mirror of
				https://github.com/RGBCube/serenity
				synced 2025-10-31 22:02:44 +00:00 
			
		
		
		
	 046c23f567
			
		
	
	
		046c23f567
		
	
	
	
	
		
			
			Make Userland and Tests users just include signal.h, and move Kernel users to the new API file.
		
			
				
	
	
		
			1473 lines
		
	
	
	
		
			53 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1473 lines
		
	
	
	
		
			53 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
 | |
|  *
 | |
|  * SPDX-License-Identifier: BSD-2-Clause
 | |
|  */
 | |
| 
 | |
| #include <AK/ScopeGuard.h>
 | |
| #include <AK/Singleton.h>
 | |
| #include <AK/StringBuilder.h>
 | |
| #include <AK/TemporaryChange.h>
 | |
| #include <AK/Time.h>
 | |
| #include <Kernel/API/POSIX/signal_numbers.h>
 | |
| #include <Kernel/Arch/SmapDisabler.h>
 | |
| #include <Kernel/Arch/TrapFrame.h>
 | |
| #include <Kernel/Debug.h>
 | |
| #include <Kernel/Devices/KCOVDevice.h>
 | |
| #include <Kernel/FileSystem/OpenFileDescription.h>
 | |
| #include <Kernel/InterruptDisabler.h>
 | |
| #include <Kernel/KSyms.h>
 | |
| #include <Kernel/Memory/MemoryManager.h>
 | |
| #include <Kernel/Memory/PageDirectory.h>
 | |
| #include <Kernel/Memory/ScopedAddressSpaceSwitcher.h>
 | |
| #include <Kernel/Panic.h>
 | |
| #include <Kernel/PerformanceEventBuffer.h>
 | |
| #include <Kernel/Process.h>
 | |
| #include <Kernel/ProcessExposed.h>
 | |
| #include <Kernel/Scheduler.h>
 | |
| #include <Kernel/Sections.h>
 | |
| #include <Kernel/Thread.h>
 | |
| #include <Kernel/ThreadTracer.h>
 | |
| #include <Kernel/TimerQueue.h>
 | |
| #include <Kernel/kstdio.h>
 | |
| 
 | |
| namespace Kernel {
 | |
| 
 | |
| static Singleton<SpinlockProtected<Thread::GlobalList, LockRank::None>> s_list;
 | |
| 
 | |
| SpinlockProtected<Thread::GlobalList, LockRank::None>& Thread::all_instances()
 | |
| {
 | |
|     return *s_list;
 | |
| }
 | |
| 
 | |
| ErrorOr<NonnullLockRefPtr<Thread>> Thread::try_create(NonnullLockRefPtr<Process> process)
 | |
| {
 | |
|     auto kernel_stack_region = TRY(MM.allocate_kernel_region(default_kernel_stack_size, {}, Memory::Region::Access::ReadWrite, AllocationStrategy::AllocateNow));
 | |
|     kernel_stack_region->set_stack(true);
 | |
| 
 | |
|     auto block_timer = TRY(try_make_lock_ref_counted<Timer>());
 | |
| 
 | |
|     auto name = TRY(KString::try_create(process->name()));
 | |
|     return adopt_nonnull_lock_ref_or_enomem(new (nothrow) Thread(move(process), move(kernel_stack_region), move(block_timer), move(name)));
 | |
| }
 | |
| 
 | |
| Thread::Thread(NonnullLockRefPtr<Process> process, NonnullOwnPtr<Memory::Region> kernel_stack_region, NonnullLockRefPtr<Timer> block_timer, NonnullOwnPtr<KString> name)
 | |
|     : m_process(move(process))
 | |
|     , m_kernel_stack_region(move(kernel_stack_region))
 | |
|     , m_name(move(name))
 | |
|     , m_block_timer(move(block_timer))
 | |
| {
 | |
|     bool is_first_thread = m_process->add_thread(*this);
 | |
|     if (is_first_thread) {
 | |
|         // First thread gets TID == PID
 | |
|         m_tid = m_process->pid().value();
 | |
|     } else {
 | |
|         m_tid = Process::allocate_pid().value();
 | |
|     }
 | |
| 
 | |
|     // FIXME: Handle KString allocation failure.
 | |
|     m_kernel_stack_region->set_name(MUST(KString::formatted("Kernel stack (thread {})", m_tid.value())));
 | |
| 
 | |
|     Thread::all_instances().with([&](auto& list) {
 | |
|         list.append(*this);
 | |
|     });
 | |
| 
 | |
|     if constexpr (THREAD_DEBUG)
 | |
|         dbgln("Created new thread {}({}:{})", m_process->name(), m_process->pid().value(), m_tid.value());
 | |
| 
 | |
|     reset_fpu_state();
 | |
| 
 | |
|     m_kernel_stack_base = m_kernel_stack_region->vaddr().get();
 | |
|     m_kernel_stack_top = m_kernel_stack_region->vaddr().offset(default_kernel_stack_size).get() & ~(FlatPtr)0x7u;
 | |
| 
 | |
|     m_process->address_space().with([&](auto& space) {
 | |
|         m_regs.set_initial_state(m_process->is_kernel_process(), *space, m_kernel_stack_top);
 | |
|     });
 | |
| 
 | |
|     // We need to add another reference if we could successfully create
 | |
|     // all the resources needed for this thread. The reason for this is that
 | |
|     // we don't want to delete this thread after dropping the reference,
 | |
|     // it may still be running or scheduled to be run.
 | |
|     // The finalizer is responsible for dropping this reference once this
 | |
|     // thread is ready to be cleaned up.
 | |
|     ref();
 | |
| }
 | |
| 
 | |
| Thread::~Thread()
 | |
| {
 | |
|     VERIFY(!m_process_thread_list_node.is_in_list());
 | |
| 
 | |
|     // We shouldn't be queued
 | |
|     VERIFY(m_runnable_priority < 0);
 | |
| }
 | |
| 
 | |
| Thread::BlockResult Thread::block_impl(BlockTimeout const& timeout, Blocker& blocker)
 | |
| {
 | |
|     VERIFY(!Processor::current_in_irq());
 | |
|     VERIFY(this == Thread::current());
 | |
|     ScopedCritical critical;
 | |
| 
 | |
|     SpinlockLocker scheduler_lock(g_scheduler_lock);
 | |
| 
 | |
|     SpinlockLocker block_lock(m_block_lock);
 | |
|     // We need to hold m_block_lock so that nobody can unblock a blocker as soon
 | |
|     // as it is constructed and registered elsewhere
 | |
| 
 | |
|     ScopeGuard finalize_guard([&] {
 | |
|         blocker.finalize();
 | |
|     });
 | |
| 
 | |
|     if (!blocker.setup_blocker()) {
 | |
|         blocker.will_unblock_immediately_without_blocking(Blocker::UnblockImmediatelyReason::UnblockConditionAlreadyMet);
 | |
|         return BlockResult::NotBlocked;
 | |
|     }
 | |
| 
 | |
|     // Relaxed semantics are fine for timeout_unblocked because we
 | |
|     // synchronize on the spin locks already.
 | |
|     Atomic<bool, AK::MemoryOrder::memory_order_relaxed> timeout_unblocked(false);
 | |
|     bool timer_was_added = false;
 | |
| 
 | |
|     switch (state()) {
 | |
|     case Thread::State::Stopped:
 | |
|         // It's possible that we were requested to be stopped!
 | |
|         break;
 | |
|     case Thread::State::Running:
 | |
|         VERIFY(m_blocker == nullptr);
 | |
|         break;
 | |
|     default:
 | |
|         VERIFY_NOT_REACHED();
 | |
|     }
 | |
| 
 | |
|     m_blocker = &blocker;
 | |
| 
 | |
|     if (auto& block_timeout = blocker.override_timeout(timeout); !block_timeout.is_infinite()) {
 | |
|         // Process::kill_all_threads may be called at any time, which will mark all
 | |
|         // threads to die. In that case
 | |
|         timer_was_added = TimerQueue::the().add_timer_without_id(*m_block_timer, block_timeout.clock_id(), block_timeout.absolute_time(), [&]() {
 | |
|             VERIFY(!Processor::current_in_irq());
 | |
|             VERIFY(!g_scheduler_lock.is_locked_by_current_processor());
 | |
|             VERIFY(!m_block_lock.is_locked_by_current_processor());
 | |
|             // NOTE: this may execute on the same or any other processor!
 | |
|             SpinlockLocker scheduler_lock(g_scheduler_lock);
 | |
|             SpinlockLocker block_lock(m_block_lock);
 | |
|             if (m_blocker && !timeout_unblocked.exchange(true))
 | |
|                 unblock();
 | |
|         });
 | |
|         if (!timer_was_added) {
 | |
|             // Timeout is already in the past
 | |
|             blocker.will_unblock_immediately_without_blocking(Blocker::UnblockImmediatelyReason::TimeoutInThePast);
 | |
|             m_blocker = nullptr;
 | |
|             return BlockResult::InterruptedByTimeout;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     blocker.begin_blocking({});
 | |
| 
 | |
|     set_state(Thread::State::Blocked);
 | |
| 
 | |
|     block_lock.unlock();
 | |
|     scheduler_lock.unlock();
 | |
| 
 | |
|     dbgln_if(THREAD_DEBUG, "Thread {} blocking on {} ({}) -->", *this, &blocker, blocker.state_string());
 | |
|     bool did_timeout = false;
 | |
|     u32 lock_count_to_restore = 0;
 | |
|     auto previous_locked = unlock_process_if_locked(lock_count_to_restore);
 | |
|     for (;;) {
 | |
|         // Yield to the scheduler, and wait for us to resume unblocked.
 | |
|         VERIFY(!g_scheduler_lock.is_locked_by_current_processor());
 | |
