1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-28 09:15:07 +00:00
serenity/Userland/Libraries/LibVideo/VP9/TreeParser.cpp
Zaggy1024 907816e629 LibVideo: Create TokensContext struct for token parsing parameters
With the addition of this struct, both the bool to determine if coefs
should be parsed and the token parse itself can take specific
parameters.

This is the last step in parameterizing all the tree parsing, so the
old functions in TreeParser are now unused. This patch is very
satisfying :^)

There's still more work to be done to clean up how the parameters are
passed from Parser, but that's work for another day.
2022-11-12 10:17:27 -07:00

708 lines
33 KiB
C++

/*
* Copyright (c) 2021, Hunter Salyer <thefalsehonesty@gmail.com>
* Copyright (c) 2022, Gregory Bertilson <zaggy1024@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Function.h>
#include "Enums.h"
#include "LookupTables.h"
#include "Parser.h"
#include "TreeParser.h"
namespace Video::VP9 {
// Parsing of binary trees is handled here, as defined in sections 9.3.
// Each syntax element is defined in its own section for each overarching section listed here:
// - 9.3.1: Selection of the binary tree to be used.
// - 9.3.2: Probability selection based on context and often the node of the tree.
// - 9.3.4: Counting each syntax element when it is read.
template<typename OutputType>
inline ErrorOr<OutputType> parse_tree_new(BitStream& bit_stream, TreeParser::TreeSelection tree_selection, Function<u8(u8)> const& probability_getter)
{
// 9.3.3: The tree decoding function.
if (tree_selection.is_single_value())
return static_cast<OutputType>(tree_selection.single_value());
int const* tree = tree_selection.tree();
int n = 0;
do {
u8 node = n >> 1;
n = tree[n + TRY(bit_stream.read_bool(probability_getter(node)))];
} while (n > 0);
return static_cast<OutputType>(-n);
}
inline void increment_counter(u8& counter)
{
counter = min(static_cast<u32>(counter) + 1, 255);
}
ErrorOr<Partition> TreeParser::parse_partition(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, bool has_rows, bool has_columns, BlockSubsize block_subsize, u8 num_8x8, Vector<u8> const& above_partition_context, Vector<u8> const& left_partition_context, u32 row, u32 column, bool frame_is_intra)
{
// Tree array
TreeParser::TreeSelection tree = { PartitionSplit };
if (has_rows && has_columns)
tree = { partition_tree };
else if (has_rows)
tree = { rows_partition_tree };
else if (has_columns)
tree = { cols_partition_tree };
// Probability array
u32 above = 0;
u32 left = 0;
auto bsl = mi_width_log2_lookup[block_subsize];
auto block_offset = mi_width_log2_lookup[Block_64x64] - bsl;
for (auto i = 0; i < num_8x8; i++) {
above |= above_partition_context[column + i];
left |= left_partition_context[row + i];
}
above = (above & (1 << block_offset)) > 0;
left = (left & (1 << block_offset)) > 0;
auto context = bsl * 4 + left * 2 + above;
u8 const* probabilities = frame_is_intra ? probability_table.kf_partition_probs()[context] : probability_table.partition_probs()[context];
Function<u8(u8)> probability_getter = [&](u8 node) {
if (has_rows && has_columns)
return probabilities[node];
if (has_columns)
return probabilities[1];
return probabilities[2];
};
auto value = TRY(parse_tree_new<Partition>(bit_stream, tree, probability_getter));
increment_counter(counter.m_counts_partition[context][value]);
return value;
}
ErrorOr<PredictionMode> TreeParser::parse_default_intra_mode(BitStream& bit_stream, ProbabilityTables const& probability_table, BlockSubsize mi_size, Optional<Array<PredictionMode, 4> const&> above_context, Optional<Array<PredictionMode, 4> const&> left_context, PredictionMode block_sub_modes[4], u8 index_x, u8 index_y)
{
// FIXME: This should use a struct for the above and left contexts.
