1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-14 11:14:58 +00:00
serenity/Kernel/Firmware/ACPI/Parser.cpp
Liav A 9132596b8e Kernel: Move ACPI and BIOS code into the new Firmware directory
This will somwhat help unify them also under the same SysFS directory in
the commit.
Also, it feels much more like this change reflects the reality that both
ACPI and the BIOS are part of the firmware on x86 computers.
2021-09-12 11:52:16 +02:00

440 lines
19 KiB
C++

/*
* Copyright (c) 2020-2021, Liav A. <liavalb@hotmail.co.il>
* Copyright (c) 2020-2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Format.h>
#include <AK/StringView.h>
#include <Kernel/Arch/x86/InterruptDisabler.h>
#include <Kernel/Bus/PCI/API.h>
#include <Kernel/Debug.h>
#include <Kernel/Firmware/ACPI/Parser.h>
#include <Kernel/Firmware/BIOS.h>
#include <Kernel/IO.h>
#include <Kernel/Memory/TypedMapping.h>
#include <Kernel/Sections.h>
#include <Kernel/StdLib.h>
namespace Kernel::ACPI {
static Parser* s_acpi_parser;
Parser* Parser::the()
{
return s_acpi_parser;
}
void Parser::must_initialize(PhysicalAddress rsdp, PhysicalAddress fadt, u8 irq_number)
{
VERIFY(!s_acpi_parser);
s_acpi_parser = new (nothrow) Parser(rsdp, fadt, irq_number);
VERIFY(s_acpi_parser);
}
UNMAP_AFTER_INIT NonnullRefPtr<ACPISysFSComponent> ACPISysFSComponent::create(String name, PhysicalAddress paddr, size_t table_size)
{
return adopt_ref(*new (nothrow) ACPISysFSComponent(name, paddr, table_size));
}
KResultOr<size_t> ACPISysFSComponent::read_bytes(off_t offset, size_t count, UserOrKernelBuffer& buffer, OpenFileDescription*) const
{
auto blob = TRY(try_to_generate_buffer());
if ((size_t)offset >= blob->size())
return KSuccess;
ssize_t nread = min(static_cast<off_t>(blob->size() - offset), static_cast<off_t>(count));
TRY(buffer.write(blob->data() + offset, nread));
return nread;
}
KResultOr<NonnullOwnPtr<KBuffer>> ACPISysFSComponent::try_to_generate_buffer() const
{
auto acpi_blob = Memory::map_typed<u8>((m_paddr), m_length);
return KBuffer::try_create_with_bytes(Span<u8> { acpi_blob.ptr(), m_length });
}
UNMAP_AFTER_INIT ACPISysFSComponent::ACPISysFSComponent(String name, PhysicalAddress paddr, size_t table_size)
: SysFSComponent(name)
, m_paddr(paddr)
, m_length(table_size)
{
}
UNMAP_AFTER_INIT void ACPISysFSDirectory::initialize()
{
auto acpi_directory = adopt_ref(*new (nothrow) ACPISysFSDirectory());
SysFSComponentRegistry::the().register_new_component(acpi_directory);
}
UNMAP_AFTER_INIT ACPISysFSDirectory::ACPISysFSDirectory()
: SysFSDirectory("acpi", SysFSComponentRegistry::the().root_directory())
{
NonnullRefPtrVector<SysFSComponent> components;
size_t ssdt_count = 0;
ACPI::Parser::the()->enumerate_static_tables([&](const StringView& signature, PhysicalAddress p_table, size_t length) {
if (signature == "SSDT") {
components.append(ACPISysFSComponent::create(String::formatted("{:4s}{}", signature.characters_without_null_termination(), ssdt_count), p_table, length));
ssdt_count++;
return;
}
components.append(ACPISysFSComponent::create(signature, p_table, length));
});
m_components = components;
auto rsdp = Memory::map_typed<Structures::RSDPDescriptor20>(ACPI::Parser::the()->rsdp());
m_components.append(ACPISysFSComponent::create("RSDP", ACPI::Parser::the()->rsdp(), rsdp->base.revision == 0 ? sizeof(Structures::RSDPDescriptor) : rsdp->length));
auto main_system_description_table = Memory::map_typed<Structures::SDTHeader>(ACPI::Parser::the()->main_system_description_table());
if (ACPI::Parser::the()->is_xsdt_supported()) {
m_components.append(ACPISysFSComponent::create("XSDT", ACPI::Parser::the()->main_system_description_table(), main_system_description_table->length));
} else {
