
auto bsl = mi_width_log2_lookup[m_decoder.m_block_subsize];
auto block_offset = mi_width_log2_lookup[Block_64x64] - bsl;
for (auto i = 0; i < m_decoder.m_num_8x8; i++) {
above |= m_decoder.m_above_partition_context[m_decoder.m_col + i];
left |= m_decoder.m_left_partition_context[m_decoder.m_row + i];
}
above = (above & (1 << block_offset)) > 0;
left = (left & (1 << block_offset)) > 0;
m_ctx = bsl * 4 + left * 2 + above;
if (m_decoder.m_frame_is_intra)
return m_decoder.m_probability_tables->kf_partition_probs()[m_ctx][node2];
return m_decoder.m_probability_tables->partition_probs()[m_ctx][node2];
}
u8 TreeParser::calculate_default_intra_mode_probability(u8 node)
{
u32 above_mode, left_mode;
if (m_decoder.m_mi_size >= Block_8x8) {
above_mode = AVAIL_U
? m_decoder.m_sub_modes[m_decoder.get_image_index(m_decoder.m_mi_row - 1, m_decoder.m_mi_col)][2]
: DcPred;
left_mode = AVAIL_L
? m_decoder.m_sub_modes[m_decoder.get_image_index(m_decoder.m_mi_row, m_decoder.m_mi_col - 1)][1]
: DcPred;
} else {
if (m_idy) {
above_mode = m_decoder.m_block_sub_modes[m_idx];
} else {
above_mode = AVAIL_U
? m_decoder.m_sub_modes[m_decoder.get_image_index(m_decoder.m_mi_row - 1, m_decoder.m_mi_col)][2 + m_idx]
: DcPred;
}
if (m_idx) {
left_mode = m_decoder.m_block_sub_modes[m_idy * 2];
} else {
left_mode = AVAIL_L
? m_decoder.m_sub_modes[m_decoder.get_image_index(m_decoder.m_mi_row, m_decoder.m_mi_col - 1)][1 + m_idy * 2]
: DcPred;
}
}
return m_decoder.m_probability_tables->kf_y_mode_probs()[above_mode][left_mode][node];
}
u8 TreeParser::calculate_default_uv_mode_probability(u8 node)
{
return m_decoder.m_probability_tables->kf_uv_mode_prob()[m_decoder.m_y_mode][node];
}
u8 TreeParser::calculate_intra_mode_probability(u8 node)
{
m_ctx = size_group_lookup[m_decoder.m_mi_size];
return m_decoder.m_probability_tables->y_mode_probs()[m_ctx][node];
}
u8 TreeParser::calculate_sub_intra_mode_probability(u8 node)
{
m_ctx = 0;
return m_decoder.m_probability_tables->y_mode_probs()[m_ctx][node];
}
u8 TreeParser::calculate_uv_mode_probability(u8 node)
{
m_ctx = m_decoder.m_y_mode;
return m_decoder.m_probability_tables->uv_mode_probs()[m_ctx][node];
}
u8 TreeParser::calculate_segment_id_probability(u8 node)
{
return m_decoder.m_segmentation_tree_probs[node];
}
u8 TreeParser::calculate_skip_probability()
{
m_ctx = 0;
if (AVAIL_U)
m_ctx += m_decoder.m_skips[(m_decoder.m_mi_row - 1) * m_decoder.m_mi_cols + m_decoder.m_mi_col];
if (AVAIL_L)
m_ctx += m_decoder.m_skips[m_decoder.m_mi_row * m_decoder.m_mi_cols + m_decoder.m_mi_col - 1];
return m_decoder.m_probability_tables->skip_prob()[m_ctx];
}
u8 TreeParser::calculate_seg_id_predicted_probability()
{
m_ctx = m_decoder.m_left_seg_pred_context[m_decoder.m_mi_row] + m_decoder.m_above_seg_pred_context[m_decoder.m_mi_col];
return m_decoder.m_segmentation_pred_prob[m_ctx];
}
u8 TreeParser::calculate_is_inter_probability()
{
if (AVAIL_U && AVAIL_L) {
