mirror of
				https://github.com/RGBCube/serenity
				synced 2025-10-31 02:42:44 +00:00 
			
		
		
		
	 3d4afe7614
			
		
	
	
		3d4afe7614
		
	
	
	
	
		
			
			I've wasted a silly amount of time in the past fretting over which of these words to use. Let's just choose one and use it everywhere. :^)
		
			
				
	
	
		
			732 lines
		
	
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			732 lines
		
	
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2020, Itamar S. <itamar8910@gmail.com>
 | |
|  *
 | |
|  * SPDX-License-Identifier: BSD-2-Clause
 | |
|  */
 | |
| 
 | |
| #include "UnsignedBigInteger.h"
 | |
| #include <AK/StringBuilder.h>
 | |
| 
 | |
| namespace Crypto {
 | |
| 
 | |
| UnsignedBigInteger::UnsignedBigInteger(const u8* ptr, size_t length)
 | |
| {
 | |
|     m_words.resize_and_keep_capacity((length + sizeof(u32) - 1) / sizeof(u32));
 | |
|     size_t in = length, out = 0;
 | |
|     while (in >= sizeof(u32)) {
 | |
|         in -= sizeof(u32);
 | |
|         u32 word = ((u32)ptr[in] << 24) | ((u32)ptr[in + 1] << 16) | ((u32)ptr[in + 2] << 8) | (u32)ptr[in + 3];
 | |
|         m_words[out++] = word;
 | |
|     }
 | |
|     if (in > 0) {
 | |
|         u32 word = 0;
 | |
|         for (size_t i = 0; i < in; i++) {
 | |
|             word <<= 8;
 | |
|             word |= (u32)ptr[i];
 | |
|         }
 | |
|         m_words[out++] = word;
 | |
|     }
 | |
| }
 | |
| 
 | |
| UnsignedBigInteger UnsignedBigInteger::create_invalid()
 | |
| {
 | |
|     UnsignedBigInteger invalid(0);
 | |
|     invalid.invalidate();
 | |
|     return invalid;
 | |
| }
 | |
| 
 | |
| size_t UnsignedBigInteger::export_data(Bytes data, bool remove_leading_zeros) const
 | |
| {
 | |
|     size_t word_count = trimmed_length();
 | |
|     size_t out = 0;
 | |
|     if (word_count > 0) {
 | |
|         ssize_t leading_zeros = -1;
 | |
|         if (remove_leading_zeros) {
 | |
|             u32 word = m_words[word_count - 1];
 | |
|             for (size_t i = 0; i < sizeof(u32); i++) {
 | |
|                 u8 byte = (u8)(word >> ((sizeof(u32) - i - 1) * 8));
 | |
|                 data[out++] = byte;
 | |
|                 if (leading_zeros < 0 && byte != 0)
 | |
|                     leading_zeros = (int)i;
 | |
|             }
 | |
|         }
 | |
|         for (size_t i = word_count - (remove_leading_zeros ? 1 : 0); i > 0; i--) {
 | |
|             auto word = m_words[i - 1];
 | |
|             data[out++] = (u8)(word >> 24);
 | |
|             data[out++] = (u8)(word >> 16);
 | |
|             data[out++] = (u8)(word >> 8);
 | |
|             data[out++] = (u8)word;
 | |
|         }
 | |
|         if (leading_zeros > 0)
 | |
|             out -= leading_zeros;
 | |
|     }
 | |
|     return out;
 | |
| }
 | |
| 
 | |
| UnsignedBigInteger UnsignedBigInteger::from_base10(const String& str)
 | |
| {
 | |
|     UnsignedBigInteger result;
 | |
|     UnsignedBigInteger ten { 10 };
 | |
| 
 | |
|     for (auto& c : str) {
 | |
|         result = result.multiplied_by(ten).plus(c - '0');
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| String UnsignedBigInteger::to_base10() const
 | |
| {
 | |
|     if (*this == UnsignedBigInteger { 0 })
 | |
|         return "0";
 | |
| 
 | |
|     StringBuilder builder;
 | |
|     UnsignedBigInteger temp(*this);
 | |
|     UnsignedBigInteger quotient;
 | |
|     UnsignedBigInteger remainder;
 | |
| 
 | |
|     while (temp != UnsignedBigInteger { 0 }) {
 | |
|         divide_u16_without_allocation(temp, 10, quotient, remainder);
