1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-21 10:35:08 +00:00
serenity/Kernel/Bus/USB/UHCI/UHCIController.cpp
Liav A 05ba034000 Kernel: Introduce the IOWindow class
This class is intended to replace all IOAddress usages in the Kernel
codebase altogether. The idea is to ensure IO can be done in
arch-specific manner that is determined mostly in compile-time, but to
still be able to use most of the Kernel code in non-x86 builds. Specific
devices that rely on x86-specific IO instructions are already placed in
the Arch/x86 directory and are omitted for non-x86 builds.

The reason this works so well is the fact that x86 IO space acts in a
similar fashion to the traditional memory space being available in most
CPU architectures - the x86 IO space is essentially just an array of
bytes like the physical memory address space, but requires x86 IO
instructions to load and store data. Therefore, many devices allow host
software to interact with the hardware registers in both ways, with a
noticeable trend even in the modern x86 hardware to move away from the
old x86 IO space to exclusively using memory-mapped IO.

Therefore, the IOWindow class encapsulates both methods for x86 builds.
The idea is to allow PCI devices to be used in either way in x86 builds,
so when trying to map an IOWindow on a PCI BAR, the Kernel will try to
find the proper method being declared with the PCI BAR flags.
For old PCI hardware on non-x86 builds this might turn into a problem as
we can't use port mapped IO, so the Kernel will gracefully fail with
ENOTSUP error code if that's the case, as there's really nothing we can
do within such case.

For general IO, the read{8,16,32} and write{8,16,32} methods are
available as a convenient API for other places in the Kernel. There are
simply no direct 64-bit IO API methods yet, as it's not needed right now
and is not considered to be Arch-agnostic too - the x86 IO space doesn't
support generating 64 bit cycle on IO bus and instead requires two 2
32-bit accesses. If for whatever reason it appears to be necessary to do
IO in such manner, it could probably be added with some neat tricks to
do so. It is recommended to use Memory::TypedMapping struct if direct 64
bit IO is actually needed.
2022-09-23 17:22:15 +01:00

746 lines
28 KiB
C++

/*
* Copyright (c) 2020-2021, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2020, Jesse Buhagiar <jooster669@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Platform.h>
#include <Kernel/Arch/Delay.h>
#include <Kernel/Bus/PCI/API.h>
#include <Kernel/Bus/USB/UHCI/UHCIController.h>
#include <Kernel/Bus/USB/USBRequest.h>
#include <Kernel/Debug.h>
#include <Kernel/Memory/AnonymousVMObject.h>
#include <Kernel/Memory/MemoryManager.h>
#include <Kernel/Process.h>
#include <Kernel/Sections.h>
#include <Kernel/StdLib.h>
#include <Kernel/Time/TimeManagement.h>
static constexpr u8 RETRY_COUNTER_RELOAD = 3;
namespace Kernel::USB {
static constexpr u16 UHCI_USBCMD_RUN = 0x0001;
static constexpr u16 UHCI_USBCMD_HOST_CONTROLLER_RESET = 0x0002;
static constexpr u16 UHCI_USBCMD_GLOBAL_RESET = 0x0004;
static constexpr u16 UHCI_USBCMD_ENTER_GLOBAL_SUSPEND_MODE = 0x0008;
static constexpr u16 UHCI_USBCMD_FORCE_GLOBAL_RESUME = 0x0010;
static constexpr u16 UHCI_USBCMD_SOFTWARE_DEBUG = 0x0020;
static constexpr u16 UHCI_USBCMD_CONFIGURE_FLAG = 0x0040;
static constexpr u16 UHCI_USBCMD_MAX_PACKET = 0x0080;
static constexpr u16 UHCI_USBSTS_HOST_CONTROLLER_HALTED = 0x0020;
static constexpr u16 UHCI_USBSTS_HOST_CONTROLLER_PROCESS_ERROR = 0x0010;
static constexpr u16 UHCI_USBSTS_PCI_BUS_ERROR = 0x0008;