// Tree
TreeParser::TreeSelection tree = { intra_mode_tree };
// Probabilities
PredictionMode above_mode, left_mode;
if (mi_size >= Block_8x8) {
above_mode = above_context.has_value() ? above_context.value()[2] : PredictionMode::DcPred;
left_mode = left_context.has_value() ? left_context.value()[1] : PredictionMode::DcPred;
} else {
if (index_y > 0)
above_mode = block_sub_modes[index_x];
else
above_mode = above_context.has_value() ? above_context.value()[2 + index_x] : PredictionMode::DcPred;
if (index_x > 0)
left_mode = block_sub_modes[index_y << 1];
else
left_mode = left_context.has_value() ? left_context.value()[1 + (index_y << 1)] : PredictionMode::DcPred;
}
u8 const* probabilities = probability_table.kf_y_mode_probs()[to_underlying(above_mode)][to_underlying(left_mode)];
auto value = TRY(parse_tree_new<PredictionMode>(bit_stream, tree, [&](u8 node) { return probabilities[node]; }));
// Default intra mode is not counted.
return value;
}
ErrorOr<PredictionMode> TreeParser::parse_default_uv_mode(BitStream& bit_stream, ProbabilityTables const& probability_table, PredictionMode y_mode)
{
// Tree
TreeParser::TreeSelection tree = { intra_mode_tree };
// Probabilities
u8 const* probabilities = probability_table.kf_uv_mode_prob()[to_underlying(y_mode)];
auto value = TRY(parse_tree_new<PredictionMode>(bit_stream, tree, [&](u8 node) { return probabilities[node]; }));
// Default UV mode is not counted.
return value;
}
ErrorOr<PredictionMode> TreeParser::parse_intra_mode(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, BlockSubsize mi_size)
{
// Tree
TreeParser::TreeSelection tree = { intra_mode_tree };
// Probabilities
auto context = size_group_lookup[mi_size];
u8 const* probabilities = probability_table.y_mode_probs()[context];
auto value = TRY(parse_tree_new<PredictionMode>(bit_stream, tree, [&](u8 node) { return probabilities[node]; }));
increment_counter(counter.m_counts_intra_mode[context][to_underlying(value)]);
return value;
}
ErrorOr<PredictionMode> TreeParser::parse_sub_intra_mode(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter)
{
// Tree
TreeParser::TreeSelection tree = { intra_mode_tree };
// Probabilities
u8 const* probabilities = probability_table.y_mode_probs()[0];
auto value = TRY(parse_tree_new<PredictionMode>(bit_stream, tree, [&](u8 node) { return probabilities[node]; }));
increment_counter(counter.m_counts_intra_mode[0][to_underlying(value)]);
return value;
}
ErrorOr<PredictionMode> TreeParser::parse_uv_mode(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, PredictionMode y_mode)
{
// Tree
TreeParser::TreeSelection tree = { intra_mode_tree };
// Probabilities
u8 const* probabilities = probability_table.uv_mode_probs()[to_underlying(y_mode)];
auto value = TRY(parse_tree_new<PredictionMode>(bit_stream, tree, [&](u8 node) { return probabilities[node]; }));
increment_counter(counter.m_counts_uv_mode[to_underlying(y_mode)][to_underlying(value)]);
return value;
}
ErrorOr<u8> TreeParser::parse_segment_id(BitStream& bit_stream, u8 const probabilities[7])
{
auto value = TRY(parse_tree_new<u8>(bit_stream, { segment_tree }, [&](u8 node) { return probabilities[node]; }));
// Segment ID is not counted.
return value;
}
ErrorOr<bool> TreeParser::parse_segment_id_predicted(BitStream& bit_stream, u8 const probabilities[3], u8 above_seg_pred_context, u8 left_seg_pred_context)
{
auto context = left_seg_pred_context + above_seg_pred_context;
auto value = TRY(parse_tree_new<bool>(bit_stream, { binary_tree }, [&](u8) { return probabilities[context]; }));
// Segment ID prediction is not counted.