 | |
|         VERIFY(remainder.words()[0] < 10);
 | |
|         builder.append(static_cast<char>(remainder.words()[0] + '0'));
 | |
|         temp.set_to(quotient);
 | |
|     }
 | |
| 
 | |
|     auto reversed_string = builder.to_string();
 | |
|     builder.clear();
 | |
|     for (int i = reversed_string.length() - 1; i >= 0; --i) {
 | |
|         builder.append(reversed_string[i]);
 | |
|     }
 | |
| 
 | |
|     return builder.to_string();
 | |
| }
 | |
| 
 | |
| void UnsignedBigInteger::set_to_0()
 | |
| {
 | |
|     m_words.clear_with_capacity();
 | |
|     m_is_invalid = false;
 | |
|     m_cached_trimmed_length = {};
 | |
| }
 | |
| 
 | |
| void UnsignedBigInteger::set_to(u32 other)
 | |
| {
 | |
|     m_is_invalid = false;
 | |
|     m_words.resize_and_keep_capacity(1);
 | |
|     m_words[0] = other;
 | |
|     m_cached_trimmed_length = {};
 | |
| }
 | |
| 
 | |
| void UnsignedBigInteger::set_to(const UnsignedBigInteger& other)
 | |
| {
 | |
|     m_is_invalid = other.m_is_invalid;
 | |
|     m_words.resize_and_keep_capacity(other.m_words.size());
 | |
|     __builtin_memcpy(m_words.data(), other.m_words.data(), other.m_words.size() * sizeof(u32));
 | |
|     m_cached_trimmed_length = {};
 | |
| }
 | |
| 
 | |
| size_t UnsignedBigInteger::trimmed_length() const
 | |
| {
 | |
|     if (!m_cached_trimmed_length.has_value()) {
 | |
|         size_t num_leading_zeroes = 0;
 | |
|         for (int i = length() - 1; i >= 0; --i, ++num_leading_zeroes) {
 | |
|             if (m_words[i] != 0)
 | |
|                 break;
 | |
|         }
 | |
|         m_cached_trimmed_length = length() - num_leading_zeroes;
 | |
|     }
 | |
|     return m_cached_trimmed_length.value();
 | |
| }
 | |
| 
 | |
| void UnsignedBigInteger::clamp_to_trimmed_length()
 | |
| {
 | |
|     auto length = trimmed_length();
 | |
|     if (m_words.size() > length)
 | |
|         m_words.resize(length);
 | |
| }
 | |
| 
 | |
| FLATTEN UnsignedBigInteger UnsignedBigInteger::plus(const UnsignedBigInteger& other) const
 | |
| {
 | |
|     UnsignedBigInteger result;
 | |
| 
 | |
|     add_without_allocation(*this, other, result);
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| FLATTEN UnsignedBigInteger UnsignedBigInteger::minus(const UnsignedBigInteger& other) const
 | |
| {
 | |
|     UnsignedBigInteger result;
 | |
| 
 | |
|     subtract_without_allocation(*this, other, result);
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| FLATTEN UnsignedBigInteger UnsignedBigInteger::bitwise_or(const UnsignedBigInteger& other) const
 | |
| {
 | |
|     UnsignedBigInteger result;
 | |
| 
 | |
|     bitwise_or_without_allocation(*this, other, result);
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| FLATTEN UnsignedBigInteger UnsignedBigInteger::bitwise_and(const UnsignedBigInteger& other) const
 | |
| {
 | |
|     UnsignedBigInteger result;
 | |
| 
 | |
|     bitwise_and_without_allocation(*this, other, result);
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| FLATTEN UnsignedBigInteger UnsignedBigInteger::bitwise_xor(const UnsignedBigInteger& other) const
 | |
| {
 | |
|     UnsignedBigInteger result;
 | |
| 
 | |
|     bitwise_xor_without_allocation(*this, other, result);
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| FLATTEN UnsignedBigInteger UnsignedBigInteger::bitwise_not() const
 | |
| {
 | |
|     UnsignedBigInteger result;
 | |
| 
 | |
|     bitwise_not_without_allocation(*this, result);