m_ctx = (LEFT_INTRA && ABOVE_INTRA) ? 3 : LEFT_INTRA || ABOVE_INTRA;
} else if (AVAIL_U || AVAIL_L) {
m_ctx = 2 * (AVAIL_U ? ABOVE_INTRA : LEFT_INTRA);
} else {
m_ctx = 0;
}
return m_decoder.m_probability_tables->is_inter_prob()[m_ctx];
}
u8 TreeParser::calculate_comp_mode_probability()
{
if (AVAIL_U && AVAIL_L) {
if (ABOVE_SINGLE && LEFT_SINGLE) {
auto is_above_fixed = ABOVE_FRAME_0 == m_decoder.m_comp_fixed_ref;
auto is_left_fixed = LEFT_FRAME_0 == m_decoder.m_comp_fixed_ref;
m_ctx = is_above_fixed ^ is_left_fixed;
} else if (ABOVE_SINGLE) {
auto is_above_fixed = ABOVE_FRAME_0 == m_decoder.m_comp_fixed_ref;
m_ctx = 2 + (is_above_fixed || ABOVE_INTRA);
} else if (LEFT_SINGLE) {
auto is_left_fixed = LEFT_FRAME_0 == m_decoder.m_comp_fixed_ref;
m_ctx = 2 + (is_left_fixed || LEFT_INTRA);
} else {
m_ctx = 4;
}
} else if (AVAIL_U) {
if (ABOVE_SINGLE) {
m_ctx = ABOVE_FRAME_0 == m_decoder.m_comp_fixed_ref;
} else {
m_ctx = 3;
}
} else if (AVAIL_L) {
if (LEFT_SINGLE) {
m_ctx = LEFT_FRAME_0 == m_decoder.m_comp_fixed_ref;
} else {
m_ctx = 3;
}
} else {
m_ctx = 1;
}
return m_decoder.m_probability_tables->comp_mode_prob()[m_ctx];
}
u8 TreeParser::calculate_comp_ref_probability()
{
auto fix_ref_idx = m_decoder.m_ref_frame_sign_bias[m_decoder.m_comp_fixed_ref];
auto var_ref_idx = !fix_ref_idx;
if (AVAIL_U && AVAIL_L) {
if (ABOVE_INTRA && LEFT_INTRA) {
m_ctx = 2;
} else if (LEFT_INTRA) {
if (ABOVE_SINGLE) {
m_ctx = 1 + 2 * (ABOVE_FRAME_0 != m_decoder.m_comp_var_ref[1]);
} else {
m_ctx = 1 + 2 * (m_decoder.m_above_ref_frame[var_ref_idx] != m_decoder.m_comp_var_ref[1]);
}
} else if (ABOVE_INTRA) {
if (LEFT_SINGLE) {
m_ctx = 1 + 2 * (LEFT_FRAME_0 != m_decoder.m_comp_var_ref[1]);
} else {
m_ctx = 1 + 2 * (m_decoder.m_left_ref_frame[var_ref_idx] != m_decoder.m_comp_var_ref[1]);
}
} else {
auto var_ref_above = m_decoder.m_above_ref_frame[ABOVE_SINGLE ? 0 : var_ref_idx];
auto var_ref_left = m_decoder.m_left_ref_frame[LEFT_SINGLE ? 0 : var_ref_idx];
if (var_ref_above == var_ref_left && m_decoder.m_comp_var_ref[1] == var_ref_above) {
m_ctx = 0;
} else if (LEFT_SINGLE && ABOVE_SINGLE) {
if ((var_ref_above == m_decoder.m_comp_fixed_ref && var_ref_left == m_decoder.m_comp_var_ref[0])
|| (var_ref_left == m_decoder.m_comp_fixed_ref && var_ref_above == m_decoder.m_comp_var_ref[0])) {
m_ctx = 4;
} else if (var_ref_above == var_ref_left) {
m_ctx = 3;
} else {
m_ctx = 1;
}
} else if (LEFT_SINGLE || ABOVE_SINGLE) {
auto vrfc = LEFT_SINGLE ? var_ref_above : var_ref_left;
auto rfs = ABOVE_SINGLE ? var_ref_above : var_ref_left;
if (vrfc == m_decoder.m_comp_var_ref[1] && rfs != m_decoder.m_comp_var_ref[1]) {
m_ctx = 1;
} else if (rfs == m_decoder.m_comp_var_ref[1] && vrfc != m_decoder.m_comp_var_ref[1]) {
m_ctx = 2;
} else {
m_ctx = 4;
}
} else if (var_ref_above == var_ref_left) {
m_ctx = 4;
} else {
m_ctx = 2;
}
}
} else if (AVAIL_U) {
if (ABOVE_INTRA) {
m_ctx = 2;
} else {