return value;
}
ErrorOr<PredictionMode> TreeParser::parse_inter_mode(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, u8 mode_context_for_ref_frame_0)
{
// Tree
TreeParser::TreeSelection tree = { inter_mode_tree };
// Probabilities
u8 const* probabilities = probability_table.inter_mode_probs()[mode_context_for_ref_frame_0];
auto value = TRY(parse_tree_new<PredictionMode>(bit_stream, tree, [&](u8 node) { return probabilities[node]; }));
increment_counter(counter.m_counts_inter_mode[mode_context_for_ref_frame_0][to_underlying(value) - to_underlying(PredictionMode::NearestMv)]);
return value;
}
ErrorOr<InterpolationFilter> TreeParser::parse_interpolation_filter(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, Optional<ReferenceFrameType> above_ref_frame, Optional<ReferenceFrameType> left_ref_frame, Optional<InterpolationFilter> above_interpolation_filter, Optional<InterpolationFilter> left_interpolation_filter)
{
// FIXME: Above and left context should be provided by a struct.
// Tree
TreeParser::TreeSelection tree = { interp_filter_tree };
// Probabilities
// NOTE: SWITCHABLE_FILTERS is not used in the spec for this function. Therefore, the number
// was demystified by referencing the reference codec libvpx:
// https://github.com/webmproject/libvpx/blob/705bf9de8c96cfe5301451f1d7e5c90a41c64e5f/vp9/common/vp9_pred_common.h#L69
u8 left_interp = (left_ref_frame.has_value() && left_ref_frame.value() > IntraFrame)
? left_interpolation_filter.value()
: SWITCHABLE_FILTERS;
u8 above_interp = (above_ref_frame.has_value() && above_ref_frame.value() > IntraFrame)
? above_interpolation_filter.value()
: SWITCHABLE_FILTERS;
u8 context = SWITCHABLE_FILTERS;
if (above_interp == left_interp || above_interp == SWITCHABLE_FILTERS)
context = left_interp;
else if (left_interp == SWITCHABLE_FILTERS)
context = above_interp;
u8 const* probabilities = probability_table.interp_filter_probs()[context];
auto value = TRY(parse_tree_new<InterpolationFilter>(bit_stream, tree, [&](u8 node) { return probabilities[node]; }));
increment_counter(counter.m_counts_interp_filter[context][to_underlying(value)]);
return value;
}
ErrorOr<bool> TreeParser::parse_skip(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, Optional<bool> const& above_skip, Optional<bool> const& left_skip)
{
// Probabilities
u8 context = 0;
context += static_cast<u8>(above_skip.value_or(false));
context += static_cast<u8>(left_skip.value_or(false));
u8 probability = probability_table.skip_prob()[context];
auto value = TRY(parse_tree_new<bool>(bit_stream, { binary_tree }, [&](u8) { return probability; }));
increment_counter(counter.m_counts_skip[context][value]);
return value;
}
ErrorOr<TXSize> TreeParser::parse_tx_size(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, TXSize max_tx_size, Optional<bool> above_skip, Optional<bool> left_skip, Optional<TXSize> above_tx_size, Optional<TXSize> left_tx_size)
{
// FIXME: Above and left contexts should be in structs.
// Tree
TreeParser::TreeSelection tree { tx_size_8_tree };
if (max_tx_size == TX_16x16)
tree = { tx_size_16_tree };
if (max_tx_size == TX_32x32)
tree = { tx_size_32_tree };
// Probabilities
auto above = max_tx_size;
auto left = max_tx_size;
if (above_skip.has_value() && !above_skip.value()) {
above = above_tx_size.value();
}
if (left_skip.has_value() && !left_skip.value()) {
left = left_tx_size.value();
}
if (!left_skip.has_value())
left = above;
if (!above_skip.has_value())
above = left;
auto context = (above + left) > max_tx_size;
u8 const* probabilities = probability_table.tx_probs()[max_tx_size][context];
auto value = TRY(parse_tree_new<TXSize>(bit_stream, tree, [&](u8 node) { return probabilities[node]; }));
increment_counter(counter.m_counts_tx_size[max_tx_size][context][value]);
return value;
}
ErrorOr<bool> TreeParser::parse_is_inter(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, Optional<bool> above_intra, Optional<bool> left_intra)
{
// FIXME: Above and left contexts should be in structs.