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| FLATTEN UnsignedBigInteger UnsignedBigInteger::shift_left(size_t num_bits) const
 | |
| {
 | |
|     UnsignedBigInteger output;
 | |
|     UnsignedBigInteger temp_result;
 | |
|     UnsignedBigInteger temp_plus;
 | |
| 
 | |
|     shift_left_without_allocation(*this, num_bits, temp_result, temp_plus, output);
 | |
| 
 | |
|     return output;
 | |
| }
 | |
| 
 | |
| FLATTEN UnsignedBigInteger UnsignedBigInteger::multiplied_by(const UnsignedBigInteger& other) const
 | |
| {
 | |
|     UnsignedBigInteger result;
 | |
|     UnsignedBigInteger temp_shift_result;
 | |
|     UnsignedBigInteger temp_shift_plus;
 | |
|     UnsignedBigInteger temp_shift;
 | |
|     UnsignedBigInteger temp_plus;
 | |
| 
 | |
|     multiply_without_allocation(*this, other, temp_shift_result, temp_shift_plus, temp_shift, temp_plus, result);
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| FLATTEN UnsignedDivisionResult UnsignedBigInteger::divided_by(const UnsignedBigInteger& divisor) const
 | |
| {
 | |
|     UnsignedBigInteger quotient;
 | |
|     UnsignedBigInteger remainder;
 | |
| 
 | |
|     // If we actually have a u16-compatible divisor, short-circuit to the
 | |
|     // less computationally-intensive "divide_u16_without_allocation" method.
 | |
|     if (divisor.trimmed_length() == 1 && divisor.m_words[0] < (1 << 16)) {
 | |
|         divide_u16_without_allocation(*this, divisor.m_words[0], quotient, remainder);
 | |
|         return UnsignedDivisionResult { quotient, remainder };
 | |
|     }
 | |
| 
 | |
|     UnsignedBigInteger temp_shift_result;
 | |
|     UnsignedBigInteger temp_shift_plus;
 | |
|     UnsignedBigInteger temp_shift;
 | |
|     UnsignedBigInteger temp_minus;
 | |
| 
 | |
|     divide_without_allocation(*this, divisor, temp_shift_result, temp_shift_plus, temp_shift, temp_minus, quotient, remainder);
 | |
| 
 | |
|     return UnsignedDivisionResult { quotient, remainder };
 | |
| }
 | |
| 
 | |
| void UnsignedBigInteger::set_bit_inplace(size_t bit_index)
 | |
| {
 | |
|     const size_t word_index = bit_index / UnsignedBigInteger::BITS_IN_WORD;
 | |
|     const size_t inner_word_index = bit_index % UnsignedBigInteger::BITS_IN_WORD;
 | |
| 
 | |
|     m_words.ensure_capacity(word_index);
 | |
| 
 | |
|     for (size_t i = length(); i <= word_index; ++i) {
 | |
|         m_words.unchecked_append(0);
 | |
|     }
 | |
|     m_words[word_index] |= (1 << inner_word_index);
 | |
| 
 | |
|     m_cached_trimmed_length = {};
 | |
| }
 | |
| 
 | |
| bool UnsignedBigInteger::operator==(const UnsignedBigInteger& other) const
 | |
| {
 | |
|     if (is_invalid() != other.is_invalid())
 | |
|         return false;
 | |
| 
 | |
|     auto length = trimmed_length();
 | |
| 
 | |
|     if (length != other.trimmed_length())
 | |
|         return false;
 | |
| 
 | |
|     return !__builtin_memcmp(m_words.data(), other.words().data(), length * (BITS_IN_WORD / 8));
 | |
| }
 | |
| 
 | |
| bool UnsignedBigInteger::operator!=(const UnsignedBigInteger& other) const
 | |
| {
 | |
|     return !(*this == other);
 | |
| }
 | |
| 
 | |
| bool UnsignedBigInteger::operator<(const UnsignedBigInteger& other) const
 | |
| {
 | |
|     auto length = trimmed_length();
 | |
|     auto other_length = other.trimmed_length();
 | |
| 
 | |
|     if (length < other_length) {
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     if (length > other_length) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if (length == 0) {
 | |
|         return false;