static constexpr u16 UHCI_USBSTS_RESUME_RECEIVED = 0x0004;
static constexpr u16 UHCI_USBSTS_USB_ERROR_INTERRUPT = 0x0002;
static constexpr u16 UHCI_USBSTS_USB_INTERRUPT = 0x0001;
static constexpr u8 UHCI_USBINTR_TIMEOUT_CRC_ENABLE = 0x01;
static constexpr u8 UHCI_USBINTR_RESUME_INTR_ENABLE = 0x02;
static constexpr u8 UHCI_USBINTR_IOC_ENABLE = 0x04;
static constexpr u8 UHCI_USBINTR_SHORT_PACKET_INTR_ENABLE = 0x08;
static constexpr u16 UHCI_FRAMELIST_FRAME_COUNT = 1024; // Each entry is 4 bytes in our allocated page
static constexpr u16 UHCI_FRAMELIST_FRAME_INVALID = 0x0001;
// Port stuff
static constexpr u8 UHCI_ROOT_PORT_COUNT = 2;
static constexpr u16 UHCI_PORTSC_CURRENT_CONNECT_STATUS = 0x0001;
static constexpr u16 UHCI_PORTSC_CONNECT_STATUS_CHANGED = 0x0002;
static constexpr u16 UHCI_PORTSC_PORT_ENABLED = 0x0004;
static constexpr u16 UHCI_PORTSC_PORT_ENABLE_CHANGED = 0x0008;
static constexpr u16 UHCI_PORTSC_LINE_STATUS = 0x0030;
static constexpr u16 UHCI_PORTSC_RESUME_DETECT = 0x40;
static constexpr u16 UHCI_PORTSC_LOW_SPEED_DEVICE = 0x0100;
static constexpr u16 UHCI_PORTSC_PORT_RESET = 0x0200;
static constexpr u16 UHCI_PORTSC_SUSPEND = 0x1000;
static constexpr u16 UHCI_PORTSC_NON_WRITE_CLEAR_BIT_MASK = 0x1FF5; // This is used to mask out the Write Clear bits making sure we don't accidentally clear them.
// *BSD and a few other drivers seem to use this number
static constexpr u8 UHCI_NUMBER_OF_ISOCHRONOUS_TDS = 128;
static constexpr u16 UHCI_NUMBER_OF_FRAMES = 1024;
ErrorOr<NonnullLockRefPtr<UHCIController>> UHCIController::try_to_initialize(PCI::DeviceIdentifier const& pci_device_identifier)
{
// NOTE: This assumes that address is pointing to a valid UHCI controller.
auto registers_io_window = TRY(IOWindow::create_for_pci_device_bar(pci_device_identifier, PCI::HeaderType0BaseRegister::BAR4));
auto controller = TRY(adopt_nonnull_lock_ref_or_enomem(new (nothrow) UHCIController(pci_device_identifier, move(registers_io_window))));
TRY(controller->initialize());
return controller;
}
ErrorOr<void> UHCIController::initialize()
{
dmesgln("UHCI: Controller found {} @ {}", PCI::get_hardware_id(pci_address()), pci_address());
dmesgln("UHCI: I/O base {}", m_registers_io_window);
dmesgln("UHCI: Interrupt line: {}", interrupt_number());
TRY(spawn_port_process());
TRY(reset());
return start();
}
UNMAP_AFTER_INIT UHCIController::UHCIController(PCI::DeviceIdentifier const& pci_device_identifier, NonnullOwnPtr<IOWindow> registers_io_window)
: PCI::Device(pci_device_identifier.address())
, IRQHandler(pci_device_identifier.interrupt_line().value())
, m_registers_io_window(move(registers_io_window))
, m_schedule_lock(LockRank::None)
{
}
UNMAP_AFTER_INIT UHCIController::~UHCIController() = default;
ErrorOr<void> UHCIController::reset()
{
TRY(stop());
write_usbcmd(UHCI_USBCMD_HOST_CONTROLLER_RESET);
// FIXME: Timeout
for (;;) {
if (read_usbcmd() & UHCI_USBCMD_HOST_CONTROLLER_RESET)
continue;
break;
}
// Let's allocate the physical page for the Frame List (which is 4KiB aligned)
m_framelist = TRY(MM.allocate_dma_buffer_page("UHCI Framelist"sv, Memory::Region::Access::Write));
dbgln("UHCI: Allocated framelist at physical address {}", m_framelist->physical_page(0)->paddr());
dbgln("UHCI: Framelist is at virtual address {}", m_framelist->vaddr());
write_sofmod(64); // 1mS frame time
TRY(create_structures());
setup_schedule();
write_flbaseadd(m_framelist->physical_page(0)->paddr().get()); // Frame list (physical) address
write_frnum(0); // Set the initial frame number
// FIXME: Work out why interrupts lock up the entire system....