|         VERIFY(Processor::in_critical());
 | |
|         yield_without_releasing_big_lock();
 | |
|         VERIFY(Processor::in_critical());
 | |
| 
 | |
|         SpinlockLocker block_lock2(m_block_lock);
 | |
|         if (m_blocker && !m_blocker->can_be_interrupted() && !m_should_die) {
 | |
|             block_lock2.unlock();
 | |
|             dbgln("Thread should not be unblocking, current state: {}", state_string());
 | |
|             set_state(Thread::State::Blocked);
 | |
|             continue;
 | |
|         }
 | |
|         // Prevent the timeout from unblocking this thread if it happens to
 | |
|         // be in the process of firing already
 | |
|         did_timeout |= timeout_unblocked.exchange(true);
 | |
|         if (m_blocker) {
 | |
|             // Remove ourselves...
 | |
|             VERIFY(m_blocker == &blocker);
 | |
|             m_blocker = nullptr;
 | |
|         }
 | |
|         dbgln_if(THREAD_DEBUG, "<-- Thread {} unblocked from {} ({})", *this, &blocker, blocker.state_string());
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     // Notify the blocker that we are no longer blocking. It may need
 | |
|     // to clean up now while we're still holding m_lock
 | |
|     auto result = blocker.end_blocking({}, did_timeout); // calls was_unblocked internally
 | |
| 
 | |
|     if (timer_was_added && !did_timeout) {
 | |
|         // Cancel the timer while not holding any locks. This allows
 | |
|         // the timer function to complete before we remove it
 | |
|         // (e.g. if it's on another processor)
 | |
|         TimerQueue::the().cancel_timer(*m_block_timer);
 | |
|     }
 | |
|     if (previous_locked != LockMode::Unlocked) {
 | |
|         // NOTE: This may trigger another call to Thread::block().
 | |
|         relock_process(previous_locked, lock_count_to_restore);
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| void Thread::block(Kernel::Mutex& lock, SpinlockLocker<Spinlock<LockRank::None>>& lock_lock, u32 lock_count)
 | |
| {
 | |
|     VERIFY(!Processor::current_in_irq());
 | |
|     VERIFY(this == Thread::current());
 | |
|     ScopedCritical critical;
 | |
| 
 | |
|     SpinlockLocker scheduler_lock(g_scheduler_lock);
 | |
|     SpinlockLocker block_lock(m_block_lock);
 | |
| 
 | |
|     switch (state()) {
 | |
|     case Thread::State::Stopped:
 | |
|         // It's possible that we were requested to be stopped!
 | |
|         break;
 | |
|     case Thread::State::Running:
 | |
|         VERIFY(m_blocker == nullptr);
 | |
|         break;
 | |
|     default:
 | |
|         dbgln("Error: Attempting to block with invalid thread state - {}", state_string());
 | |
|         VERIFY_NOT_REACHED();
 | |
|     }
 | |
| 
 | |
|     // If we're blocking on the big-lock we may actually be in the process
 | |
|     // of unblocking from another lock. If that's the case m_blocking_mutex
 | |
|     // is already set
 | |
|     auto& big_lock = process().big_lock();
 | |
|     VERIFY((&lock == &big_lock && m_blocking_mutex != &big_lock) || !m_blocking_mutex);
 | |
| 
 | |
|     auto* previous_blocking_mutex = m_blocking_mutex;
 | |
|     m_blocking_mutex = &lock;
 | |
|     m_lock_requested_count = lock_count;
 | |
| 
 | |
|     set_state(Thread::State::Blocked);
 | |
| 
 | |
|     block_lock.unlock();
 | |
|     scheduler_lock.unlock();
 | |
| 
 | |
|     lock_lock.unlock();
 | |
| 
 | |
|     dbgln_if(THREAD_DEBUG, "Thread {} blocking on Mutex {}", *this, &lock);
 | |
| 
 | |
|     for (;;) {
 | |
|         // Yield to the scheduler, and wait for us to resume unblocked.
 | |
|         VERIFY(!g_scheduler_lock.is_locked_by_current_processor());
 | |
|         VERIFY(Processor::in_critical());
 | |
|         if (&lock != &big_lock && big_lock.is_exclusively_locked_by_current_thread()) {
 | |
|             // We're locking another lock and already hold the big lock...
 | |
|             // We need to release the big lock
 | |
|             yield_and_release_relock_big_lock();
 | |
|         } else {
 | |
|             // By the time we've reached this another thread might have
 | |
|             // marked us as holding the big lock, so this call must not
 | |
|             // verify that we're not holding it.
 | |
|             yield_without_releasing_big_lock(VerifyLockNotHeld::No);
 | |
|         }
 | |
|         VERIFY(Processor::in_critical());
 | |
| 
 | |
|         SpinlockLocker block_lock2(m_block_lock);
 | |
|         VERIFY(!m_blocking_mutex);
 | |
|         m_blocking_mutex = previous_blocking_mutex;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     lock_lock.lock();
 | |
| }
 | |
| 
 | |
| u32 Thread::unblock_from_mutex(Kernel::Mutex& mutex)
 | |
| {
 | |
|     SpinlockLocker scheduler_lock(g_scheduler_lock);
 | |
|     SpinlockLocker block_lock(m_block_lock);
 | |
| 
 | |
|     VERIFY(!Processor::current_in_irq());
 | |
|     VERIFY(m_blocking_mutex == &mutex);
 | |
| 
 | |
|     dbgln_if(THREAD_DEBUG, "Thread {} unblocked from Mutex {}", *this, &mutex);
 | |
| 
 | |
|     auto requested_count = m_lock_requested_count;
 | |
| 
 | |
|     m_blocking_mutex = nullptr;
 | |
|     if (Thread::current() == this) {
 | |
|         set_state(Thread::State::Running);
 | |
|         return requested_count;
 | |
|     }
 | |
|     VERIFY(m_state != Thread::State::Runnable && m_state != Thread::State::Running);
 | |
|     set_state(Thread::State::Runnable);
 | |
|     return requested_count;
 | |
| }
 | |
| 
 | |
| void Thread::unblock_from_blocker(Blocker& blocker)
 | |
| {
 | |
|     auto do_unblock = [&]() {
 | |
|         SpinlockLocker scheduler_lock(g_scheduler_lock);
 | |
|         SpinlockLocker block_lock(m_block_lock);
 | |
|         if (m_blocker != &blocker)
 | |
|             return;
 | |
|         if (!should_be_stopped() && !is_stopped())
 | |
|             unblock();
 | |
|     };
 | |
|     if (Processor::current_in_irq() != 0) {
 | |
|         Processor::deferred_call_queue([do_unblock = move(do_unblock), self = try_make_weak_ptr().release_value_but_fixme_should_propagate_errors()]() {
 | |
|             if (auto this_thread = self.strong_ref())
 | |
|                 do_unblock();
 | |
|         });
 | |
|     } else {
 | |
|         do_unblock();
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Thread::unblock(u8 signal)
 | |
| {
 | |
|     VERIFY(!Processor::current_in_irq());
 | |
|     VERIFY(g_scheduler_lock.is_locked_by_current_processor());
 | |
|     VERIFY(m_block_lock.is_locked_by_current_processor());
 | |
|     if (m_state != Thread::State::Blocked)
 | |
|         return;
 | |
|     if (m_blocking_mutex)
 | |
|         return;
 | |
|     VERIFY(m_blocker);
 | |
|     if (signal != 0) {
 | |
|         if (is_handling_page_fault()) {
 | |
|             // Don't let signals unblock threads that are blocked inside a page fault handler.
 | |
|             // This prevents threads from EINTR'ing the inode read in an inode page fault.
 | |
|             // FIXME: There's probably a better way to solve this.
 | |
|             return;
 | |
|         }
 | |
|         if (!m_blocker->can_be_interrupted() && !m_should_die)
 | |
|             return;
 | |
|         m_blocker->set_interrupted_by_signal(signal);
 | |
|     }
 | |
|     m_blocker = nullptr;
 | |
|     if (Thread::current() == this) {
 | |
|         set_state(Thread::State::Running);
 | |
|         return;
 | |
|     }
 | |
|     VERIFY(m_state != Thread::State::Runnable && m_state != Thread::State::Running);
 | |
|     set_state(Thread::State::Runnable);
 | |
| }
 | |
| 
 | |
| void Thread::set_should_die()
 | |
| {
 | |
|     if (m_should_die) {
 | |
|         dbgln("{} Should already die", *this);
 | |
|         return;
 | |
|     }
 | |
|     ScopedCritical critical;
 | |
| 
 | |
|     // Remember that we should die instead of returning to
 | |
|     // the userspace.
 | |
|     SpinlockLocker lock(g_scheduler_lock);
 | |
|     m_should_die = true;
 | |
| 
 | |
|     // NOTE: Even the current thread can technically be in "Stopped"
 | |
|     // state! This is the case when another thread sent a SIGSTOP to
 | |
|     // it while it was running and it calls e.g. exit() before