if (ABOVE_SINGLE) {
m_ctx = 3 * (ABOVE_FRAME_0 != m_decoder.m_comp_var_ref[1]);
} else {
m_ctx = 4 * (m_decoder.m_above_ref_frame[var_ref_idx] != m_decoder.m_comp_var_ref[1]);
}
}
} else if (AVAIL_L) {
if (LEFT_INTRA) {
m_ctx = 2;
} else {
if (LEFT_SINGLE) {
m_ctx = 3 * (LEFT_FRAME_0 != m_decoder.m_comp_var_ref[1]);
} else {
m_ctx = 4 * (m_decoder.m_left_ref_frame[var_ref_idx] != m_decoder.m_comp_var_ref[1]);
}
}
} else {
m_ctx = 2;
}
return m_decoder.m_probability_tables->comp_ref_prob()[m_ctx];
}
u8 TreeParser::calculate_single_ref_p1_probability()
{
if (AVAIL_U && AVAIL_L) {
if (ABOVE_INTRA && LEFT_INTRA) {
m_ctx = 2;
} else if (LEFT_INTRA) {
if (ABOVE_SINGLE) {
m_ctx = 4 * (ABOVE_FRAME_0 == LastFrame);
} else {
m_ctx = 1 + (ABOVE_FRAME_0 == LastFrame || ABOVE_FRAME_1 == LastFrame);
}
} else if (ABOVE_INTRA) {
if (LEFT_SINGLE) {
m_ctx = 4 * (LEFT_FRAME_0 == LastFrame);
} else {
m_ctx = 1 + (LEFT_FRAME_0 == LastFrame || LEFT_FRAME_1 == LastFrame);
}
} else {
if (LEFT_SINGLE && ABOVE_SINGLE) {
m_ctx = 2 * (ABOVE_FRAME_0 == LastFrame) + 2 * (LEFT_FRAME_0 == LastFrame);
} else if (!LEFT_SINGLE && !ABOVE_SINGLE) {
auto above_is_last = ABOVE_FRAME_0 == LastFrame || ABOVE_FRAME_1 == LastFrame;
auto left_is_last = LEFT_FRAME_0 == LastFrame || LEFT_FRAME_1 == LastFrame;
m_ctx = 1 + (above_is_last || left_is_last);
} else {
auto rfs = ABOVE_SINGLE ? ABOVE_FRAME_0 : LEFT_FRAME_0;
auto crf1 = ABOVE_SINGLE ? LEFT_FRAME_0 : ABOVE_FRAME_0;
auto crf2 = ABOVE_SINGLE ? LEFT_FRAME_1 : ABOVE_FRAME_1;
m_ctx = crf1 == LastFrame || crf2 == LastFrame;
if (rfs == LastFrame)
m_ctx += 3;
}
}
} else if (AVAIL_U) {
if (ABOVE_INTRA) {
m_ctx = 2;
} else {
if (ABOVE_SINGLE) {
m_ctx = 4 * (ABOVE_FRAME_0 == LastFrame);
} else {
m_ctx = 1 + (ABOVE_FRAME_0 == LastFrame || ABOVE_FRAME_1 == LastFrame);
}
}
} else if (AVAIL_L) {
if (LEFT_INTRA) {
m_ctx = 2;
} else {
if (LEFT_SINGLE) {
m_ctx = 4 * (LEFT_FRAME_0 == LastFrame);
} else {
m_ctx = 1 + (LEFT_FRAME_0 == LastFrame || LEFT_FRAME_1 == LastFrame);
}
}
} else {
m_ctx = 2;
}
return m_decoder.m_probability_tables->single_ref_prob()[m_ctx][0];
}
u8 TreeParser::calculate_single_ref_p2_probability()
{
if (AVAIL_U && AVAIL_L) {
if (ABOVE_INTRA && LEFT_INTRA) {
m_ctx = 2;
} else if (LEFT_INTRA) {
if (ABOVE_SINGLE) {
if (ABOVE_FRAME_0 == LastFrame) {
m_ctx = 3;
} else {
m_ctx = 4 * (ABOVE_FRAME_0 == GoldenFrame);
}
} else {
m_ctx = 1 + 2 * (ABOVE_FRAME_0 == GoldenFrame || ABOVE_FRAME_1 == GoldenFrame);
}
} else if (ABOVE_INTRA) {
if (LEFT_SINGLE) {
if (LEFT_FRAME_0 == LastFrame) {
m_ctx = 3;
} else {
m_ctx = 4 * (LEFT_FRAME_0 == GoldenFrame);
}
} else {
m_ctx = 1 + 2 * (LEFT_FRAME_0 == GoldenFrame || LEFT_FRAME_1 == GoldenFrame);
}
} else {
if (LEFT_SINGLE && ABOVE_SINGLE) {
auto above_last = ABOVE_FRAME_0 == LastFrame;
auto left_last = LEFT_FRAME_0 == LastFrame;
if (above_last && left_last) {
m_ctx = 3;
} else if (above_last) {