// Disable UHCI Controller from raising an IRQ
write_usbintr(0);
dbgln("UHCI: Reset completed");
return {};
}
UNMAP_AFTER_INIT ErrorOr<void> UHCIController::create_structures()
{
m_queue_head_pool = TRY(UHCIDescriptorPool<QueueHead>::try_create("Queue Head Pool"sv));
// Used as a sentinel value to loop back to the beginning of the list
m_schedule_begin_anchor = allocate_queue_head();
// Each interrupt QH anchor in the array is linked into the schedule so that
// it is executed once every (2^i) milliseconds, where i is it's index
for (int i = 0; i < NUMBER_OF_INTERRUPT_QHS; i++) {
m_interrupt_qh_anchor_arr[i] = allocate_queue_head();
}
// Create the Full Speed, Low Speed Control and Bulk Queue Heads
m_ls_control_qh_anchor = allocate_queue_head();
m_fs_control_qh_anchor = allocate_queue_head();
m_bulk_qh_anchor = allocate_queue_head();
// Now the Transfer Descriptor pool
m_transfer_descriptor_pool = TRY(UHCIDescriptorPool<TransferDescriptor>::try_create("Transfer Descriptor Pool"sv));
m_isochronous_transfer_pool = TRY(MM.allocate_dma_buffer_page("UHCI Isochronous Descriptor Pool"sv, Memory::Region::Access::ReadWrite));
// Set up the Isochronous Transfer Descriptor list
m_iso_td_list.resize(UHCI_NUMBER_OF_ISOCHRONOUS_TDS);
for (size_t i = 0; i < m_iso_td_list.size(); i++) {
auto placement_addr = reinterpret_cast<void*>(m_isochronous_transfer_pool->vaddr().get() + (i * sizeof(Kernel::USB::TransferDescriptor)));
auto paddr = static_cast<u32>(m_isochronous_transfer_pool->physical_page(0)->paddr().get() + (i * sizeof(Kernel::USB::TransferDescriptor)));
// Place a new Transfer Descriptor with a 1:1 in our region
// The pointer returned by `new()` lines up exactly with the value
// that we store in `paddr`, meaning our member functions directly
// access the raw descriptor (that we later send to the controller)
m_iso_td_list.at(i) = new (placement_addr) Kernel::USB::TransferDescriptor(paddr);
auto transfer_descriptor = m_iso_td_list.at(i);
transfer_descriptor->set_in_use(true); // Isochronous transfers are ALWAYS marked as in use (in case we somehow get allocated one...)
transfer_descriptor->set_isochronous();
if constexpr (UHCI_VERBOSE_DEBUG)
transfer_descriptor->print();
}
if constexpr (UHCI_DEBUG) {
dbgln("UHCI: Pool information:");
m_queue_head_pool->print_pool_information();
m_transfer_descriptor_pool->print_pool_information();
}
return {};
}
UNMAP_AFTER_INIT void UHCIController::setup_schedule()
{
//
// https://github.com/alkber/minix3-usbsubsystem/blob/master/usb/uhci-hcd.c
//
// This lad probably has the best explanation as to how this is actually done. I'll try and
// explain it here to so that there's no need for anyone to go hunting for this shit again, because
// the USB spec and Intel explain next to nothing.
// According to the USB spec (and the UHCI datasheet), 90% of the bandwidth should be used for
// Isochronous and """Interrupt""" related transfers, with the rest being used for control and bulk
// transfers.
// That is, most of the time, the schedule is going to be executing either an Isochronous transfer
// in our framelist, or an Interrupt transfer. The allocation in `create_structures` reflects this.
//
// Each frame has it's own Isochronous transfer Transfer Descriptor(s) that point to each other
// horizontally in the list. The end of these transfers then point to the Interrupt Queue Headers,
// in which we can attach Transfer Descriptors (related to Interrupt Transfers). These are attached
// to the Queue Head _vertically_. We need to ensure that these are executed every 8ms, so they are inserted
// at different points in the schedule (TODO: How do we do this?!?!). After the Interrupt Transfer Queue Heads,
// we attach the Control Queue Heads. We need two in total, one for Low Speed devices, and one for Full Speed
// USB devices. Finally, we attach the Bulk Transfer Queue Head.