 | |
|     // the scheduler gets involved again.
 | |
|     if (is_stopped()) {
 | |
|         // If we were stopped, we need to briefly resume so that
 | |
|         // the kernel stacks can clean up. We won't ever return back
 | |
|         // to user mode, though
 | |
|         VERIFY(!process().is_stopped());
 | |
|         resume_from_stopped();
 | |
|     }
 | |
|     if (is_blocked()) {
 | |
|         SpinlockLocker block_lock(m_block_lock);
 | |
|         if (m_blocker) {
 | |
|             // We're blocked in the kernel.
 | |
|             m_blocker->set_interrupted_by_death();
 | |
|             unblock();
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Thread::die_if_needed()
 | |
| {
 | |
|     VERIFY(Thread::current() == this);
 | |
| 
 | |
|     if (!m_should_die)
 | |
|         return;
 | |
| 
 | |
|     u32 unlock_count;
 | |
|     [[maybe_unused]] auto rc = unlock_process_if_locked(unlock_count);
 | |
| 
 | |
|     dbgln_if(THREAD_DEBUG, "Thread {} is dying", *this);
 | |
| 
 | |
|     {
 | |
|         SpinlockLocker lock(g_scheduler_lock);
 | |
|         // It's possible that we don't reach the code after this block if the
 | |
|         // scheduler is invoked and FinalizerTask cleans up this thread, however
 | |
|         // that doesn't matter because we're trying to invoke the scheduler anyway
 | |
|         set_state(Thread::State::Dying);
 | |
|     }
 | |
| 
 | |
|     ScopedCritical critical;
 | |
| 
 | |
|     // Flag a context switch. Because we're in a critical section,
 | |
|     // Scheduler::yield will actually only mark a pending context switch
 | |
|     // Simply leaving the critical section would not necessarily trigger
 | |
|     // a switch.
 | |
|     Scheduler::yield();
 | |
| 
 | |
|     // Now leave the critical section so that we can also trigger the
 | |
|     // actual context switch
 | |
|     Processor::clear_critical();
 | |
|     dbgln("die_if_needed returned from clear_critical!!! in irq: {}", Processor::current_in_irq());
 | |
|     // We should never get here, but the scoped scheduler lock
 | |
|     // will be released by Scheduler::context_switch again
 | |
|     VERIFY_NOT_REACHED();
 | |
| }
 | |
| 
 | |
| void Thread::exit(void* exit_value)
 | |
| {
 | |
|     VERIFY(Thread::current() == this);
 | |
|     m_join_blocker_set.thread_did_exit(exit_value);
 | |
|     set_should_die();
 | |
|     u32 unlock_count;
 | |
|     [[maybe_unused]] auto rc = unlock_process_if_locked(unlock_count);
 | |
|     if (m_thread_specific_range.has_value()) {
 | |
|         process().address_space().with([&](auto& space) {
 | |
|             auto* region = space->find_region_from_range(m_thread_specific_range.value());
 | |
|             space->deallocate_region(*region);
 | |
|         });
 | |
|     }
 | |
| #ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
 | |
|     KCOVDevice::free_thread();
 | |
| #endif
 | |
|     die_if_needed();
 | |
| }
 | |
| 
 | |
| void Thread::yield_without_releasing_big_lock(VerifyLockNotHeld verify_lock_not_held)
 | |
| {
 | |
|     VERIFY(!g_scheduler_lock.is_locked_by_current_processor());
 | |
|     VERIFY(verify_lock_not_held == VerifyLockNotHeld::No || !process().big_lock().is_exclusively_locked_by_current_thread());
 | |
|     // Disable interrupts here. This ensures we don't accidentally switch contexts twice
 | |
|     InterruptDisabler disable;
 | |
|     Scheduler::yield(); // flag a switch
 | |
|     u32 prev_critical = Processor::clear_critical();
 | |
|     // NOTE: We may be on a different CPU now!
 | |
|     Processor::restore_critical(prev_critical);
 | |
| }
 | |
| 
 | |
| void Thread::yield_and_release_relock_big_lock()
 | |
| {
 | |
|     VERIFY(!g_scheduler_lock.is_locked_by_current_processor());
 | |
|     // Disable interrupts here. This ensures we don't accidentally switch contexts twice
 | |
|     InterruptDisabler disable;
 | |
|     Scheduler::yield(); // flag a switch
 | |
|     u32 lock_count_to_restore = 0;
 | |
|     auto previous_locked = unlock_process_if_locked(lock_count_to_restore);
 | |
|     // NOTE: Even though we call Scheduler::yield here, unless we happen
 | |
|     // to be outside of a critical section, the yield will be postponed
 | |
|     // until leaving it in relock_process.
 | |
|     relock_process(previous_locked, lock_count_to_restore);
 | |
| }
 | |
| 
 | |
| LockMode Thread::unlock_process_if_locked(u32& lock_count_to_restore)
 | |
| {
 | |
|     return process().big_lock().force_unlock_exclusive_if_locked(lock_count_to_restore);
 | |
| }
 | |
| 
 | |
| void Thread::relock_process(LockMode previous_locked, u32 lock_count_to_restore)
 | |
| {
 | |
|     // Clearing the critical section may trigger the context switch
 | |
|     // flagged by calling Scheduler::yield above.
 | |
|     // We have to do it this way because we intentionally
 | |
|     // leave the critical section here to be able to switch contexts.
 | |
|     u32 prev_critical = Processor::clear_critical();
 | |
| 
 | |
|     // CONTEXT SWITCH HAPPENS HERE!
 | |
| 
 | |
|     // NOTE: We may be on a different CPU now!
 | |
|     Processor::restore_critical(prev_critical);
 | |
| 
 | |
|     if (previous_locked != LockMode::Unlocked) {
 | |
|         // We've unblocked, relock the process if needed and carry on.
 | |
|         process().big_lock().restore_exclusive_lock(lock_count_to_restore);
 | |
|     }
 | |
| }
 | |
| 
 | |
| // NOLINTNEXTLINE(readability-make-member-function-const) False positive; We call block<SleepBlocker> which is not const
 | |
| auto Thread::sleep(clockid_t clock_id, Time const& duration, Time* remaining_time) -> BlockResult
 | |
| {
 | |
|     VERIFY(state() == Thread::State::Running);
 | |
|     return Thread::current()->block<Thread::SleepBlocker>({}, Thread::BlockTimeout(false, &duration, nullptr, clock_id), remaining_time);
 | |
| }
 | |
| 
 | |
| // NOLINTNEXTLINE(readability-make-member-function-const) False positive; We call block<SleepBlocker> which is not const
 | |
| auto Thread::sleep_until(clockid_t clock_id, Time const& deadline) -> BlockResult
 | |
| {
 | |
|     VERIFY(state() == Thread::State::Running);
 | |
|     return Thread::current()->block<Thread::SleepBlocker>({}, Thread::BlockTimeout(true, &deadline, nullptr, clock_id));
 | |
| }
 | |
| 
 | |
| StringView Thread::state_string() const
 | |
| {
 | |
|     switch (state()) {
 | |
|     case Thread::State::Invalid:
 | |
|         return "Invalid"sv;
 | |
|     case Thread::State::Runnable:
 | |
|         return "Runnable"sv;
 | |
|     case Thread::State::Running:
 | |
|         return "Running"sv;
 | |
|     case Thread::State::Dying:
 | |
|         return "Dying"sv;
 | |
|     case Thread::State::Dead:
 | |
|         return "Dead"sv;
 | |
|     case Thread::State::Stopped:
 | |
|         return "Stopped"sv;
 | |
|     case Thread::State::Blocked: {
 | |
|         SpinlockLocker block_lock(m_block_lock);
 | |
|         if (m_blocking_mutex)
 | |
|             return "Mutex"sv;
 | |
|         if (m_blocker)
 | |
|             return m_blocker->state_string();
 | |
|         VERIFY_NOT_REACHED();
 | |
|     }
 | |
|     }
 | |
|     PANIC("Thread::state_string(): Invalid state: {}", (int)state());
 | |
| }
 | |
| 
 | |
| void Thread::finalize()
 | |
| {
 | |
|     VERIFY(Thread::current() == g_finalizer);
 | |
|     VERIFY(Thread::current() != this);
 | |
| 
 | |
| #if LOCK_DEBUG
 | |
|     VERIFY(!m_lock.is_locked_by_current_processor());
 | |
|     if (lock_count() > 0) {
 | |
|         dbgln("Thread {} leaking {} Locks!", *this, lock_count());
 | |
|         SpinlockLocker list_lock(m_holding_locks_lock);
 | |
|         for (auto& info : m_holding_locks_list) {
 | |
|             auto const& location = info.lock_location;
 | |
|             dbgln(" - Mutex: \"{}\" @ {} locked in function \"{}\" at \"{}:{}\" with a count of: {}", info.lock->name(), info.lock, location.function_name(), location.filename(), location.line_number(), info.count);
 | |
|         }
 | |
|         VERIFY_NOT_REACHED();
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     {
 | |
|         SpinlockLocker lock(g_scheduler_lock);