m_ctx = 4 * (LEFT_FRAME_0 == GoldenFrame);
} else if (left_last) {
m_ctx = 4 * (ABOVE_FRAME_0 == GoldenFrame);
} else {
m_ctx = 2 * (ABOVE_FRAME_0 == GoldenFrame) + 2 * (LEFT_FRAME_0 == GoldenFrame);
}
} else if (!LEFT_SINGLE && !ABOVE_SINGLE) {
if (ABOVE_FRAME_0 == LEFT_FRAME_0 && ABOVE_FRAME_1 == LEFT_FRAME_1) {
m_ctx = 3 * (ABOVE_FRAME_0 == GoldenFrame || ABOVE_FRAME_1 == GoldenFrame);
} else {
m_ctx = 2;
}
} else {
auto rfs = ABOVE_SINGLE ? ABOVE_FRAME_0 : LEFT_FRAME_0;
auto crf1 = ABOVE_SINGLE ? LEFT_FRAME_0 : ABOVE_FRAME_0;
auto crf2 = ABOVE_SINGLE ? LEFT_FRAME_1 : ABOVE_FRAME_1;
m_ctx = crf1 == GoldenFrame || crf2 == GoldenFrame;
if (rfs == GoldenFrame) {
m_ctx += 3;
} else if (rfs != AltRefFrame) {
m_ctx = 1 + (2 * m_ctx);
}
}
}
} else if (AVAIL_U) {
if (ABOVE_INTRA || (ABOVE_FRAME_0 == LastFrame && ABOVE_SINGLE)) {
m_ctx = 2;
} else if (ABOVE_SINGLE) {
m_ctx = 4 * (ABOVE_FRAME_0 == GoldenFrame);
} else {
m_ctx = 3 * (ABOVE_FRAME_0 == GoldenFrame || ABOVE_FRAME_1 == GoldenFrame);
}
} else if (AVAIL_L) {
if (LEFT_INTRA || (LEFT_FRAME_0 == LastFrame && LEFT_SINGLE)) {
m_ctx = 2;
} else if (LEFT_SINGLE) {
m_ctx = 4 * (LEFT_FRAME_0 == GoldenFrame);
} else {
m_ctx = 3 * (LEFT_FRAME_0 == GoldenFrame || LEFT_FRAME_1 == GoldenFrame);
}
} else {
m_ctx = 2;
}
return m_decoder.m_probability_tables->single_ref_prob()[m_ctx][1];
}
u8 TreeParser::calculate_tx_size_probability(u8 node)
{
auto above = m_decoder.m_max_tx_size;
auto left = m_decoder.m_max_tx_size;
if (AVAIL_U) {
auto u_pos = (m_decoder.m_mi_row - 1) * m_decoder.m_mi_cols + m_decoder.m_mi_col;
if (!m_decoder.m_skips[u_pos])
above = m_decoder.m_tx_sizes[u_pos];
}
if (AVAIL_L) {
auto l_pos = m_decoder.m_mi_row * m_decoder.m_mi_cols + m_decoder.m_mi_col - 1;
if (!m_decoder.m_skips[l_pos])
left = m_decoder.m_tx_sizes[l_pos];
}
if (!AVAIL_L)
left = above;
if (!AVAIL_U)
above = left;
m_ctx = (above + left) > m_decoder.m_max_tx_size;
return m_decoder.m_probability_tables->tx_probs()[m_decoder.m_max_tx_size][m_ctx][node];
}
u8 TreeParser::calculate_inter_mode_probability(u8 node)
{
m_ctx = m_decoder.m_mode_context[m_decoder.m_ref_frame[0]];
return m_decoder.m_probability_tables->inter_mode_probs()[m_ctx][node];
}
u8 TreeParser::calculate_interp_filter_probability(u8 node)
{
// NOTE: SWITCHABLE_FILTERS is not used in the spec for this function. Therefore, the number
// was demystified by referencing the reference codec libvpx:
// https://github.com/webmproject/libvpx/blob/705bf9de8c96cfe5301451f1d7e5c90a41c64e5f/vp9/common/vp9_pred_common.h#L69
auto left_interp = (AVAIL_L && m_decoder.m_left_ref_frame[0] > IntraFrame)
? m_decoder.m_interp_filters[m_decoder.get_image_index(m_decoder.m_mi_row, m_decoder.m_mi_col - 1)]
: SWITCHABLE_FILTERS;
auto above_interp = (AVAIL_U && m_decoder.m_above_ref_frame[0] > IntraFrame)
? m_decoder.m_interp_filters[m_decoder.get_image_index(m_decoder.m_mi_row - 1, m_decoder.m_mi_col)]