// Not specified in the datasheet, however, is another Queue Head with an "inactive" Transfer Descriptor. This
// is to circumvent a bug in the silicon of the PIIX4's UHCI controller.
// https://github.com/openbsd/src/blob/master/sys/dev/usb/uhci.c#L390
m_schedule_begin_anchor->link_next_queue_head(m_interrupt_qh_anchor_arr[0]);
m_schedule_begin_anchor->terminate_element_link_ptr();
for (int i = 0; i < NUMBER_OF_INTERRUPT_QHS - 1; i++) {
m_interrupt_qh_anchor_arr[i]->link_next_queue_head(m_interrupt_qh_anchor_arr[i + 1]);
m_interrupt_qh_anchor_arr[i]->terminate_element_link_ptr();
}
m_interrupt_qh_anchor_arr[NUMBER_OF_INTERRUPT_QHS - 1]->link_next_queue_head(m_ls_control_qh_anchor);
m_interrupt_qh_anchor_arr[NUMBER_OF_INTERRUPT_QHS - 1]->terminate_element_link_ptr();
m_ls_control_qh_anchor->link_next_queue_head(m_fs_control_qh_anchor);
m_ls_control_qh_anchor->terminate_element_link_ptr();
m_fs_control_qh_anchor->link_next_queue_head(m_bulk_qh_anchor);
m_fs_control_qh_anchor->terminate_element_link_ptr();
auto piix4_td_hack = allocate_transfer_descriptor();
piix4_td_hack->terminate();
piix4_td_hack->set_max_len(0x7ff); // Null data packet
piix4_td_hack->set_device_address(0x7f);
piix4_td_hack->set_packet_id(PacketID::IN);
m_bulk_qh_anchor->link_next_queue_head(m_fs_control_qh_anchor);
m_bulk_qh_anchor->attach_transfer_descriptor_chain(piix4_td_hack);
u32* framelist = reinterpret_cast<u32*>(m_framelist->vaddr().as_ptr());
for (int frame_num = 0; frame_num < UHCI_NUMBER_OF_FRAMES; frame_num++) {
auto frame_iso_td = m_iso_td_list.at(frame_num % UHCI_NUMBER_OF_ISOCHRONOUS_TDS);
// Each frame pointer points to iso_td % NUM_ISO_TDS
for (int i = NUMBER_OF_INTERRUPT_QHS - 1; i >= 0; i--) {
if (frame_num % (1 << i) == 0) {
frame_iso_td->link_queue_head(m_interrupt_qh_anchor_arr[i]->paddr());
break;
}
}
framelist[frame_num] = frame_iso_td->paddr();
}
for (int i = 0; i < NUMBER_OF_INTERRUPT_QHS; i++) {
m_interrupt_qh_anchor_arr[i]->print();
}
m_ls_control_qh_anchor->print();
m_fs_control_qh_anchor->print();
m_bulk_qh_anchor->print();
}
QueueHead* UHCIController::allocate_queue_head()
{
return m_queue_head_pool->try_take_free_descriptor();
}
TransferDescriptor* UHCIController::allocate_transfer_descriptor()
{
return m_transfer_descriptor_pool->try_take_free_descriptor();
}
ErrorOr<void> UHCIController::stop()
{
write_usbcmd(read_usbcmd() & ~UHCI_USBCMD_RUN);
// FIXME: Timeout
for (;;) {
if (read_usbsts() & UHCI_USBSTS_HOST_CONTROLLER_HALTED)
break;
}
return {};
}
ErrorOr<void> UHCIController::start()
{
write_usbcmd(read_usbcmd() | UHCI_USBCMD_RUN);
// FIXME: Timeout
for (;;) {
if (!(read_usbsts() & UHCI_USBSTS_HOST_CONTROLLER_HALTED))
break;
}
dbgln("UHCI: Started");
m_root_hub = TRY(UHCIRootHub::try_create(*this));
TRY(m_root_hub->setup({}));
return {};
}
TransferDescriptor* UHCIController::create_transfer_descriptor(Pipe& pipe, PacketID direction, size_t data_len)
{
TransferDescriptor* td = allocate_transfer_descriptor();
if (td == nullptr) {
return nullptr;
}
u16 max_len = (data_len > 0) ? (data_len - 1) : 0x7ff;
VERIFY(max_len <= 0x4FF || max_len == 0x7FF); // According to the datasheet, anything in the range of 0x500 to 0x7FE are illegal
td->set_token((max_len << TD_TOKEN_MAXLEN_SHIFT) | ((pipe.data_toggle() ? 1 : 0) << TD_TOKEN_DATA_TOGGLE_SHIFT) | (pipe.endpoint_address() << TD_TOKEN_ENDPOINT_SHIFT) | (pipe.device_address() << TD_TOKEN_DEVICE_ADDR_SHIFT) | (static_cast<u8>(direction)));
pipe.set_toggle(!pipe.data_toggle());
if (pipe.type() == Pipe::Type::Isochronous) {
td->set_isochronous();
} else {
if (direction == PacketID::IN) {
td->set_short_packet_detect();
}
}
// Set low-speed bit if the device connected to port is a low=speed device (probably unlikely...)