 | |
|         dbgln_if(THREAD_DEBUG, "Finalizing thread {}", *this);
 | |
|         set_state(Thread::State::Dead);
 | |
|         m_join_blocker_set.thread_finalizing();
 | |
|     }
 | |
| 
 | |
|     if (m_dump_backtrace_on_finalization) {
 | |
|         auto trace_or_error = backtrace();
 | |
|         if (!trace_or_error.is_error()) {
 | |
|             auto trace = trace_or_error.release_value();
 | |
|             dbgln("Backtrace:");
 | |
|             kernelputstr(trace->characters(), trace->length());
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     drop_thread_count();
 | |
| }
 | |
| 
 | |
| void Thread::drop_thread_count()
 | |
| {
 | |
|     bool is_last = process().remove_thread(*this);
 | |
|     if (is_last)
 | |
|         process().finalize();
 | |
| }
 | |
| 
 | |
| void Thread::finalize_dying_threads()
 | |
| {
 | |
|     VERIFY(Thread::current() == g_finalizer);
 | |
|     Vector<Thread*, 32> dying_threads;
 | |
|     {
 | |
|         SpinlockLocker lock(g_scheduler_lock);
 | |
|         for_each_in_state(Thread::State::Dying, [&](Thread& thread) {
 | |
|             if (!thread.is_finalizable())
 | |
|                 return;
 | |
|             auto result = dying_threads.try_append(&thread);
 | |
|             // We ignore allocation failures above the first 32 guaranteed thread slots, and
 | |
|             // just flag our future-selves to finalize these threads at a later point
 | |
|             if (result.is_error())
 | |
|                 g_finalizer_has_work.store(true, AK::MemoryOrder::memory_order_release);
 | |
|         });
 | |
|     }
 | |
|     for (auto* thread : dying_threads) {
 | |
|         LockRefPtr<Process> process = thread->process();
 | |
|         dbgln_if(PROCESS_DEBUG, "Before finalization, {} has {} refs and its process has {}",
 | |
|             *thread, thread->ref_count(), thread->process().ref_count());
 | |
|         thread->finalize();
 | |
|         dbgln_if(PROCESS_DEBUG, "After finalization, {} has {} refs and its process has {}",
 | |
|             *thread, thread->ref_count(), thread->process().ref_count());
 | |
|         // This thread will never execute again, drop the running reference
 | |
|         // NOTE: This may not necessarily drop the last reference if anything
 | |
|         //       else is still holding onto this thread!
 | |
|         thread->unref();
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Thread::update_time_scheduled(u64 current_scheduler_time, bool is_kernel, bool no_longer_running)
 | |
| {
 | |
|     if (m_last_time_scheduled.has_value()) {
 | |
|         u64 delta;
 | |
|         if (current_scheduler_time >= m_last_time_scheduled.value())
 | |
|             delta = current_scheduler_time - m_last_time_scheduled.value();
 | |
|         else
 | |
|             delta = m_last_time_scheduled.value() - current_scheduler_time; // the unlikely event that the clock wrapped
 | |
|         if (delta != 0) {
 | |
|             // Add it to the global total *before* updating the thread's value!
 | |
|             Scheduler::add_time_scheduled(delta, is_kernel);
 | |
| 
 | |
|             auto& total_time = is_kernel ? m_total_time_scheduled_kernel : m_total_time_scheduled_user;
 | |
|             total_time.fetch_add(delta, AK::memory_order_relaxed);
 | |
|         }
 | |
|     }
 | |
|     if (no_longer_running)
 | |
|         m_last_time_scheduled = {};
 | |
|     else
 | |
|         m_last_time_scheduled = current_scheduler_time;
 | |
| }
 | |
| 
 | |
| bool Thread::tick()
 | |
| {
 | |
|     if (previous_mode() == PreviousMode::KernelMode) {
 | |
|         ++m_process->m_ticks_in_kernel;
 | |
|         ++m_ticks_in_kernel;
 | |
|     } else {
 | |
|         ++m_process->m_ticks_in_user;
 | |
|         ++m_ticks_in_user;
 | |
|     }
 | |
|     --m_ticks_left;
 | |
|     return m_ticks_left != 0;
 | |
| }
 | |
| 
 | |
| void Thread::check_dispatch_pending_signal()
 | |
| {
 | |
|     auto result = DispatchSignalResult::Continue;
 | |
|     {
 | |
|         SpinlockLocker scheduler_lock(g_scheduler_lock);
 | |
|         if (pending_signals_for_state() != 0) {
 | |
|             result = dispatch_one_pending_signal();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (result == DispatchSignalResult::Yield) {
 | |
|         yield_without_releasing_big_lock();
 | |
|     }
 | |
| }
 | |
| 
 | |
| u32 Thread::pending_signals() const
 | |
| {
 | |
|     SpinlockLocker lock(g_scheduler_lock);
 | |
|     return pending_signals_for_state();
 | |
| }
 | |
| 
 | |
| u32 Thread::pending_signals_for_state() const
 | |
| {
 | |
|     VERIFY(g_scheduler_lock.is_locked_by_current_processor());
 | |
|     constexpr u32 stopped_signal_mask = (1 << (SIGCONT - 1)) | (1 << (SIGKILL - 1)) | (1 << (SIGTRAP - 1));
 | |
|     if (is_handling_page_fault())
 | |
|         return 0;
 | |
|     return m_state != State::Stopped ? m_pending_signals : m_pending_signals & stopped_signal_mask;
 | |
| }
 | |
| 
 | |
| void Thread::send_signal(u8 signal, [[maybe_unused]] Process* sender)
 | |
| {
 | |
|     VERIFY(signal < NSIG);
 | |
|     VERIFY(process().is_user_process());
 | |
|     SpinlockLocker scheduler_lock(g_scheduler_lock);
 | |
| 
 | |
|     // FIXME: Figure out what to do for masked signals. Should we also ignore them here?
 | |
|     if (should_ignore_signal(signal)) {
 | |
|         dbgln_if(SIGNAL_DEBUG, "Signal {} was ignored by {}", signal, process());
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if constexpr (SIGNAL_DEBUG) {
 | |
|         if (sender)
 | |
|             dbgln("Signal: {} sent {} to {}", *sender, signal, process());
 | |
|         else
 | |
|             dbgln("Signal: Kernel send {} to {}", signal, process());
 | |
|     }
 | |
| 
 | |
|     m_pending_signals |= 1 << (signal - 1);
 | |
|     m_signal_senders[signal] = sender ? sender->pid() : pid();
 | |
|     m_have_any_unmasked_pending_signals.store((pending_signals_for_state() & ~m_signal_mask) != 0, AK::memory_order_release);
 | |
|     m_signal_blocker_set.unblock_all_blockers_whose_conditions_are_met();
 | |
| 
 | |
|     if (!has_unmasked_pending_signals())
 | |
|         return;
 | |
| 
 | |
|     if (m_state == Thread::State::Stopped) {
 | |
|         if (pending_signals_for_state() != 0) {
 | |
|             dbgln_if(SIGNAL_DEBUG, "Signal: Resuming stopped {} to deliver signal {}", *this, signal);
 | |
|             resume_from_stopped();
 | |
|         }
 | |
|     } else {
 | |
|         SpinlockLocker block_lock(m_block_lock);
 | |
|         dbgln_if(SIGNAL_DEBUG, "Signal: Unblocking {} to deliver signal {}", *this, signal);
 | |
|         unblock(signal);
 | |
|     }
 | |
| }
 | |
| 
 | |
| u32 Thread::update_signal_mask(u32 signal_mask)
 | |
| {
 | |
|     SpinlockLocker lock(g_scheduler_lock);
 | |
|     auto previous_signal_mask = m_signal_mask;
 | |
|     m_signal_mask = signal_mask;
 | |
|     m_have_any_unmasked_pending_signals.store((pending_signals_for_state() & ~m_signal_mask) != 0, AK::memory_order_release);
 | |
|     return previous_signal_mask;
 | |
| }
 | |
| 
 | |
| u32 Thread::signal_mask() const
 | |
| {
 | |
|     SpinlockLocker lock(g_scheduler_lock);
 | |
|     return m_signal_mask;
 | |
| }
 | |
| 
 | |
| u32 Thread::signal_mask_block(sigset_t signal_set, bool block)
 | |
| {
 | |
|     SpinlockLocker lock(g_scheduler_lock);
 | |
|     auto previous_signal_mask = m_signal_mask;
 | |
|     if (block)
 | |
|         m_signal_mask |= signal_set;
 | |
|     else
 | |
|         m_signal_mask &= ~signal_set;
 | |
|     m_have_any_unmasked_pending_signals.store((pending_signals_for_state() & ~m_signal_mask) != 0, AK::memory_order_release);
 | |
|     return previous_signal_mask;
 | |
| }
 | |
| 
 | |
| void Thread::reset_signals_for_exec()
 | |
| {
 | |
|     SpinlockLocker lock(g_scheduler_lock);
 | |
|     // The signal mask is preserved across execve(2).
 | |
|     // The pending signal set is preserved across an execve(2).
 | |
|     m_have_any_unmasked_pending_signals.store(false, AK::memory_order_release);
 | |
|     m_signal_action_masks.fill({});
 | |