 | |
|     }
 | |
|     for (int i = length - 1; i >= 0; --i) {
 | |
|         if (m_words[i] == other.m_words[i])
 | |
|             continue;
 | |
|         return m_words[i] < other.m_words[i];
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Complexity: O(N) where N is the number of words in the larger number
 | |
|  */
 | |
| void UnsignedBigInteger::add_without_allocation(
 | |
|     const UnsignedBigInteger& left,
 | |
|     const UnsignedBigInteger& right,
 | |
|     UnsignedBigInteger& output)
 | |
| {
 | |
|     const UnsignedBigInteger* const longer = (left.length() > right.length()) ? &left : &right;
 | |
|     const UnsignedBigInteger* const shorter = (longer == &right) ? &left : &right;
 | |
| 
 | |
|     u8 carry = 0;
 | |
| 
 | |
|     output.set_to_0();
 | |
|     output.m_words.resize_and_keep_capacity(longer->length());
 | |
| 
 | |
|     for (size_t i = 0; i < shorter->length(); ++i) {
 | |
|         u32 word_addition_result = shorter->m_words[i] + longer->m_words[i];
 | |
|         u8 carry_out = 0;
 | |
|         // if there was a carry, the result will be smaller than any of the operands
 | |
|         if (word_addition_result + carry < shorter->m_words[i]) {
 | |
|             carry_out = 1;
 | |
|         }
 | |
|         if (carry) {
 | |
|             word_addition_result++;
 | |
|         }
 | |
|         carry = carry_out;
 | |
|         output.m_words[i] = word_addition_result;
 | |
|     }
 | |
| 
 | |
|     for (size_t i = shorter->length(); i < longer->length(); ++i) {
 | |
|         u32 word_addition_result = longer->m_words[i] + carry;
 | |
| 
 | |
|         carry = 0;
 | |
|         if (word_addition_result < longer->m_words[i]) {
 | |
|             carry = 1;
 | |
|         }
 | |
|         output.m_words[i] = word_addition_result;
 | |
|     }
 | |
|     if (carry) {
 | |
|         output.m_words.append(carry);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Complexity: O(N) where N is the number of words in the larger number
 | |
|  */
 | |
| void UnsignedBigInteger::subtract_without_allocation(
 | |
|     const UnsignedBigInteger& left,
 | |
|     const UnsignedBigInteger& right,
 | |
|     UnsignedBigInteger& output)
 | |
| {
 | |
|     if (left < right) {
 | |
|         output.invalidate();
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     u8 borrow = 0;
 | |
|     auto own_length = left.length();
 | |
|     auto other_length = right.length();
 | |
| 
 | |
|     output.set_to_0();
 | |
|     output.m_words.resize_and_keep_capacity(own_length);
 | |
| 
 | |
|     for (size_t i = 0; i < own_length; ++i) {
 | |
|         u32 other_word = (i < other_length) ? right.m_words[i] : 0;
 | |
|         i64 temp = static_cast<i64>(left.m_words[i]) - static_cast<i64>(other_word) - static_cast<i64>(borrow);
 | |
|         // If temp < 0, we had an underflow
 | |
|         borrow = (temp >= 0) ? 0 : 1;
 | |
|         if (temp < 0) {
 | |
|             temp += (UINT32_MAX + 1);
 | |
|         }
 | |
|         output.m_words[i] = temp;
 | |
|     }
 | |
| 
 | |
|     // This assertion should not fail, because we verified that *this>=other at the beginning of the function
 | |
|     VERIFY(borrow == 0);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Complexity: O(N) where N is the number of words in the shorter value
 | |
|  * Method:
 | |
|  * Apply <op> word-wise until words in the shorter value are used up
 | |
|  * then copy the rest of the words verbatim from the longer value.