: SWITCHABLE_FILTERS;
if (left_interp == above_interp)
m_ctx = left_interp;
else if (left_interp == SWITCHABLE_FILTERS)
m_ctx = above_interp;
else if (above_interp == SWITCHABLE_FILTERS)
m_ctx = left_interp;
else
m_ctx = SWITCHABLE_FILTERS;
return m_decoder.m_probability_tables->interp_filter_probs()[m_ctx][node];
}
void TreeParser::set_tokens_variables(u8 band, u32 c, u32 plane, TXSize tx_size, u32 pos)
{
m_band = band;
m_c = c;
m_plane = plane;
m_tx_size = tx_size;
m_pos = pos;
if (m_c == 0) {
auto sx = m_plane > 0 ? m_decoder.m_subsampling_x : 0;
auto sy = m_plane > 0 ? m_decoder.m_subsampling_y : 0;
auto max_x = (2 * m_decoder.m_mi_cols) >> sx;
auto max_y = (2 * m_decoder.m_mi_rows) >> sy;
u8 numpts = 1 << m_tx_size;
auto x4 = m_start_x >> 2;
auto y4 = m_start_y >> 2;
u32 above = 0;
u32 left = 0;
for (size_t i = 0; i < numpts; i++) {
if (x4 + i < max_x)
above |= m_decoder.m_above_nonzero_context[m_plane][x4 + i];
if (y4 + i < max_y)
left |= m_decoder.m_left_nonzero_context[m_plane][y4 + i];
}
m_ctx = above + left;
} else {
u32 neighbor_0, neighbor_1;
auto n = 4 << m_tx_size;
auto i = m_pos / n;
auto j = m_pos % n;
auto a = i > 0 ? (i - 1) * n + j : 0;
auto a2 = i * n + j - 1;
if (i > 0 && j > 0) {
if (m_decoder.m_tx_type == DCT_ADST) {
neighbor_0 = a;
neighbor_1 = a;
} else if (m_decoder.m_tx_type == ADST_DCT) {
neighbor_0 = a2;
neighbor_1 = a2;
} else {
neighbor_0 = a;
neighbor_1 = a2;
}
} else if (i > 0) {
neighbor_0 = a;
neighbor_1 = a;
} else {
neighbor_0 = a2;
neighbor_1 = a2;
}
m_ctx = (1 + m_decoder.m_token_cache[neighbor_0] + m_decoder.m_token_cache[neighbor_1]) >> 1;
}
}
u8 TreeParser::calculate_more_coefs_probability()
{
return m_decoder.m_probability_tables->coef_probs()[m_tx_size][m_plane > 0][m_decoder.m_is_inter][m_band][m_ctx][0];
}
u8 TreeParser::calculate_token_probability(u8 node)
{
auto prob = m_decoder.m_probability_tables->coef_probs()[m_tx_size][m_plane > 0][m_decoder.m_is_inter][m_band][m_ctx][min(2, 1 + node)];
if (node < 2)
return prob;
auto x = (prob - 1) / 2;
auto& pareto_table = m_decoder.m_probability_tables->pareto_table();
if (prob & 1)
return pareto_table[x][node - 2];
return (pareto_table[x][node - 2] + pareto_table[x + 1][node - 2]) >> 1;
}
void TreeParser::count_syntax_element(SyntaxElementType type, int value)
{
auto increment = [](u8& count) {
count = min(static_cast<u32>(count) + 1, 255);
};
switch (type) {
case SyntaxElementType::Partition:
increment(m_decoder.m_syntax_element_counter->m_counts_partition[m_ctx][value]);
return;
case SyntaxElementType::IntraMode:
case SyntaxElementType::SubIntraMode:
increment(m_decoder.m_syntax_element_counter->m_counts_intra_mode[m_ctx][value]);
return;
case SyntaxElementType::UVMode:
increment(m_decoder.m_syntax_element_counter->m_counts_uv_mode[m_ctx][value]);
return;
case SyntaxElementType::Skip:
increment(m_decoder.m_syntax_element_counter->m_counts_skip[m_ctx][value]);