|     // A successful call to execve(2) removes any existing alternate signal stack
 | |
|     m_alternative_signal_stack = 0;
 | |
|     m_alternative_signal_stack_size = 0;
 | |
| }
 | |
| 
 | |
| // Certain exceptions, such as SIGSEGV and SIGILL, put a
 | |
| // thread into a state where the signal handler must be
 | |
| // invoked immediately, otherwise it will continue to fault.
 | |
| // This function should be used in an exception handler to
 | |
| // ensure that when the thread resumes, it's executing in
 | |
| // the appropriate signal handler.
 | |
| void Thread::send_urgent_signal_to_self(u8 signal)
 | |
| {
 | |
|     VERIFY(Thread::current() == this);
 | |
|     DispatchSignalResult result;
 | |
|     {
 | |
|         SpinlockLocker lock(g_scheduler_lock);
 | |
|         result = dispatch_signal(signal);
 | |
|     }
 | |
|     if (result == DispatchSignalResult::Terminate) {
 | |
|         Thread::current()->die_if_needed();
 | |
|         VERIFY_NOT_REACHED(); // dispatch_signal will request termination of the thread, so the above call should never return
 | |
|     }
 | |
|     if (result == DispatchSignalResult::Yield)
 | |
|         yield_and_release_relock_big_lock();
 | |
| }
 | |
| 
 | |
| DispatchSignalResult Thread::dispatch_one_pending_signal()
 | |
| {
 | |
|     VERIFY(g_scheduler_lock.is_locked_by_current_processor());
 | |
|     u32 signal_candidates = pending_signals_for_state() & ~m_signal_mask;
 | |
|     if (signal_candidates == 0)
 | |
|         return DispatchSignalResult::Continue;
 | |
| 
 | |
|     u8 signal = 1;
 | |
|     for (; signal < NSIG; ++signal) {
 | |
|         if ((signal_candidates & (1 << (signal - 1))) != 0) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return dispatch_signal(signal);
 | |
| }
 | |
| 
 | |
| DispatchSignalResult Thread::try_dispatch_one_pending_signal(u8 signal)
 | |
| {
 | |
|     VERIFY(signal != 0);
 | |
|     SpinlockLocker scheduler_lock(g_scheduler_lock);
 | |
|     u32 signal_candidates = pending_signals_for_state() & ~m_signal_mask;
 | |
|     if ((signal_candidates & (1 << (signal - 1))) == 0)
 | |
|         return DispatchSignalResult::Continue;
 | |
|     return dispatch_signal(signal);
 | |
| }
 | |
| 
 | |
| enum class DefaultSignalAction {
 | |
|     Terminate,
 | |
|     Ignore,
 | |
|     DumpCore,
 | |
|     Stop,
 | |
|     Continue,
 | |
| };
 | |
| 
 | |
| static DefaultSignalAction default_signal_action(u8 signal)
 | |
| {
 | |
|     VERIFY(signal && signal < NSIG);
 | |
| 
 | |
|     switch (signal) {
 | |
|     case SIGHUP:
 | |
|     case SIGINT:
 | |
|     case SIGKILL:
 | |
|     case SIGPIPE:
 | |
|     case SIGALRM:
 | |
|     case SIGUSR1:
 | |
|     case SIGUSR2:
 | |
|     case SIGVTALRM:
 | |
|     case SIGSTKFLT:
 | |
|     case SIGIO:
 | |
|     case SIGPROF:
 | |
|     case SIGTERM:
 | |
|     case SIGCANCEL:
 | |
|         return DefaultSignalAction::Terminate;
 | |
|     case SIGCHLD:
 | |
|     case SIGURG:
 | |
|     case SIGWINCH:
 | |
|     case SIGINFO:
 | |
|         return DefaultSignalAction::Ignore;
 | |
|     case SIGQUIT:
 | |
|     case SIGILL:
 | |
|     case SIGTRAP:
 | |
|     case SIGABRT:
 | |
|     case SIGBUS:
 | |
|     case SIGFPE:
 | |
|     case SIGSEGV:
 | |
|     case SIGXCPU:
 | |
|     case SIGXFSZ:
 | |
|     case SIGSYS:
 | |
|         return DefaultSignalAction::DumpCore;
 | |
|     case SIGCONT:
 | |
|         return DefaultSignalAction::Continue;
 | |
|     case SIGSTOP:
 | |
|     case SIGTSTP:
 | |
|     case SIGTTIN:
 | |
|     case SIGTTOU:
 | |
|         return DefaultSignalAction::Stop;
 | |
|     default:
 | |
|         VERIFY_NOT_REACHED();
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool Thread::should_ignore_signal(u8 signal) const
 | |
| {
 | |
|     VERIFY(signal < NSIG);
 | |
|     auto const& action = m_process->m_signal_action_data[signal];
 | |
|     if (action.handler_or_sigaction.is_null())
 | |
|         return default_signal_action(signal) == DefaultSignalAction::Ignore;
 | |
|     return ((sighandler_t)action.handler_or_sigaction.get() == SIG_IGN);
 | |
| }
 | |
| 
 | |
| bool Thread::has_signal_handler(u8 signal) const
 | |
| {
 | |
|     VERIFY(signal < NSIG);
 | |
|     auto const& action = m_process->m_signal_action_data[signal];
 | |
|     return !action.handler_or_sigaction.is_null();
 | |
| }
 | |
| 
 | |
| bool Thread::is_signal_masked(u8 signal) const
 | |
| {
 | |
|     VERIFY(signal < NSIG);
 | |
|     return (1 << (signal - 1)) & m_signal_mask;
 | |
| }
 | |
| 
 | |
| bool Thread::has_alternative_signal_stack() const
 | |
| {
 | |
|     return m_alternative_signal_stack_size != 0;
 | |
| }
 | |
| 
 | |
| bool Thread::is_in_alternative_signal_stack() const
 | |
| {
 | |
|     auto sp = get_register_dump_from_stack().userspace_sp();
 | |
|     return sp >= m_alternative_signal_stack && sp < m_alternative_signal_stack + m_alternative_signal_stack_size;
 | |
| }
 | |
| 
 | |
| static ErrorOr<void> push_value_on_user_stack(FlatPtr& stack, FlatPtr data)
 | |
| {
 | |
|     stack -= sizeof(FlatPtr);
 | |
|     return copy_to_user((FlatPtr*)stack, &data);
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| static ErrorOr<void> copy_value_on_user_stack(FlatPtr& stack, T const& data)
 | |
| {
 | |
|     stack -= sizeof(data);
 | |
|     return copy_to_user((RemoveCVReference<T>*)stack, &data);
 | |
| }
 | |
| 
 | |
| void Thread::resume_from_stopped()
 | |
| {
 | |
|     VERIFY(is_stopped());
 | |
|     VERIFY(m_stop_state != State::Invalid);
 | |
|     VERIFY(g_scheduler_lock.is_locked_by_current_processor());
 | |
|     if (m_stop_state == Thread::State::Blocked) {
 | |
|         SpinlockLocker block_lock(m_block_lock);
 | |
|         if (m_blocker || m_blocking_mutex) {
 | |
|             // Hasn't been unblocked yet
 | |
|             set_state(Thread::State::Blocked, 0);
 | |
|         } else {
 | |
|             // Was unblocked while stopped
 | |
|             set_state(Thread::State::Runnable);
 | |
|         }
 | |
|     } else {
 | |
|         set_state(m_stop_state, 0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| DispatchSignalResult Thread::dispatch_signal(u8 signal)
 | |
| {
 | |
|     VERIFY_INTERRUPTS_DISABLED();
 | |
|     VERIFY(g_scheduler_lock.is_locked_by_current_processor());
 | |
|     VERIFY(signal > 0 && signal <= NSIG);
 | |
|     VERIFY(process().is_user_process());
 | |
|     VERIFY(this == Thread::current());
 | |
| 
 | |
|     dbgln_if(SIGNAL_DEBUG, "Dispatch signal {} to {}, state: {}", signal, *this, state_string());
 | |
| 
 | |
|     if (m_state == Thread::State::Invalid || !is_initialized()) {
 | |
|         // Thread has barely been created, we need to wait until it is
 | |
|         // at least in Runnable state and is_initialized() returns true,
 | |
|         // which indicates that it is fully set up an we actually have
 | |
|         // a register state on the stack that we can modify
 | |
|         return DispatchSignalResult::Deferred;
 | |
|     }
 | |
| 
 | |
|     auto& action = m_process->m_signal_action_data[signal];
 | |
|     auto sender_pid = m_signal_senders[signal];
 | |
|     auto sender = Process::from_pid_ignoring_jails(sender_pid);
 | |
| 
 | |
|     if (!current_trap() && !action.handler_or_sigaction.is_null()) {
 | |
|         // We're trying dispatch a handled signal to a user process that was scheduled
 | |
|         // after a yielding/blocking kernel thread, we don't have a register capture of
 | |
|         // the thread, so just defer processing the signal to later.
 | |
|         return DispatchSignalResult::Deferred;
 | |
|     }
 | |
| 
 | |
|     // Mark this signal as handled.
 | |
|     m_pending_signals &= ~(1 << (signal - 1));
 | |
|     m_have_any_unmasked_pending_signals.store((m_pending_signals & ~m_signal_mask) != 0, AK::memory_order_release);
 | |
| 
 | |
|     auto& process = this->process();
 | |
|     auto* tracer = process.tracer();
 | |
|     if (signal == SIGSTOP || (tracer && default_signal_action(signal) == DefaultSignalAction::DumpCore)) {
 | |
|         dbgln_if(SIGNAL_DEBUG, "Signal {} stopping this thread", signal);
 | |
|         set_state(Thread::State::Stopped, signal);