 | |
|  */
 | |
| FLATTEN void UnsignedBigInteger::bitwise_or_without_allocation(
 | |
|     const UnsignedBigInteger& left,
 | |
|     const UnsignedBigInteger& right,
 | |
|     UnsignedBigInteger& output)
 | |
| {
 | |
|     // If either of the BigInts are invalid, the output is just the other one.
 | |
|     if (left.is_invalid()) {
 | |
|         output.set_to(right);
 | |
|         return;
 | |
|     }
 | |
|     if (right.is_invalid()) {
 | |
|         output.set_to(left);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const UnsignedBigInteger *shorter, *longer;
 | |
|     if (left.length() < right.length()) {
 | |
|         shorter = &left;
 | |
|         longer = &right;
 | |
|     } else {
 | |
|         shorter = &right;
 | |
|         longer = &left;
 | |
|     }
 | |
| 
 | |
|     output.m_words.resize_and_keep_capacity(longer->length());
 | |
| 
 | |
|     size_t longer_offset = longer->length() - shorter->length();
 | |
|     for (size_t i = 0; i < shorter->length(); ++i)
 | |
|         output.m_words[i] = longer->words()[i] | shorter->words()[i];
 | |
| 
 | |
|     __builtin_memcpy(output.m_words.data() + shorter->length(), longer->words().data() + shorter->length(), sizeof(u32) * longer_offset);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Complexity: O(N) where N is the number of words in the shorter value
 | |
|  * Method:
 | |
|  * Apply 'and' word-wise until words in the shorter value are used up
 | |
|  * and zero the rest.
 | |
|  */
 | |
| FLATTEN void UnsignedBigInteger::bitwise_and_without_allocation(
 | |
|     const UnsignedBigInteger& left,
 | |
|     const UnsignedBigInteger& right,
 | |
|     UnsignedBigInteger& output)
 | |
| {
 | |
|     // If either of the BigInts are invalid, the output is just the other one.
 | |
|     if (left.is_invalid()) {
 | |
|         output.set_to(right);
 | |
|         return;
 | |
|     }
 | |
|     if (right.is_invalid()) {
 | |
|         output.set_to(left);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const UnsignedBigInteger *shorter, *longer;
 | |
|     if (left.length() < right.length()) {
 | |
|         shorter = &left;
 | |
|         longer = &right;
 | |
|     } else {
 | |
|         shorter = &right;
 | |
|         longer = &left;
 | |
|     }
 | |
| 
 | |
|     output.m_words.resize_and_keep_capacity(longer->length());
 | |
| 
 | |
|     size_t longer_offset = longer->length() - shorter->length();
 | |
|     for (size_t i = 0; i < shorter->length(); ++i)
 | |
|         output.m_words[i] = longer->words()[i] & shorter->words()[i];
 | |
| 
 | |
|     __builtin_memset(output.m_words.data() + shorter->length(), 0, sizeof(u32) * longer_offset);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Complexity: O(N) where N is the number of words in the shorter value
 | |
|  * Method:
 | |
|  * Apply 'xor' word-wise until words in the shorter value are used up
 | |
|  * and copy the rest.
 | |
|  */
 | |
| FLATTEN void UnsignedBigInteger::bitwise_xor_without_allocation(
 | |
|     const UnsignedBigInteger& left,
 | |
|     const UnsignedBigInteger& right,
 | |
|     UnsignedBigInteger& output)
 | |
| {
 | |
|     // If either of the BigInts are invalid, the output is just the other one.