// Probabilities
u8 context = 0;
if (above_intra.has_value() && left_intra.has_value())
context = (left_intra.value() && above_intra.value()) ? 3 : static_cast<u8>(above_intra.value() || left_intra.value());
else if (above_intra.has_value() || left_intra.has_value())
context = 2 * static_cast<u8>(above_intra.has_value() ? above_intra.value() : left_intra.value());
u8 probability = probability_table.is_inter_prob()[context];
auto value = TRY(parse_tree_new<bool>(bit_stream, { binary_tree }, [&](u8) { return probability; }));
increment_counter(counter.m_counts_is_inter[context][value]);
return value;
}
ErrorOr<ReferenceMode> TreeParser::parse_comp_mode(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, ReferenceFrameType comp_fixed_ref, Optional<bool> above_single, Optional<bool> left_single, Optional<bool> above_intra, Optional<bool> left_intra, Optional<ReferenceFrameType> above_ref_frame_0, Optional<ReferenceFrameType> left_ref_frame_0)
{
// FIXME: Above and left contexts should be in structs.
// Probabilities
u8 context;
if (above_single.has_value() && left_single.has_value()) {
if (above_single.value() && left_single.value()) {
auto is_above_fixed = above_ref_frame_0.value() == comp_fixed_ref;
auto is_left_fixed = left_ref_frame_0.value() == comp_fixed_ref;
context = is_above_fixed ^ is_left_fixed;
} else if (above_single.value()) {
auto is_above_fixed = above_ref_frame_0.value() == comp_fixed_ref;
context = 2 + static_cast<u8>(is_above_fixed || above_intra.value());
} else if (left_single.value()) {
auto is_left_fixed = left_ref_frame_0.value() == comp_fixed_ref;
context = 2 + static_cast<u8>(is_left_fixed || left_intra.value());
} else {
context = 4;
}
} else if (above_single.has_value()) {
if (above_single.value())
context = above_ref_frame_0.value() == comp_fixed_ref;
else
context = 3;
} else if (left_single.has_value()) {
if (left_single.value())
context = static_cast<u8>(left_ref_frame_0.value() == comp_fixed_ref);
else
context = 3;
} else {
context = 1;
}
u8 probability = probability_table.comp_mode_prob()[context];
auto value = TRY(parse_tree_new<ReferenceMode>(bit_stream, { binary_tree }, [&](u8) { return probability; }));
increment_counter(counter.m_counts_comp_mode[context][value]);
return value;
}
ErrorOr<bool> TreeParser::parse_comp_ref(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, ReferenceFrameType comp_fixed_ref, ReferenceFramePair comp_var_ref, Optional<bool> above_single, Optional<bool> left_single, Optional<bool> above_intra, Optional<bool> left_intra, Optional<ReferenceFrameType> above_ref_frame_0, Optional<ReferenceFrameType> left_ref_frame_0, Optional<ReferenceFrameType> above_ref_frame_biased, Optional<ReferenceFrameType> left_ref_frame_biased)
{
// FIXME: Above and left contexts should be in structs.