return;
case SyntaxElementType::IsInter:
increment(m_decoder.m_syntax_element_counter->m_counts_is_inter[m_ctx][value]);
return;
case SyntaxElementType::CompMode:
increment(m_decoder.m_syntax_element_counter->m_counts_comp_mode[m_ctx][value]);
return;
case SyntaxElementType::CompRef:
increment(m_decoder.m_syntax_element_counter->m_counts_comp_ref[m_ctx][value]);
return;
case SyntaxElementType::SingleRefP1:
increment(m_decoder.m_syntax_element_counter->m_counts_single_ref[m_ctx][0][value]);
return;
case SyntaxElementType::SingleRefP2:
increment(m_decoder.m_syntax_element_counter->m_counts_single_ref[m_ctx][1][value]);
return;
case SyntaxElementType::MVSign:
increment(m_decoder.m_syntax_element_counter->m_counts_mv_sign[m_mv_component][value]);
return;
case SyntaxElementType::MVClass0Bit:
increment(m_decoder.m_syntax_element_counter->m_counts_mv_class0_bit[m_mv_component][value]);
return;
case SyntaxElementType::MVBit:
VERIFY(m_mv_bit < MV_OFFSET_BITS);
increment(m_decoder.m_syntax_element_counter->m_counts_mv_bits[m_mv_component][m_mv_bit][value]);
m_mv_bit = 0xFF;
return;
case SyntaxElementType::TXSize:
increment(m_decoder.m_syntax_element_counter->m_counts_tx_size[m_decoder.m_max_tx_size][m_ctx][value]);
return;
case SyntaxElementType::InterMode:
increment(m_decoder.m_syntax_element_counter->m_counts_inter_mode[m_ctx][value]);
return;
case SyntaxElementType::InterpFilter:
increment(m_decoder.m_syntax_element_counter->m_counts_interp_filter[m_ctx][value]);
return;
case SyntaxElementType::MVJoint:
increment(m_decoder.m_syntax_element_counter->m_counts_mv_joint[value]);
return;
case SyntaxElementType::MVClass:
increment(m_decoder.m_syntax_element_counter->m_counts_mv_class[m_mv_component][value]);
return;
case SyntaxElementType::MVClass0FR:
VERIFY(m_mv_class0_bit < CLASS0_SIZE);
increment(m_decoder.m_syntax_element_counter->m_counts_mv_class0_fr[m_mv_component][m_mv_class0_bit][value]);
m_mv_class0_bit = 0xFF;
return;
case SyntaxElementType::MVClass0HP:
increment(m_decoder.m_syntax_element_counter->m_counts_mv_class0_hp[m_mv_component][value]);
return;
case SyntaxElementType::MVFR:
increment(m_decoder.m_syntax_element_counter->m_counts_mv_fr[m_mv_component][value]);
return;
case SyntaxElementType::MVHP:
increment(m_decoder.m_syntax_element_counter->m_counts_mv_hp[m_mv_component][value]);
return;
case SyntaxElementType::Token:
increment(m_decoder.m_syntax_element_counter->m_counts_token[m_tx_size][m_plane > 0][m_decoder.m_is_inter][m_band][m_ctx][min(2, value)]);
return;
case SyntaxElementType::MoreCoefs:
increment(m_decoder.m_syntax_element_counter->m_counts_more_coefs[m_tx_size][m_plane > 0][m_decoder.m_is_inter][m_band][m_ctx][value]);
return;
case SyntaxElementType::DefaultIntraMode:
case SyntaxElementType::DefaultUVMode:
case SyntaxElementType::SegmentID:
case SyntaxElementType::SegIDPredicted:
// No counting required
return;
}
TODO();
}
}