 | |
|     if (left.is_invalid()) {
 | |
|         output.set_to(right);
 | |
|         return;
 | |
|     }
 | |
|     if (right.is_invalid()) {
 | |
|         output.set_to(left);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const UnsignedBigInteger *shorter, *longer;
 | |
|     if (left.length() < right.length()) {
 | |
|         shorter = &left;
 | |
|         longer = &right;
 | |
|     } else {
 | |
|         shorter = &right;
 | |
|         longer = &left;
 | |
|     }
 | |
| 
 | |
|     output.m_words.resize_and_keep_capacity(longer->length());
 | |
| 
 | |
|     size_t longer_offset = longer->length() - shorter->length();
 | |
|     for (size_t i = 0; i < shorter->length(); ++i)
 | |
|         output.m_words[i] = longer->words()[i] ^ shorter->words()[i];
 | |
| 
 | |
|     __builtin_memcpy(output.m_words.data() + shorter->length(), longer->words().data() + shorter->length(), sizeof(u32) * longer_offset);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Complexity: O(N) where N is the number of words
 | |
|  */
 | |
| FLATTEN void UnsignedBigInteger::bitwise_not_without_allocation(
 | |
|     const UnsignedBigInteger& right,
 | |
|     UnsignedBigInteger& output)
 | |
| {
 | |
|     // If the value is invalid, the output value is invalid as well.
 | |
|     if (right.is_invalid()) {
 | |
|         output.invalidate();
 | |
|         return;
 | |
|     }
 | |
|     if (right.length() == 0) {
 | |
|         output.set_to_0();
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     output.m_words.resize_and_keep_capacity(right.length());
 | |
| 
 | |
|     if (right.length() > 1) {
 | |
|         for (size_t i = 0; i < right.length() - 1; ++i)
 | |
|             output.m_words[i] = ~right.words()[i];
 | |
|     }
 | |
| 
 | |
|     auto last_word_index = right.length() - 1;
 | |
|     auto last_word = right.words()[last_word_index];
 | |
| 
 | |
|     output.m_words[last_word_index] = ((u32)0xffffffffffffffff >> __builtin_clz(last_word)) & ~last_word;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Complexity : O(N + num_bits % 8) where N is the number of words in the number
 | |
|  * Shift method :
 | |
|  * Start by shifting by whole words in num_bits (by putting missing words at the start),
 | |
|  * then shift the number's words two by two by the remaining amount of bits.
 | |
|  */
 | |
| FLATTEN void UnsignedBigInteger::shift_left_without_allocation(
 | |
|     const UnsignedBigInteger& number,
 | |
|     size_t num_bits,
 | |
|     UnsignedBigInteger& temp_result,
 | |
|     UnsignedBigInteger& temp_plus,
 | |
|     UnsignedBigInteger& output)
 | |
| {
 | |
|     // We can only do shift operations on individual words
 | |
|     // where the shift amount is <= size of word (32).
 | |
|     // But we do know how to shift by a multiple of word size (e.g 64=32*2)
 | |
|     // So we first shift the result by how many whole words fit in 'num_bits'
 | |
|     shift_left_by_n_words(number, num_bits / UnsignedBigInteger::BITS_IN_WORD, temp_result);
 | |
| 
 | |
|     output.set_to(temp_result);
 | |
| 
 | |
|     // And now we shift by the leftover amount of bits
 | |
|     num_bits %= UnsignedBigInteger::BITS_IN_WORD;
 | |
| 
 | |
|     if (num_bits == 0) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     for (size_t i = 0; i < temp_result.length(); ++i) {
 | |
|         u32 current_word_of_temp_result = shift_left_get_one_word(temp_result, num_bits, i);
 | |
|         output.m_words[i] = current_word_of_temp_result;
 | |
|     }
 | |
| 
 | |
|     // Shifting the last word can produce a carry
 | |
|     u32 carry_word = shift_left_get_one_word(temp_result, num_bits, temp_result.length());
 | |
|     if (carry_word != 0) {
 | |
| 
 | |
|         // output += (carry_word << temp_result.length())
 | |
|         // FIXME : Using temp_plus this way to transform carry_word into a bigint is not
 | |
|         //         efficient nor pretty. Maybe we should have an "add_with_shift" method ?
 | |
|         temp_plus.set_to_0();
 | |
|         temp_plus.m_words.append(carry_word);
 | |
|         shift_left_by_n_words(temp_plus, temp_result.length(), temp_result);
 | |
|         add_without_allocation(output, temp_result, temp_plus);
 | |
|         output.set_to(temp_plus);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Complexity: O(N^2) where N is the number of words in the larger number
 | |
|  * Multiplication method:
 | |
|  * An integer is equal to the sum of the powers of two
 | |
|  * according to the indices of its 'on' bits.