if (pipe.device_speed() == Pipe::DeviceSpeed::LowSpeed) {
td->set_lowspeed();
}
td->set_active();
td->set_error_retry_counter(RETRY_COUNTER_RELOAD);
return td;
}
ErrorOr<void> UHCIController::create_chain(Pipe& pipe, PacketID direction, Ptr32<u8>& buffer_address, size_t max_size, size_t transfer_size, TransferDescriptor** td_chain, TransferDescriptor** last_td)
{
// We need to create `n` transfer descriptors based on the max
// size of each transfer (which we've learned from the device already by reading
// its device descriptor, or 8 bytes). Each TD then has its buffer pointer
// set to the initial buffer address + (max_size * index), where index is
// the ID of the TD in the chain.
size_t byte_count = 0;
TransferDescriptor* current_td = nullptr;
TransferDescriptor* prev_td = nullptr;
TransferDescriptor* first_td = nullptr;
// Keep creating transfer descriptors while we still have some data
while (byte_count < transfer_size) {
size_t packet_size = transfer_size - byte_count;
if (packet_size > max_size) {
packet_size = max_size;
}
current_td = create_transfer_descriptor(pipe, direction, packet_size);
if (current_td == nullptr) {
free_descriptor_chain(first_td);
return ENOMEM;
}
if (Checked<FlatPtr>::addition_would_overflow(reinterpret_cast<FlatPtr>(&*buffer_address), byte_count))
return EOVERFLOW;
auto buffer_pointer = Ptr32<u8>(buffer_address + byte_count);
current_td->set_buffer_address(buffer_pointer);
byte_count += packet_size;
if (prev_td != nullptr)
prev_td->insert_next_transfer_descriptor(current_td);
else
first_td = current_td;
prev_td = current_td;
}
*last_td = current_td;
*td_chain = first_td;
return {};
}
void UHCIController::free_descriptor_chain(TransferDescriptor* first_descriptor)
{
TransferDescriptor* descriptor = first_descriptor;
while (descriptor) {
TransferDescriptor* next = descriptor->next_td();
descriptor->free();
m_transfer_descriptor_pool->release_to_pool(descriptor);
descriptor = next;
}
}
void UHCIController::enqueue_qh(QueueHead* transfer_queue, QueueHead* anchor)
{
SpinlockLocker locker(m_schedule_lock);
auto prev_qh = anchor->prev_qh();
prev_qh->link_next_queue_head(transfer_queue);
transfer_queue->link_next_queue_head(anchor);
}
void UHCIController::dequeue_qh(QueueHead* transfer_queue)
{
SpinlockLocker locker(m_schedule_lock);
transfer_queue->prev_qh()->link_next_queue_head(transfer_queue->next_qh());
}
ErrorOr<size_t> UHCIController::submit_control_transfer(Transfer& transfer)
{
Pipe& pipe = transfer.pipe(); // Short circuit the pipe related to this transfer
bool direction_in = (transfer.request().request_type & USB_REQUEST_TRANSFER_DIRECTION_DEVICE_TO_HOST) == USB_REQUEST_TRANSFER_DIRECTION_DEVICE_TO_HOST;
dbgln_if(UHCI_DEBUG, "UHCI: Received control transfer for address {}. Root Hub is at address {}.", pipe.device_address(), m_root_hub->device_address());
// Short-circuit the root hub.