// Probabilities
u8 context;
if (above_intra.has_value() && left_intra.has_value()) {
if (above_intra.value() && left_intra.value()) {
context = 2;
} else if (left_intra.value()) {
if (above_single.value()) {
context = 1 + 2 * (above_ref_frame_0.value() != comp_var_ref[1]);
} else {
context = 1 + 2 * (above_ref_frame_biased.value() != comp_var_ref[1]);
}
} else if (above_intra.value()) {
if (left_single.value()) {
context = 1 + 2 * (left_ref_frame_0.value() != comp_var_ref[1]);
} else {
context = 1 + 2 * (left_ref_frame_biased != comp_var_ref[1]);
}
} else {
auto var_ref_above = above_single.value() ? above_ref_frame_0 : above_ref_frame_biased;
auto var_ref_left = left_single.value() ? left_ref_frame_0 : left_ref_frame_biased;
if (var_ref_above == var_ref_left && comp_var_ref[1] == var_ref_above) {
context = 0;
} else if (left_single.value() && above_single.value()) {
if ((var_ref_above == comp_fixed_ref && var_ref_left == comp_var_ref[0])
|| (var_ref_left == comp_fixed_ref && var_ref_above == comp_var_ref[0])) {
context = 4;
} else if (var_ref_above == var_ref_left) {
context = 3;
} else {
context = 1;
}
} else if (left_single.value() || above_single.value()) {
auto vrfc = left_single.value() ? var_ref_above : var_ref_left;
auto rfs = above_single.value() ? var_ref_above : var_ref_left;
if (vrfc == comp_var_ref[1] && rfs != comp_var_ref[1]) {
context = 1;
} else if (rfs == comp_var_ref[1] && vrfc != comp_var_ref[1]) {
context = 2;
} else {
context = 4;
}
} else if (var_ref_above == var_ref_left) {
context = 4;
} else {
context = 2;
}
}
} else if (above_intra.has_value()) {
if (above_intra.value()) {
context = 2;
} else {
if (above_single.value()) {
context = 3 * static_cast<u8>(above_ref_frame_0.value() != comp_var_ref[1]);
} else {
context = 4 * static_cast<u8>(above_ref_frame_biased.value() != comp_var_ref[1]);
}
}
} else if (left_intra.has_value()) {
if (left_intra.value()) {
context = 2;
} else {
if (left_single.value()) {
context = 3 * static_cast<u8>(left_ref_frame_0.value() != comp_var_ref[1]);
} else {
context = 4 * static_cast<u8>(left_ref_frame_biased != comp_var_ref[1]);
}
}
} else {
context = 2;
}
u8 probability = probability_table.comp_ref_prob()[context];
auto value = TRY(parse_tree_new<bool>(bit_stream, { binary_tree }, [&](u8) { return probability; }));
increment_counter(counter.m_counts_comp_ref[context][value]);
return value;
}
ErrorOr<bool> TreeParser::parse_single_ref_part_1(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, Optional<bool> above_single, Optional<bool> left_single, Optional<bool> above_intra, Optional<bool> left_intra, Optional<ReferenceFramePair> above_ref_frame, Optional<ReferenceFramePair> left_ref_frame)
{
// FIXME: Above and left contexts should be in structs.
// Probabilities
u8 context;
if (above_single.has_value() && left_single.has_value()) {
if (above_intra.value() && left_intra.value()) {
context = 2;
} else if (left_intra.value()) {
if (above_single.value()) {
context = 4 * (above_ref_frame.value()[0] == LastFrame);
} else {
context = 1 + (above_ref_frame.value()[0] == LastFrame || above_ref_frame.value()[1] == LastFrame);
}
} else if (above_intra.value()) {
if (left_single.value()) {
context = 4 * (left_ref_frame.value()[0] == LastFrame);
} else {
context = 1 + (left_ref_frame.value()[0] == LastFrame || left_ref_frame.value()[1] == LastFrame);
}
} else {
if (left_single.value() && above_single.value()) {
context = 2 * (above_ref_frame.value()[0] == LastFrame) + 2 * (left_ref_frame.value()[0] == LastFrame);
} else if (!left_single.value() && !above_single.value()) {
auto above_is_last = above_ref_frame.value()[0] == LastFrame || above_ref_frame.value()[1] == LastFrame;