 | |
|  * So to multiple x*y, we go over each '1' bit in x (say the i'th bit),
 | |
|  * and add y<<i to the result.
 | |
|  */
 | |
| FLATTEN void UnsignedBigInteger::multiply_without_allocation(
 | |
|     const UnsignedBigInteger& left,
 | |
|     const UnsignedBigInteger& right,
 | |
|     UnsignedBigInteger& temp_shift_result,
 | |
|     UnsignedBigInteger& temp_shift_plus,
 | |
|     UnsignedBigInteger& temp_shift,
 | |
|     UnsignedBigInteger& temp_plus,
 | |
|     UnsignedBigInteger& output)
 | |
| {
 | |
|     output.set_to_0();
 | |
| 
 | |
|     // iterate all bits
 | |
|     for (size_t word_index = 0; word_index < left.length(); ++word_index) {
 | |
|         for (size_t bit_index = 0; bit_index < UnsignedBigInteger::BITS_IN_WORD; ++bit_index) {
 | |
|             // If the bit is off - skip over it
 | |
|             if (!(left.m_words[word_index] & (1 << bit_index)))
 | |
|                 continue;
 | |
| 
 | |
|             const size_t shift_amount = word_index * UnsignedBigInteger::BITS_IN_WORD + bit_index;
 | |
| 
 | |
|             // output += (right << shift_amount);
 | |
|             shift_left_without_allocation(right, shift_amount, temp_shift_result, temp_shift_plus, temp_shift);
 | |
|             add_without_allocation(output, temp_shift, temp_plus);
 | |
|             output.set_to(temp_plus);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Complexity: O(N^2) where N is the number of words in the larger number
 | |
|  * Division method:
 | |
|  * We loop over the bits of the divisor, attempting to subtract divisor<<i from the dividend.
 | |
|  * If the result is non-negative, it means that divisor*2^i "fits" in the dividend,
 | |
|  * so we set the ith bit in the quotient and reduce divisor<<i from the dividend.
 | |
|  * When we're done, what's left from the dividend is the remainder.
 | |
|  */
 | |
| FLATTEN void UnsignedBigInteger::divide_without_allocation(
 | |
|     const UnsignedBigInteger& numerator,
 | |
|     const UnsignedBigInteger& denominator,
 | |
|     UnsignedBigInteger& temp_shift_result,
 | |
|     UnsignedBigInteger& temp_shift_plus,
 | |
|     UnsignedBigInteger& temp_shift,
 | |
|     UnsignedBigInteger& temp_minus,
 | |
|     UnsignedBigInteger& quotient,
 | |
|     UnsignedBigInteger& remainder)
 | |
| {
 | |
|     quotient.set_to_0();
 | |
|     remainder.set_to(numerator);
 | |
| 
 | |
|     // iterate all bits
 | |
|     for (int word_index = numerator.trimmed_length() - 1; word_index >= 0; --word_index) {
 | |
|         for (int bit_index = UnsignedBigInteger::BITS_IN_WORD - 1; bit_index >= 0; --bit_index) {
 | |
|             const size_t shift_amount = word_index * UnsignedBigInteger::BITS_IN_WORD + bit_index;
 | |
|             shift_left_without_allocation(denominator, shift_amount, temp_shift_result, temp_shift_plus, temp_shift);
 | |
| 
 | |
|             subtract_without_allocation(remainder, temp_shift, temp_minus);
 | |
|             if (!temp_minus.is_invalid()) {
 | |
|                 remainder.set_to(temp_minus);
 | |
|                 quotient.set_bit_inplace(shift_amount);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Complexity : O(N) where N is the number of digits in the numerator
 | |
|  * Division method :
 | |
|  * Starting from the most significant one, for each half-word of the numerator, combine it
 | |
|  * with the existing remainder if any, divide the combined number as a u32 operation and
 | |
|  * update the quotient / remainder as needed.