if (pipe.device_address() == m_root_hub->device_address())
return m_root_hub->handle_control_transfer(transfer);
TransferDescriptor* setup_td = create_transfer_descriptor(pipe, PacketID::SETUP, sizeof(USBRequestData));
if (!setup_td)
return ENOMEM;
setup_td->set_buffer_address(transfer.buffer_physical().as_ptr());
// Create a new descriptor chain
TransferDescriptor* last_data_descriptor;
TransferDescriptor* data_descriptor_chain;
auto buffer_address = Ptr32<u8>(transfer.buffer_physical().as_ptr() + sizeof(USBRequestData));
TRY(create_chain(pipe, direction_in ? PacketID::IN : PacketID::OUT, buffer_address, pipe.max_packet_size(), transfer.transfer_data_size(), &data_descriptor_chain, &last_data_descriptor));
// Status TD always has toggle set to 1
pipe.set_toggle(true);
TransferDescriptor* status_td = create_transfer_descriptor(pipe, direction_in ? PacketID::OUT : PacketID::IN, 0);
if (!status_td) {
free_descriptor_chain(data_descriptor_chain);
return ENOMEM;
}
status_td->terminate();
// Link transfers together
if (data_descriptor_chain) {
setup_td->insert_next_transfer_descriptor(data_descriptor_chain);
last_data_descriptor->insert_next_transfer_descriptor(status_td);
} else {
setup_td->insert_next_transfer_descriptor(status_td);
}
// Cool, everything should be chained together now! Let's print it out
if constexpr (UHCI_VERBOSE_DEBUG) {
dbgln("Setup TD");
setup_td->print();
if (data_descriptor_chain) {
dbgln("Data TD");
data_descriptor_chain->print();
}
dbgln("Status TD");
status_td->print();
}
QueueHead* transfer_queue = allocate_queue_head();
if (!transfer_queue) {
free_descriptor_chain(data_descriptor_chain);
return ENOMEM;
}
transfer_queue->attach_transfer_descriptor_chain(setup_td);
transfer_queue->set_transfer(&transfer);
enqueue_qh(transfer_queue, m_fs_control_qh_anchor);
size_t transfer_size = 0;
while (!transfer.complete()) {
dbgln_if(USB_DEBUG, "Control transfer size: {}", transfer_size);
transfer_size = poll_transfer_queue(*transfer_queue);
}
dequeue_qh(transfer_queue);
free_descriptor_chain(transfer_queue->get_first_td());
transfer_queue->free();
m_queue_head_pool->release_to_pool(transfer_queue);
return transfer_size;
}
ErrorOr<size_t> UHCIController::submit_bulk_transfer(Transfer& transfer)
{
Pipe& pipe = transfer.pipe();
dbgln_if(UHCI_DEBUG, "UHCI: Received bulk transfer for address {}. Root Hub is at address {}.", pipe.device_address(), m_root_hub->device_address());
// Create a new descriptor chain
TransferDescriptor* last_data_descriptor;
TransferDescriptor* data_descriptor_chain;
auto buffer_address = Ptr32<u8>(transfer.buffer_physical().as_ptr());
TRY(create_chain(pipe, transfer.pipe().direction() == Pipe::Direction::In ? PacketID::IN : PacketID::OUT, buffer_address, pipe.max_packet_size(), transfer.transfer_data_size(), &data_descriptor_chain, &last_data_descriptor));
last_data_descriptor->terminate();
if constexpr (UHCI_VERBOSE_DEBUG) {
if (data_descriptor_chain) {
dbgln("Data TD");
data_descriptor_chain->print();
}
}
QueueHead* transfer_queue = allocate_queue_head();
if (!transfer_queue) {
free_descriptor_chain(data_descriptor_chain);
return ENOMEM;
}
transfer_queue->attach_transfer_descriptor_chain(data_descriptor_chain);
transfer_queue->set_transfer(&transfer);
enqueue_qh(transfer_queue, m_bulk_qh_anchor);
size_t transfer_size = 0;
while (!transfer.complete()) {
transfer_size = poll_transfer_queue(*transfer_queue);
dbgln_if(USB_DEBUG, "Bulk transfer size: {}", transfer_size);
}
dequeue_qh(transfer_queue);
free_descriptor_chain(transfer_queue->get_first_td());
transfer_queue->free();
m_queue_head_pool->release_to_pool(transfer_queue);