auto left_is_last = left_ref_frame.value()[0] == LastFrame || left_ref_frame.value()[1] == LastFrame;
context = 1 + (above_is_last || left_is_last);
} else {
auto rfs = above_single.value() ? above_ref_frame.value()[0] : left_ref_frame.value()[0];
auto crf1 = above_single.value() ? left_ref_frame.value()[0] : above_ref_frame.value()[0];
auto crf2 = above_single.value() ? left_ref_frame.value()[1] : above_ref_frame.value()[1];
context = crf1 == LastFrame || crf2 == LastFrame;
if (rfs == LastFrame)
context += 3;
}
}
} else if (above_single.has_value()) {
if (above_intra.value()) {
context = 2;
} else {
if (above_single.value()) {
context = 4 * (above_ref_frame.value()[0] == LastFrame);
} else {
context = 1 + (above_ref_frame.value()[0] == LastFrame || above_ref_frame.value()[1] == LastFrame);
}
}
} else if (left_single.has_value()) {
if (left_intra.value()) {
context = 2;
} else {
if (left_single.value()) {
context = 4 * (left_ref_frame.value()[0] == LastFrame);
} else {
context = 1 + (left_ref_frame.value()[0] == LastFrame || left_ref_frame.value()[1] == LastFrame);
}
}
} else {
context = 2;
}
u8 probability = probability_table.single_ref_prob()[context][0];
auto value = TRY(parse_tree_new<bool>(bit_stream, { binary_tree }, [&](u8) { return probability; }));
increment_counter(counter.m_counts_single_ref[context][0][value]);
return value;
}
ErrorOr<bool> TreeParser::parse_single_ref_part_2(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, Optional<bool> above_single, Optional<bool> left_single, Optional<bool> above_intra, Optional<bool> left_intra, Optional<ReferenceFramePair> above_ref_frame, Optional<ReferenceFramePair> left_ref_frame)
{
// FIXME: Above and left contexts should be in structs.
// Probabilities
u8 context;
if (above_single.has_value() && left_single.has_value()) {
if (above_intra.value() && left_intra.value()) {
context = 2;
} else if (left_intra.value()) {
if (above_single.value()) {
if (above_ref_frame.value()[0] == LastFrame) {
context = 3;
} else {
context = 4 * (above_ref_frame.value()[0] == GoldenFrame);
}
} else {
context = 1 + 2 * (above_ref_frame.value()[0] == GoldenFrame || above_ref_frame.value()[1] == GoldenFrame);
}
} else if (above_intra.value()) {
if (left_single.value()) {
if (left_ref_frame.value()[0] == LastFrame) {
context = 3;
} else {
context = 4 * (left_ref_frame.value()[0] == GoldenFrame);
}
} else {
context = 1 + 2 * (left_ref_frame.value()[0] == GoldenFrame || left_ref_frame.value()[1] == GoldenFrame);
}
} else {
if (left_single.value() && above_single.value()) {
auto above_last = above_ref_frame.value()[0] == LastFrame;
auto left_last = left_ref_frame.value()[0] == LastFrame;
if (above_last && left_last) {
context = 3;
} else if (above_last) {
context = 4 * (left_ref_frame.value()[0] == GoldenFrame);
} else if (left_last) {
context = 4 * (above_ref_frame.value()[0] == GoldenFrame);
} else {
context = 2 * (above_ref_frame.value()[0] == GoldenFrame) + 2 * (left_ref_frame.value()[0] == GoldenFrame);
}
} else if (!left_single.value() && !above_single.value()) {
if (above_ref_frame.value()[0] == left_ref_frame.value()[0] && above_ref_frame.value()[1] == left_ref_frame.value()[1]) {
context = 3 * (above_ref_frame.value()[0] == GoldenFrame || above_ref_frame.value()[1] == GoldenFrame);
} else {
context = 2;
}
} else {
auto rfs = above_single.value() ? above_ref_frame.value()[0] : left_ref_frame.value()[0];
auto crf1 = above_single.value() ? left_ref_frame.value()[0] : above_ref_frame.value()[0];
auto crf2 = above_single.value() ? left_ref_frame.value()[1] : above_ref_frame.value()[1];
context = crf1 == GoldenFrame || crf2 == GoldenFrame;
if (rfs == GoldenFrame) {