 | |
|         return DispatchSignalResult::Yield;
 | |
|     }
 | |
| 
 | |
|     if (signal == SIGCONT) {
 | |
|         dbgln("signal: SIGCONT resuming {}", *this);
 | |
|     } else {
 | |
|         if (tracer) {
 | |
|             // when a thread is traced, it should be stopped whenever it receives a signal
 | |
|             // the tracer is notified of this by using waitpid()
 | |
|             // only "pending signals" from the tracer are sent to the tracee
 | |
|             if (!tracer->has_pending_signal(signal)) {
 | |
|                 dbgln("signal: {} stopping {} for tracer", signal, *this);
 | |
|                 set_state(Thread::State::Stopped, signal);
 | |
|                 return DispatchSignalResult::Yield;
 | |
|             }
 | |
|             tracer->unset_signal(signal);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     auto handler_vaddr = action.handler_or_sigaction;
 | |
|     if (handler_vaddr.is_null()) {
 | |
|         switch (default_signal_action(signal)) {
 | |
|         case DefaultSignalAction::Stop:
 | |
|             set_state(Thread::State::Stopped, signal);
 | |
|             return DispatchSignalResult::Yield;
 | |
|         case DefaultSignalAction::DumpCore:
 | |
|             process.set_should_generate_coredump(true);
 | |
|             process.for_each_thread([](auto& thread) {
 | |
|                 thread.set_dump_backtrace_on_finalization();
 | |
|             });
 | |
|             [[fallthrough]];
 | |
|         case DefaultSignalAction::Terminate:
 | |
|             m_process->terminate_due_to_signal(signal);
 | |
|             return DispatchSignalResult::Terminate;
 | |
|         case DefaultSignalAction::Ignore:
 | |
|             VERIFY_NOT_REACHED();
 | |
|         case DefaultSignalAction::Continue:
 | |
|             return DispatchSignalResult::Continue;
 | |
|         }
 | |
|         VERIFY_NOT_REACHED();
 | |
|     }
 | |
| 
 | |
|     if ((sighandler_t)handler_vaddr.as_ptr() == SIG_IGN) {
 | |
|         dbgln_if(SIGNAL_DEBUG, "Ignored signal {}", signal);
 | |
|         return DispatchSignalResult::Continue;
 | |
|     }
 | |
| 
 | |
|     ScopedAddressSpaceSwitcher switcher(m_process);
 | |
| 
 | |
|     m_currently_handled_signal = signal;
 | |
| 
 | |
|     u32 old_signal_mask = m_signal_mask;
 | |
|     u32 new_signal_mask = m_signal_action_masks[signal].value_or(action.mask);
 | |
|     if ((action.flags & SA_NODEFER) == SA_NODEFER)
 | |
|         new_signal_mask &= ~(1 << (signal - 1));
 | |
|     else
 | |
|         new_signal_mask |= 1 << (signal - 1);
 | |
| 
 | |
|     m_signal_mask |= new_signal_mask;
 | |
|     m_have_any_unmasked_pending_signals.store((m_pending_signals & ~m_signal_mask) != 0, AK::memory_order_release);
 | |
| 
 | |
|     bool use_alternative_stack = ((action.flags & SA_ONSTACK) != 0) && has_alternative_signal_stack() && !is_in_alternative_signal_stack();
 | |
| 
 | |
|     auto setup_stack = [&](RegisterState& state) -> ErrorOr<void> {
 | |
|         FlatPtr stack;
 | |
|         if (use_alternative_stack)
 | |
|             stack = m_alternative_signal_stack + m_alternative_signal_stack_size;
 | |
|         else
 | |
|             stack = state.userspace_sp();
 | |
| 
 | |
|         dbgln_if(SIGNAL_DEBUG, "Setting up user stack to return to IP {:p}, SP {:p}", state.ip(), state.userspace_sp());
 | |
| 
 | |
|         __ucontext ucontext {
 | |
|             .uc_link = nullptr,
 | |
|             .uc_sigmask = old_signal_mask,
 | |
|             .uc_stack = {
 | |
|                 .ss_sp = bit_cast<void*>(stack),
 | |
|                 .ss_flags = action.flags & SA_ONSTACK,
 | |
|                 .ss_size = use_alternative_stack ? m_alternative_signal_stack_size : 0,
 | |
|             },
 | |
|             .uc_mcontext = {},
 | |
|         };
 | |
|         copy_kernel_registers_into_ptrace_registers(static_cast<PtraceRegisters&>(ucontext.uc_mcontext), state);
 | |
| 
 | |
|         auto fill_signal_info_for_signal = [&](siginfo& signal_info) {
 | |
|             if (signal == SIGCHLD) {
 | |
|                 if (!sender) {
 | |
|                     signal_info.si_code = CLD_EXITED;
 | |
|                     return;
 | |
|                 }
 | |
|                 auto const* thread = sender->thread_list().with([](auto& list) { return list.is_empty() ? nullptr : list.first(); });
 | |
|                 if (!thread) {
 | |
|                     signal_info.si_code = CLD_EXITED;
 | |
|                     return;
 | |
|                 }
 | |
| 
 | |
|                 switch (thread->m_state) {
 | |
|                 case State::Dead:
 | |
|                     if (sender->should_generate_coredump() && sender->is_dumpable()) {
 | |
|                         signal_info.si_code = CLD_DUMPED;
 | |
|                         signal_info.si_status = sender->termination_signal();
 | |
|                         return;
 | |
|                     }
 | |
|                     [[fallthrough]];
 | |
|                 case State::Dying:
 | |
|                     if (sender->termination_signal() == 0) {
 | |
|                         signal_info.si_code = CLD_EXITED;
 | |
|                         signal_info.si_status = sender->termination_status();
 | |
|                         return;
 | |
|                     }
 | |
|                     signal_info.si_code = CLD_KILLED;
 | |
|                     signal_info.si_status = sender->termination_signal();
 | |
|                     return;
 | |
|                 case State::Runnable:
 | |
|                 case State::Running:
 | |
|                 case State::Blocked:
 | |
|                     signal_info.si_code = CLD_CONTINUED;
 | |
|                     return;
 | |
|                 case State::Stopped:
 | |
|                     signal_info.si_code = CLD_STOPPED;
 | |
|                     return;
 | |
|                 case State::Invalid:
 | |
|                     // Something is wrong, but we're just an observer.
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             signal_info.si_code = SI_NOINFO;
 | |
|         };
 | |
| 
 | |
|         siginfo signal_info {
 | |
|             .si_signo = signal,
 | |
|             // Filled in below by fill_signal_info_for_signal.
 | |
|             .si_code = 0,
 | |
|             // Set for SI_TIMER, we don't have the data here.
 | |
|             .si_errno = 0,
 | |
|             .si_pid = sender_pid.value(),
 | |
|             .si_uid = sender ? sender->credentials()->uid().value() : 0,
 | |
|             // Set for SIGILL, SIGFPE, SIGSEGV and SIGBUS
 | |
|             // FIXME: We don't generate these signals in a way that can be handled.
 | |
|             .si_addr = 0,
 | |
|             // Set for SIGCHLD.
 | |
|             .si_status = 0,
 | |
|             // Set for SIGPOLL, we don't have SIGPOLL.
 | |
|             .si_band = 0,
 | |
|             // Set for SI_QUEUE, SI_TIMER, SI_ASYNCIO and SI_MESGQ
 | |
|             // We do not generate any of these.
 | |
|             .si_value = {
 | |
|                 .sival_int = 0,
 | |
|             },
 | |
|         };
 | |
| 
 | |
|         if (action.flags & SA_SIGINFO)
 | |
|             fill_signal_info_for_signal(signal_info);
 | |
| 
 | |
| #if ARCH(X86_64)
 | |
|         constexpr static FlatPtr thread_red_zone_size = 128;
 | |
| #elif ARCH(AARCH64)
 | |
|         constexpr static FlatPtr thread_red_zone_size = 0; // FIXME
 | |
|         TODO_AARCH64();
 | |
| #else
 | |
| #    error Unknown architecture in dispatch_signal
 | |
| #endif
 | |
| 
 | |
|         // Align the stack to 16 bytes.
 | |
|         // Note that we push some elements on to the stack before the return address,
 | |
|         // so we need to account for this here.
 | |
|         constexpr static FlatPtr elements_pushed_on_stack_before_handler_address = 1; // one slot for a saved register
 | |
|         FlatPtr const extra_bytes_pushed_on_stack_before_handler_address = sizeof(ucontext) + sizeof(signal_info);
 | |
|         FlatPtr stack_alignment = (stack - elements_pushed_on_stack_before_handler_address * sizeof(FlatPtr) + extra_bytes_pushed_on_stack_before_handler_address) % 16;