return transfer_size;
}
size_t UHCIController::poll_transfer_queue(QueueHead& transfer_queue)
{
Transfer* transfer = transfer_queue.transfer();
TransferDescriptor* descriptor = transfer_queue.get_first_td();
bool transfer_still_in_progress = false;
size_t transfer_size = 0;
while (descriptor) {
u32 status = descriptor->status();
if (status & TransferDescriptor::StatusBits::Active) {
transfer_still_in_progress = true;
break;
}
if (status & TransferDescriptor::StatusBits::ErrorMask) {
transfer->set_complete();
transfer->set_error_occurred();
dbgln_if(UHCI_DEBUG, "UHCIController: Transfer failed! Reason: {:08x}", status);
return 0;
}
transfer_size += descriptor->actual_packet_length();
descriptor = descriptor->next_td();
}
if (!transfer_still_in_progress)
transfer->set_complete();
return transfer_size;
}
ErrorOr<void> UHCIController::spawn_port_process()
{
LockRefPtr<Thread> usb_hotplug_thread;
(void)Process::create_kernel_process(usb_hotplug_thread, TRY(KString::try_create("UHCI Hot Plug Task"sv)), [&] {
for (;;) {
if (m_root_hub)
m_root_hub->check_for_port_updates();
(void)Thread::current()->sleep(Time::from_seconds(1));
}
});
return {};
}
bool UHCIController::handle_irq(RegisterState const&)
{
u32 status = read_usbsts();
// Shared IRQ. Not ours!
if (!status)
return false;
if constexpr (UHCI_DEBUG) {
dbgln("UHCI: Interrupt happened!");
dbgln("Value of USBSTS: {:#04x}", read_usbsts());
}
// Write back USBSTS to clear bits
write_usbsts(status);
return true;
}
void UHCIController::get_port_status(Badge<UHCIRootHub>, u8 port, HubStatus& hub_port_status)
{
// The check is done by UHCIRootHub.
VERIFY(port < NUMBER_OF_ROOT_PORTS);
u16 status = port == 0 ? read_portsc1() : read_portsc2();
if (status & UHCI_PORTSC_CURRENT_CONNECT_STATUS)
hub_port_status.status |= PORT_STATUS_CURRENT_CONNECT_STATUS;
if (status & UHCI_PORTSC_CONNECT_STATUS_CHANGED)
hub_port_status.change |= PORT_STATUS_CONNECT_STATUS_CHANGED;
if (status & UHCI_PORTSC_PORT_ENABLED)
hub_port_status.status |= PORT_STATUS_PORT_ENABLED;
if (status & UHCI_PORTSC_PORT_ENABLE_CHANGED)
hub_port_status.change |= PORT_STATUS_PORT_ENABLED_CHANGED;
if (status & UHCI_PORTSC_LOW_SPEED_DEVICE)
hub_port_status.status |= PORT_STATUS_LOW_SPEED_DEVICE_ATTACHED;
if (status & UHCI_PORTSC_PORT_RESET)
hub_port_status.status |= PORT_STATUS_RESET;
if (m_port_reset_change_statuses & (1 << port))
hub_port_status.change |= PORT_STATUS_RESET_CHANGED;
if (status & UHCI_PORTSC_SUSPEND)
hub_port_status.status |= PORT_STATUS_SUSPEND;
if (m_port_suspend_change_statuses & (1 << port))
hub_port_status.change |= PORT_STATUS_SUSPEND_CHANGED;
// UHCI ports are always powered.
hub_port_status.status |= PORT_STATUS_PORT_POWER;
dbgln_if(UHCI_DEBUG, "UHCI: get_port_status status=0x{:04x} change=0x{:04x}", hub_port_status.status, hub_port_status.change);
}
void UHCIController::reset_port(u8 port)
{
// We still have to reset the port manually because UHCI does not automatically enable the port after reset.
// Additionally, the USB 2.0 specification says the SetPortFeature(PORT_ENABLE) request is not specified and that the _ideal_ behavior is to return a Request Error.
// Source: USB 2.0 Specification Section 11.24.2.7.1.2
// This means the hub code cannot rely on using it.
// The check is done by UHCIRootHub and set_port_feature.
VERIFY(port < NUMBER_OF_ROOT_PORTS);
u16 port_data = port == 0 ? read_portsc1() : read_portsc2();
port_data &= UHCI_PORTSC_NON_WRITE_CLEAR_BIT_MASK;
port_data |= UHCI_PORTSC_PORT_RESET;
if (port == 0)
write_portsc1(port_data);
else
write_portsc2(port_data);
// Wait at least 50 ms for the port to reset.