context += 3;
} else if (rfs != AltRefFrame) {
context = 1 + (2 * context);
}
}
}
} else if (above_single.has_value()) {
if (above_intra.value() || (above_ref_frame.value()[0] == LastFrame && above_single.value())) {
context = 2;
} else if (above_single.value()) {
context = 4 * (above_ref_frame.value()[0] == GoldenFrame);
} else {
context = 3 * (above_ref_frame.value()[0] == GoldenFrame || above_ref_frame.value()[1] == GoldenFrame);
}
} else if (left_single.has_value()) {
if (left_intra.value() || (left_ref_frame.value()[0] == LastFrame && left_single.value())) {
context = 2;
} else if (left_single.value()) {
context = 4 * (left_ref_frame.value()[0] == GoldenFrame);
} else {
context = 3 * (left_ref_frame.value()[0] == GoldenFrame || left_ref_frame.value()[1] == GoldenFrame);
}
} else {
context = 2;
}
u8 probability = probability_table.single_ref_prob()[context][1];
auto value = TRY(parse_tree_new<bool>(bit_stream, { binary_tree }, [&](u8) { return probability; }));
increment_counter(counter.m_counts_single_ref[context][1][value]);
return value;
}
ErrorOr<MvJoint> TreeParser::parse_motion_vector_joint(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter)
{
auto value = TRY(parse_tree_new<MvJoint>(bit_stream, { mv_joint_tree }, [&](u8 node) { return probability_table.mv_joint_probs()[node]; }));
increment_counter(counter.m_counts_mv_joint[value]);
return value;
}
ErrorOr<bool> TreeParser::parse_motion_vector_sign(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, u8 component)
{
auto value = TRY(parse_tree_new<bool>(bit_stream, { binary_tree }, [&](u8) { return probability_table.mv_sign_prob()[component]; }));
increment_counter(counter.m_counts_mv_sign[component][value]);
return value;
}
ErrorOr<MvClass> TreeParser::parse_motion_vector_class(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, u8 component)
{
// Spec doesn't mention node, but the probabilities table has an extra dimension
// so we will use node for that.
auto value = TRY(parse_tree_new<MvClass>(bit_stream, { mv_class_tree }, [&](u8 node) { return probability_table.mv_class_probs()[component][node]; }));
increment_counter(counter.m_counts_mv_class[component][value]);
return value;
}
ErrorOr<bool> TreeParser::parse_motion_vector_class0_bit(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, u8 component)
{
auto value = TRY(parse_tree_new<bool>(bit_stream, { binary_tree }, [&](u8) { return probability_table.mv_class0_bit_prob()[component]; }));
increment_counter(counter.m_counts_mv_class0_bit[component][value]);
return value;
}
ErrorOr<u8> TreeParser::parse_motion_vector_class0_fr(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, u8 component, bool class_0_bit)
{
auto value = TRY(parse_tree_new<u8>(bit_stream, { mv_fr_tree }, [&](u8 node) { return probability_table.mv_class0_fr_probs()[component][class_0_bit][node]; }));
increment_counter(counter.m_counts_mv_class0_fr[component][class_0_bit][value]);
return value;
}
ErrorOr<bool> TreeParser::parse_motion_vector_class0_hp(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, u8 component, bool use_hp)
{
TreeParser::TreeSelection tree { 1 };
if (use_hp)
tree = { binary_tree };
auto value = TRY(parse_tree_new<bool>(bit_stream, tree, [&](u8) { return probability_table.mv_class0_hp_prob()[component]; }));
increment_counter(counter.m_counts_mv_class0_hp[component][value]);
return value;
}
ErrorOr<bool> TreeParser::parse_motion_vector_bit(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, u8 component, u8 bit_index)
{
auto value = TRY(parse_tree_new<bool>(bit_stream, { binary_tree }, [&](u8) { return probability_table.mv_bits_prob()[component][bit_index]; }));