 | |
|         // Also note that we have to skip the thread red-zone (if needed), so do that here.
 | |
|         stack -= thread_red_zone_size + stack_alignment;
 | |
|         auto start_of_stack = stack;
 | |
| 
 | |
|         TRY(push_value_on_user_stack(stack, 0)); // syscall return value slot
 | |
| 
 | |
|         TRY(copy_value_on_user_stack(stack, ucontext));
 | |
|         auto pointer_to_ucontext = stack;
 | |
| 
 | |
|         TRY(copy_value_on_user_stack(stack, signal_info));
 | |
|         auto pointer_to_signal_info = stack;
 | |
| 
 | |
|         // Make sure we actually pushed as many elements as we claimed to have pushed.
 | |
|         if (start_of_stack - stack != elements_pushed_on_stack_before_handler_address * sizeof(FlatPtr) + extra_bytes_pushed_on_stack_before_handler_address) {
 | |
|             PANIC("Stack in invalid state after signal trampoline, expected {:x} but got {:x}",
 | |
|                 start_of_stack - elements_pushed_on_stack_before_handler_address * sizeof(FlatPtr) - extra_bytes_pushed_on_stack_before_handler_address, stack);
 | |
|         }
 | |
| 
 | |
|         VERIFY(stack % 16 == 0);
 | |
| 
 | |
| #if ARCH(X86_64)
 | |
|         // Save the FPU/SSE state
 | |
|         TRY(copy_value_on_user_stack(stack, fpu_state()));
 | |
| #endif
 | |
| 
 | |
|         TRY(push_value_on_user_stack(stack, pointer_to_ucontext));
 | |
|         TRY(push_value_on_user_stack(stack, pointer_to_signal_info));
 | |
|         TRY(push_value_on_user_stack(stack, signal));
 | |
| 
 | |
|         TRY(push_value_on_user_stack(stack, handler_vaddr.get()));
 | |
| 
 | |
|         // We write back the adjusted stack value into the register state.
 | |
|         // We have to do this because we can't just pass around a reference to a packed field, as it's UB.
 | |
|         state.set_userspace_sp(stack);
 | |
| 
 | |
|         return {};
 | |
|     };
 | |
| 
 | |
|     // We now place the thread state on the userspace stack.
 | |
|     // Note that we use a RegisterState.
 | |
|     // Conversely, when the thread isn't blocking the RegisterState may not be
 | |
|     // valid (fork, exec etc) but the tss will, so we use that instead.
 | |
|     auto& regs = get_register_dump_from_stack();
 | |
| 
 | |
|     auto result = setup_stack(regs);
 | |
|     if (result.is_error()) {
 | |
|         dbgln("Invalid stack pointer: {}", regs.userspace_sp());
 | |
|         process.set_should_generate_coredump(true);
 | |
|         process.for_each_thread([](auto& thread) {
 | |
|             thread.set_dump_backtrace_on_finalization();
 | |
|         });
 | |
|         m_process->terminate_due_to_signal(signal);
 | |
|         return DispatchSignalResult::Terminate;
 | |
|     }
 | |
| 
 | |
|     auto signal_trampoline_addr = process.signal_trampoline().get();
 | |
|     regs.set_ip(signal_trampoline_addr);
 | |
| 
 | |
| #if ARCH(X86_64)
 | |
|     // Userspace flags might be invalid for function entry, according to SYSV ABI (section 3.2.1).
 | |
|     // Set them to a known-good value to avoid weird handler misbehavior.
 | |
|     // Only IF (and the reserved bit 1) are set.
 | |
|     regs.set_flags(2 | (regs.rflags & ~safe_eflags_mask));
 | |
| #endif
 | |
| 
 | |
|     dbgln_if(SIGNAL_DEBUG, "Thread in state '{}' has been primed with signal handler {:p} to deliver {}", state_string(), m_regs.ip(), signal);
 | |
| 
 | |
|     return DispatchSignalResult::Continue;
 | |
| }
 | |
| 
 | |
| RegisterState& Thread::get_register_dump_from_stack()
 | |
| {
 | |
|     auto* trap = current_trap();
 | |
| 
 | |
|     // We should *always* have a trap. If we don't we're probably a kernel
 | |
|     // thread that hasn't been preempted. If we want to support this, we
 | |
|     // need to capture the registers probably into m_regs and return it
 | |
|     VERIFY(trap);
 | |
| 
 | |
|     while (trap) {
 | |
|         if (!trap->next_trap)
 | |
|             break;
 | |
|         trap = trap->next_trap;
 | |
|     }
 | |
|     return *trap->regs;
 | |
| }
 | |
| 
 | |
| ErrorOr<NonnullLockRefPtr<Thread>> Thread::try_clone(Process& process)
 | |
| {
 | |
|     auto clone = TRY(Thread::try_create(process));
 | |
|     m_signal_action_masks.span().copy_to(clone->m_signal_action_masks);
 | |
|     clone->m_signal_mask = m_signal_mask;
 | |
|     clone->m_fpu_state = m_fpu_state;
 | |
|     clone->m_thread_specific_data = m_thread_specific_data;
 | |
|     return clone;
 | |
| }
 | |
| 
 | |
| void Thread::set_state(State new_state, u8 stop_signal)
 | |
| {
 | |
|     State previous_state;
 | |
|     VERIFY(g_scheduler_lock.is_locked_by_current_processor());
 | |
|     if (new_state == m_state)
 | |
|         return;
 | |
| 
 | |
|     {
 | |
|         previous_state = m_state;
 | |
|         if (previous_state == Thread::State::Invalid) {
 | |
|             // If we were *just* created, we may have already pending signals
 | |
|             if (has_unmasked_pending_signals()) {
 | |
|                 dbgln_if(THREAD_DEBUG, "Dispatch pending signals to new thread {}", *this);
 | |
|                 dispatch_one_pending_signal();
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         m_state = new_state;
 | |
|         dbgln_if(THREAD_DEBUG, "Set thread {} state to {}", *this, state_string());
 | |
|     }
 | |
| 
 | |
|     if (previous_state == Thread::State::Runnable) {
 | |
|         Scheduler::dequeue_runnable_thread(*this);
 | |
|     } else if (previous_state == Thread::State::Stopped) {
 | |
|         m_stop_state = State::Invalid;
 | |
|         auto& process = this->process();
 | |
|         if (process.set_stopped(false)) {
 | |
|             process.for_each_thread([&](auto& thread) {
 | |
|                 if (&thread == this)
 | |
|                     return;
 | |
|                 if (!thread.is_stopped())
 | |
|                     return;
 | |
|                 dbgln_if(THREAD_DEBUG, "Resuming peer thread {}", thread);
 | |
|                 thread.resume_from_stopped();
 | |
|             });
 | |
|             process.unblock_waiters(Thread::WaitBlocker::UnblockFlags::Continued);
 | |
|             // Tell the parent process (if any) about this change.
 | |
|             if (auto parent = Process::from_pid_ignoring_jails(process.ppid())) {
 | |
|                 [[maybe_unused]] auto result = parent->send_signal(SIGCHLD, &process);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (m_state == Thread::State::Runnable) {
 | |
|         Scheduler::enqueue_runnable_thread(*this);
 | |
|         Processor::smp_wake_n_idle_processors(1);
 | |
|     } else if (m_state == Thread::State::Stopped) {
 | |
|         // We don't want to restore to Running state, only Runnable!
 | |
|         m_stop_state = previous_state != Thread::State::Running ? previous_state : Thread::State::Runnable;
 | |
|         auto& process = this->process();
 | |
|         if (!process.set_stopped(true)) {
 | |
|             process.for_each_thread([&](auto& thread) {
 | |
|                 if (&thread == this)
 | |
|                     return;
 | |
|                 if (thread.is_stopped())
 | |
|                     return;
 | |
|                 dbgln_if(THREAD_DEBUG, "Stopping peer thread {}", thread);
 | |
|                 thread.set_state(Thread::State::Stopped, stop_signal);
 | |
|             });
 | |
|             process.unblock_waiters(Thread::WaitBlocker::UnblockFlags::Stopped, stop_signal);
 | |
|             // Tell the parent process (if any) about this change.
 | |
|             if (auto parent = Process::from_pid_ignoring_jails(process.ppid())) {
 | |
|                 [[maybe_unused]] auto result = parent->send_signal(SIGCHLD, &process);
 | |
|             }
 | |
|         }
 | |
|     } else if (m_state == Thread::State::Dying) {
 | |
|         VERIFY(previous_state != Thread::State::Blocked);
 | |
|         if (this != Thread::current() && is_finalizable()) {
 | |
|             // Some other thread set this thread to Dying, notify the
 | |
|             // finalizer right away as it can be cleaned up now
 | |
|             Scheduler::notify_finalizer();