// This is T DRSTR in the USB 2.0 Specification Page 186 Table 7-13.
constexpr u16 reset_delay = 50 * 1000;
microseconds_delay(reset_delay);
port_data &= ~UHCI_PORTSC_PORT_RESET;
if (port == 0)
write_portsc1(port_data);
else
write_portsc2(port_data);
// Wait 10 ms for the port to recover.
// This is T RSTRCY in the USB 2.0 Specification Page 188 Table 7-14.
constexpr u16 reset_recovery_delay = 10 * 1000;
microseconds_delay(reset_recovery_delay);
port_data = port == 0 ? read_portsc1() : read_portsc2();
port_data |= UHCI_PORTSC_PORT_ENABLED;
if (port == 0)
write_portsc1(port_data);
else
write_portsc2(port_data);
dbgln_if(UHCI_DEBUG, "UHCI: Port should be enabled now: {:#04x}", port == 0 ? read_portsc1() : read_portsc2());
m_port_reset_change_statuses |= (1 << port);
}
ErrorOr<void> UHCIController::set_port_feature(Badge<UHCIRootHub>, u8 port, HubFeatureSelector feature_selector)
{
// The check is done by UHCIRootHub.
VERIFY(port < NUMBER_OF_ROOT_PORTS);
dbgln_if(UHCI_DEBUG, "UHCI: set_port_feature: port={} feature_selector={}", port, (u8)feature_selector);
switch (feature_selector) {
case HubFeatureSelector::PORT_POWER:
// Ignore the request. UHCI ports are always powered.
break;
case HubFeatureSelector::PORT_RESET:
reset_port(port);
break;
case HubFeatureSelector::PORT_SUSPEND: {
u16 port_data = port == 0 ? read_portsc1() : read_portsc2();
port_data &= UHCI_PORTSC_NON_WRITE_CLEAR_BIT_MASK;
port_data |= UHCI_PORTSC_SUSPEND;
if (port == 0)
write_portsc1(port_data);
else
write_portsc2(port_data);
m_port_suspend_change_statuses |= (1 << port);
break;
}
default:
dbgln("UHCI: Unknown feature selector in set_port_feature: {}", (u8)feature_selector);
return EINVAL;
}
return {};
}
ErrorOr<void> UHCIController::clear_port_feature(Badge<UHCIRootHub>, u8 port, HubFeatureSelector feature_selector)
{
// The check is done by UHCIRootHub.
VERIFY(port < NUMBER_OF_ROOT_PORTS);
dbgln_if(UHCI_DEBUG, "UHCI: clear_port_feature: port={} feature_selector={}", port, (u8)feature_selector);
u16 port_data = port == 0 ? read_portsc1() : read_portsc2();
port_data &= UHCI_PORTSC_NON_WRITE_CLEAR_BIT_MASK;
switch (feature_selector) {
case HubFeatureSelector::PORT_ENABLE:
port_data &= ~UHCI_PORTSC_PORT_ENABLED;
break;
case HubFeatureSelector::PORT_SUSPEND:
port_data &= ~UHCI_PORTSC_SUSPEND;
break;
case HubFeatureSelector::PORT_POWER:
// Ignore the request. UHCI ports are always powered.
break;
case HubFeatureSelector::C_PORT_CONNECTION:
// This field is Write Clear.
port_data |= UHCI_PORTSC_CONNECT_STATUS_CHANGED;
break;
case HubFeatureSelector::C_PORT_RESET:
m_port_reset_change_statuses &= ~(1 << port);
break;
case HubFeatureSelector::C_PORT_ENABLE:
// This field is Write Clear.
port_data |= UHCI_PORTSC_PORT_ENABLE_CHANGED;
break;
case HubFeatureSelector::C_PORT_SUSPEND:
m_port_suspend_change_statuses &= ~(1 << port);
break;
default:
dbgln("UHCI: Unknown feature selector in clear_port_feature: {}", (u8)feature_selector);
return EINVAL;
}
dbgln_if(UHCI_DEBUG, "UHCI: clear_port_feature: writing 0x{:04x} to portsc{}.", port_data, port + 1);
if (port == 0)
write_portsc1(port_data);
else
write_portsc2(port_data);
return {};
}
}