increment_counter(counter.m_counts_mv_bits[component][bit_index][value]);
return value;
}
ErrorOr<u8> TreeParser::parse_motion_vector_fr(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, u8 component)
{
auto value = TRY(parse_tree_new<u8>(bit_stream, { mv_fr_tree }, [&](u8 node) { return probability_table.mv_fr_probs()[component][node]; }));
increment_counter(counter.m_counts_mv_fr[component][value]);
return value;
}
ErrorOr<bool> TreeParser::parse_motion_vector_hp(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, u8 component, bool use_hp)
{
TreeParser::TreeSelection tree { 1 };
if (use_hp)
tree = { binary_tree };
auto value = TRY(parse_tree_new<u8>(bit_stream, tree, [&](u8) { return probability_table.mv_hp_prob()[component]; }));
increment_counter(counter.m_counts_mv_hp[component][value]);
return value;
}
TokensContext TreeParser::get_tokens_context(bool subsampling_x, bool subsampling_y, u32 rows, u32 columns, Array<Vector<bool>, 3> const& above_nonzero_context, Array<Vector<bool>, 3> const& left_nonzero_context, u8 token_cache[1024], TXSize tx_size, u8 tx_type, u8 plane, u32 start_x, u32 start_y, u32 position, bool is_inter, u8 band, u32 c)
{
u8 context;
if (c == 0) {
auto sx = plane > 0 ? subsampling_x : false;
auto sy = plane > 0 ? subsampling_y : false;
auto max_x = (2 * columns) >> sx;
auto max_y = (2 * rows) >> sy;
u8 numpts = 1 << tx_size;
auto x4 = start_x >> 2;
auto y4 = start_y >> 2;
u32 above = 0;
u32 left = 0;
for (size_t i = 0; i < numpts; i++) {
if (x4 + i < max_x)
above |= above_nonzero_context[plane][x4 + i];
if (y4 + i < max_y)
left |= left_nonzero_context[plane][y4 + i];
}
context = above + left;
} else {
u32 neighbor_0, neighbor_1;
auto n = 4 << tx_size;
auto i = position / n;
auto j = position % n;
auto a = i > 0 ? (i - 1) * n + j : 0;
auto a2 = i * n + j - 1;
if (i > 0 && j > 0) {
if (tx_type == DCT_ADST) {
neighbor_0 = a;
neighbor_1 = a;
} else if (tx_type == ADST_DCT) {
neighbor_0 = a2;
neighbor_1 = a2;
} else {
neighbor_0 = a;
neighbor_1 = a2;
}
} else if (i > 0) {
neighbor_0 = a;
neighbor_1 = a;
} else {
neighbor_0 = a2;
neighbor_1 = a2;
}
context = (1 + token_cache[neighbor_0] + token_cache[neighbor_1]) >> 1;
}
return TokensContext { tx_size, plane > 0, is_inter, band, context };
}
ErrorOr<bool> TreeParser::parse_more_coefficients(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, TokensContext const& context)
{
auto probability = probability_table.coef_probs()[context.m_tx_size][context.m_is_uv_plane][context.m_is_inter][context.m_band][context.m_context_index][0];
auto value = TRY(parse_tree_new<u8>(bit_stream, { binary_tree }, [&](u8) { return probability; }));
increment_counter(counter.m_counts_more_coefs[context.m_tx_size][context.m_is_uv_plane][context.m_is_inter][context.m_band][context.m_context_index][value]);
return value;
}
ErrorOr<Token> TreeParser::parse_token(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, TokensContext const& context)
{
Function<u8(u8)> probability_getter = [&](u8 node) -> u8 {
auto prob = probability_table.coef_probs()[context.m_tx_size][context.m_is_uv_plane][context.m_is_inter][context.m_band][context.m_context_index][min(2, 1 + node)];
if (node < 2)
return prob;
auto x = (prob - 1) / 2;
auto const& pareto_table = probability_table.pareto_table();
if ((prob & 1) != 0)
return pareto_table[x][node - 2];
return (pareto_table[x][node - 2] + pareto_table[x + 1][node - 2]) >> 1;
};
auto value = TRY(parse_tree_new<Token>(bit_stream, { token_tree }, probability_getter));
increment_counter(counter.m_counts_token[context.m_tx_size][context.m_is_uv_plane][context.m_is_inter][context.m_band][context.m_context_index][min(2, value)]);
return value;
}
}