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| struct RecognizedSymbol {
 | |
|     FlatPtr address;
 | |
|     KernelSymbol const* symbol { nullptr };
 | |
| };
 | |
| 
 | |
| static ErrorOr<bool> symbolicate(RecognizedSymbol const& symbol, Process& process, StringBuilder& builder)
 | |
| {
 | |
|     if (symbol.address == 0)
 | |
|         return false;
 | |
| 
 | |
|     auto credentials = process.credentials();
 | |
|     bool mask_kernel_addresses = !credentials->is_superuser();
 | |
|     if (!symbol.symbol) {
 | |
|         if (!Memory::is_user_address(VirtualAddress(symbol.address))) {
 | |
|             TRY(builder.try_append("0xdeadc0de\n"sv));
 | |
|         } else {
 | |
|             TRY(process.address_space().with([&](auto& space) -> ErrorOr<void> {
 | |
|                 if (auto* region = space->find_region_containing({ VirtualAddress(symbol.address), sizeof(FlatPtr) })) {
 | |
|                     size_t offset = symbol.address - region->vaddr().get();
 | |
|                     if (auto region_name = region->name(); !region_name.is_null() && !region_name.is_empty())
 | |
|                         TRY(builder.try_appendff("{:p}  {} + {:#x}\n", (void*)symbol.address, region_name, offset));
 | |
|                     else
 | |
|                         TRY(builder.try_appendff("{:p}  {:p} + {:#x}\n", (void*)symbol.address, region->vaddr().as_ptr(), offset));
 | |
|                 } else {
 | |
|                     TRY(builder.try_appendff("{:p}\n", symbol.address));
 | |
|                 }
 | |
|                 return {};
 | |
|             }));
 | |
|         }
 | |
|         return true;
 | |
|     }
 | |
|     unsigned offset = symbol.address - symbol.symbol->address;
 | |
|     if (symbol.symbol->address == g_highest_kernel_symbol_address && offset > 4096)
 | |
|         TRY(builder.try_appendff("{:p}\n", (void*)(mask_kernel_addresses ? 0xdeadc0de : symbol.address)));
 | |
|     else
 | |
|         TRY(builder.try_appendff("{:p}  {} + {:#x}\n", (void*)(mask_kernel_addresses ? 0xdeadc0de : symbol.address), symbol.symbol->name, offset));
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| ErrorOr<NonnullOwnPtr<KString>> Thread::backtrace()
 | |
| {
 | |
|     Vector<RecognizedSymbol, 128> recognized_symbols;
 | |
| 
 | |
|     auto& process = const_cast<Process&>(this->process());
 | |
|     auto stack_trace = TRY(Processor::capture_stack_trace(*this));
 | |
|     VERIFY(!g_scheduler_lock.is_locked_by_current_processor());
 | |
|     ScopedAddressSpaceSwitcher switcher(process);
 | |
|     for (auto& frame : stack_trace) {
 | |
|         if (Memory::is_user_range(VirtualAddress(frame), sizeof(FlatPtr) * 2)) {
 | |
|             TRY(recognized_symbols.try_append({ frame }));
 | |
|         } else {
 | |
|             TRY(recognized_symbols.try_append({ frame, symbolicate_kernel_address(frame) }));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     StringBuilder builder;
 | |
|     for (auto& symbol : recognized_symbols) {
 | |
|         if (!TRY(symbolicate(symbol, process, builder)))
 | |
|             break;
 | |
|     }
 | |
|     return KString::try_create(builder.string_view());
 | |
| }
 | |
| 
 | |
| size_t Thread::thread_specific_region_alignment() const
 | |
| {
 | |
|     return max(process().m_master_tls_alignment, alignof(ThreadSpecificData));
 | |
| }
 | |
| 
 | |
| size_t Thread::thread_specific_region_size() const
 | |
| {
 | |
|     return align_up_to(process().m_master_tls_size, thread_specific_region_alignment()) + sizeof(ThreadSpecificData);
 | |
| }
 | |
| 
 | |
| ErrorOr<void> Thread::make_thread_specific_region(Badge<Process>)
 | |
| {
 | |
|     // The process may not require a TLS region, or allocate TLS later with sys$allocate_tls (which is what dynamically loaded programs do)
 | |
|     if (!process().m_master_tls_region)
 | |
|         return {};
 | |
| 
 | |
|     return process().address_space().with([&](auto& space) -> ErrorOr<void> {
 | |
|         auto* region = TRY(space->allocate_region(Memory::RandomizeVirtualAddress::Yes, {}, thread_specific_region_size(), PAGE_SIZE, "Thread-specific"sv, PROT_READ | PROT_WRITE));
 | |
| 
 | |
|         m_thread_specific_range = region->range();
 | |
| 
 | |
|         SmapDisabler disabler;
 | |
|         auto* thread_specific_data = (ThreadSpecificData*)region->vaddr().offset(align_up_to(process().m_master_tls_size, thread_specific_region_alignment())).as_ptr();
 | |
|         auto* thread_local_storage = (u8*)((u8*)thread_specific_data) - align_up_to(process().m_master_tls_size, process().m_master_tls_alignment);
 | |
|         m_thread_specific_data = VirtualAddress(thread_specific_data);
 | |
|         thread_specific_data->self = thread_specific_data;
 | |
| 
 | |
|         if (process().m_master_tls_size != 0)
 | |
|             memcpy(thread_local_storage, process().m_master_tls_region.unsafe_ptr()->vaddr().as_ptr(), process().m_master_tls_size);
 | |
| 
 | |
|         return {};
 | |
|     });
 | |
| }
 | |
| 
 | |
| LockRefPtr<Thread> Thread::from_tid(ThreadID tid)
 | |
| {
 | |
|     return Thread::all_instances().with([&](auto& list) -> LockRefPtr<Thread> {
 | |
|         for (Thread& thread : list) {
 | |
|             if (thread.tid() == tid)
 | |
|                 return thread;
 | |
|         }
 | |
|         return nullptr;
 | |
|     });
 | |
| }
 | |
| 
 | |
| void Thread::reset_fpu_state()
 | |
| {
 | |
|     memcpy(&m_fpu_state, &Processor::clean_fpu_state(), sizeof(FPUState));
 | |
| }
 | |
| 
 | |
| bool Thread::should_be_stopped() const
 | |
| {
 | |
|     return process().is_stopped();
 | |
| }
 | |
| 
 | |
| void Thread::track_lock_acquire(LockRank rank)
 | |
| {
 | |
|     // Nothing to do for locks without a rank.
 | |
|     if (rank == LockRank::None)
 | |
|         return;
 | |
| 
 | |
|     if (m_lock_rank_mask != LockRank::None) {
 | |
|         // Verify we are only attempting to take a lock of a higher rank.
 | |
|         VERIFY(m_lock_rank_mask > rank);
 | |
|     }
 | |
| 
 | |
|     m_lock_rank_mask |= rank;
 | |
| }
 | |
| 
 | |
| void Thread::track_lock_release(LockRank rank)
 | |
| {
 | |
|     // Nothing to do for locks without a rank.
 | |
|     if (rank == LockRank::None)
 | |
|         return;
 | |
| 
 | |
|     // The rank value from the caller should only contain a single bit, otherwise
 | |
|     // we are disabling the tracking for multiple locks at once which will corrupt
 | |
|     // the lock tracking mask, and we will assert somewhere else.
 | |
|     auto rank_is_a_single_bit = [](auto rank_enum) -> bool {
 | |
|         auto rank = to_underlying(rank_enum);
 | |
|         auto rank_without_least_significant_bit = rank - 1;
 | |
|         return (rank & rank_without_least_significant_bit) == 0;
 | |
|     };
 | |
| 
 | |
|     // We can't release locks out of order, as that would violate the ranking.
 | |
|     // This is validated by toggling the least significant bit of the mask, and
 | |
|     // then bit wise or-ing the rank we are trying to release with the resulting
 | |
|     // mask. If the rank we are releasing is truly the highest rank then the mask
 | |
|     // we get back will be equal to the current mask stored on the thread.
 | |
|     auto rank_is_in_order = [](auto mask_enum, auto rank_enum) -> bool {
 | |
|         auto mask = to_underlying(mask_enum);
 | |
|         auto rank = to_underlying(rank_enum);
 | |
|         auto mask_without_least_significant_bit = mask - 1;
 | |
|         return ((mask & mask_without_least_significant_bit) | rank) == mask;
 | |
|     };
 | |
| 
 | |
|     VERIFY(has_flag(m_lock_rank_mask, rank));
 | |
|     VERIFY(rank_is_a_single_bit(rank));
 | |
|     VERIFY(rank_is_in_order(m_lock_rank_mask, rank));
 | |
| 
 | |
|     m_lock_rank_mask ^= rank;
 | |
| }
 | |
| }
 | |
| 
 | |
| ErrorOr<void> AK::Formatter<Kernel::Thread>::format(FormatBuilder& builder, Kernel::Thread const& value)
 | |
| {
 | |
|     return AK::Formatter<FormatString>::format(
 | |
|         builder,
 | |
|         "{}({}:{})"sv, value.process().name(), value.pid().value(), value.tid().value());
 | |
| }
 |