 | |
|  */
 | |
| FLATTEN void UnsignedBigInteger::divide_u16_without_allocation(
 | |
|     const UnsignedBigInteger& numerator,
 | |
|     u32 denominator,
 | |
|     UnsignedBigInteger& quotient,
 | |
|     UnsignedBigInteger& remainder)
 | |
| {
 | |
|     VERIFY(denominator < (1 << 16));
 | |
|     u32 remainder_word = 0;
 | |
|     auto numerator_length = numerator.trimmed_length();
 | |
|     quotient.set_to_0();
 | |
|     quotient.m_words.resize(numerator_length);
 | |
|     for (int word_index = numerator_length - 1; word_index >= 0; --word_index) {
 | |
|         auto word_high = numerator.m_words[word_index] >> 16;
 | |
|         auto word_low = numerator.m_words[word_index] & ((1 << 16) - 1);
 | |
| 
 | |
|         auto number_to_divide_high = (remainder_word << 16) | word_high;
 | |
|         auto quotient_high = number_to_divide_high / denominator;
 | |
|         remainder_word = number_to_divide_high % denominator;
 | |
| 
 | |
|         auto number_to_divide_low = remainder_word << 16 | word_low;
 | |
|         auto quotient_low = number_to_divide_low / denominator;
 | |
|         remainder_word = number_to_divide_low % denominator;
 | |
| 
 | |
|         quotient.m_words[word_index] = (quotient_high << 16) | quotient_low;
 | |
|     }
 | |
|     remainder.set_to(remainder_word);
 | |
| }
 | |
| 
 | |
| ALWAYS_INLINE void UnsignedBigInteger::shift_left_by_n_words(
 | |
|     const UnsignedBigInteger& number,
 | |
|     const size_t number_of_words,
 | |
|     UnsignedBigInteger& output)
 | |
| {
 | |
|     // shifting left by N words means just inserting N zeroes to the beginning of the words vector
 | |
|     output.set_to_0();
 | |
|     output.m_words.resize_and_keep_capacity(number_of_words + number.length());
 | |
| 
 | |
|     __builtin_memset(output.m_words.data(), 0, number_of_words * sizeof(unsigned));
 | |
|     __builtin_memcpy(&output.m_words.data()[number_of_words], number.m_words.data(), number.m_words.size() * sizeof(unsigned));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Returns the word at a requested index in the result of a shift operation
 | |
|  */
 | |
| ALWAYS_INLINE u32 UnsignedBigInteger::shift_left_get_one_word(
 | |
|     const UnsignedBigInteger& number,
 | |
|     const size_t num_bits,
 | |
|     const size_t result_word_index)
 | |
| {
 | |
|     // "<= length()" (rather than length() - 1) is intentional,
 | |
|     // The result inedx of length() is used when calculating the carry word
 | |
|     VERIFY(result_word_index <= number.length());
 | |
|     VERIFY(num_bits <= UnsignedBigInteger::BITS_IN_WORD);
 | |
|     u32 result = 0;
 | |
| 
 | |
|     // we need to check for "num_bits != 0" since shifting right by 32 is apparently undefined behaviour!
 | |
|     if (result_word_index > 0 && num_bits != 0) {
 | |
|         result += number.m_words[result_word_index - 1] >> (UnsignedBigInteger::BITS_IN_WORD - num_bits);
 | |
|     }
 | |
|     if (result_word_index < number.length() && num_bits < 32) {
 | |
|         result += number.m_words[result_word_index] << num_bits;
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| }
 | |
| 
 | |
| void AK::Formatter<Crypto::UnsignedBigInteger>::format(FormatBuilder& fmtbuilder, const Crypto::UnsignedBigInteger& value)
 | |
| {
 | |
|     if (value.is_invalid())
 | |
|         return Formatter<StringView>::format(fmtbuilder, "invalid");
 | |
| 
 | |
|     StringBuilder builder;
 | |
|     for (int i = value.length() - 1; i >= 0; --i)
 | |
|         builder.appendff("{}|", value.words()[i]);
 | |
| 
 | |
|     return Formatter<StringView>::format(fmtbuilder, builder.string_view());
 | |
| }
 |