m_components.append(ACPISysFSComponent::create("RSDT", ACPI::Parser::the()->main_system_description_table(), main_system_description_table->length));
}
}
void Parser::enumerate_static_tables(Function<void(const StringView&, PhysicalAddress, size_t)> callback)
{
for (auto& p_table : m_sdt_pointers) {
auto table = Memory::map_typed<Structures::SDTHeader>(p_table);
callback({ table->sig, 4 }, p_table, table->length);
}
}
static bool match_table_signature(PhysicalAddress table_header, const StringView& signature);
static Optional<PhysicalAddress> search_table_in_xsdt(PhysicalAddress xsdt, const StringView& signature);
static Optional<PhysicalAddress> search_table_in_rsdt(PhysicalAddress rsdt, const StringView& signature);
static bool validate_table(const Structures::SDTHeader&, size_t length);
UNMAP_AFTER_INIT void Parser::locate_static_data()
{
locate_main_system_description_table();
initialize_main_system_description_table();
process_fadt_data();
}
UNMAP_AFTER_INIT Optional<PhysicalAddress> Parser::find_table(const StringView& signature)
{
dbgln_if(ACPI_DEBUG, "ACPI: Calling Find Table method!");
for (auto p_sdt : m_sdt_pointers) {
auto sdt = Memory::map_typed<Structures::SDTHeader>(p_sdt);
dbgln_if(ACPI_DEBUG, "ACPI: Examining Table @ {}", p_sdt);
if (!strncmp(sdt->sig, signature.characters_without_null_termination(), 4)) {
dbgln_if(ACPI_DEBUG, "ACPI: Found Table @ {}", p_sdt);
return p_sdt;
}
}
return {};
}
bool Parser::handle_irq(const RegisterState&)
{
TODO();
}
UNMAP_AFTER_INIT void Parser::enable_aml_parsing()
{
// FIXME: When enabled, do other things to "parse AML".
m_can_process_bytecode = true;
}
UNMAP_AFTER_INIT void Parser::process_fadt_data()
{
dmesgln("ACPI: Initializing Fixed ACPI data");
VERIFY(!m_fadt.is_null());
dbgln_if(ACPI_DEBUG, "ACPI: FADT @ {}", m_fadt);
auto sdt = Memory::map_typed<Structures::FADT>(m_fadt);
dmesgln("ACPI: Fixed ACPI data, Revision {}, length: {} bytes", (size_t)sdt->h.revision, (size_t)sdt->h.length);
dmesgln("ACPI: DSDT {}", PhysicalAddress(sdt->dsdt_ptr));
m_x86_specific_flags.cmos_rtc_not_present = (sdt->ia_pc_boot_arch_flags & (u8)FADTFlags::IA_PC_Flags::CMOS_RTC_Not_Present);
// FIXME: QEMU doesn't report that we have an i8042 controller in these flags, even if it should (when FADT revision is 3),
// Later on, we need to make sure that we enumerate the ACPI namespace (AML encoded), instead of just using this value.
m_x86_specific_flags.keyboard_8042 = (sdt->h.revision <= 3) || (sdt->ia_pc_boot_arch_flags & (u8)FADTFlags::IA_PC_Flags::PS2_8042);
m_x86_specific_flags.legacy_devices = (sdt->ia_pc_boot_arch_flags & (u8)FADTFlags::IA_PC_Flags::Legacy_Devices);
m_x86_specific_flags.msi_not_supported = (sdt->ia_pc_boot_arch_flags & (u8)FADTFlags::IA_PC_Flags::MSI_Not_Supported);
m_x86_specific_flags.vga_not_present = (sdt->ia_pc_boot_arch_flags & (u8)FADTFlags::IA_PC_Flags::VGA_Not_Present);
m_hardware_flags.cpu_software_sleep = (sdt->flags & (u32)FADTFlags::FeatureFlags::CPU_SW_SLP);
m_hardware_flags.docking_capability = (sdt->flags & (u32)FADTFlags::FeatureFlags::DCK_CAP);
m_hardware_flags.fix_rtc = (sdt->flags & (u32)FADTFlags::FeatureFlags::FIX_RTC);
m_hardware_flags.force_apic_cluster_model = (sdt->flags & (u32)FADTFlags::FeatureFlags::FORCE_APIC_CLUSTER_MODEL);
m_hardware_flags.force_apic_physical_destination_mode = (sdt->flags & (u32)FADTFlags::FeatureFlags::FORCE_APIC_PHYSICAL_DESTINATION_MODE);
m_hardware_flags.hardware_reduced_acpi = (sdt->flags & (u32)FADTFlags::FeatureFlags::HW_REDUCED_ACPI);
m_hardware_flags.headless = (sdt->flags & (u32)FADTFlags::FeatureFlags::HEADLESS);
m_hardware_flags.low_power_s0_idle_capable = (sdt->flags & (u32)FADTFlags::FeatureFlags::LOW_POWER_S0_IDLE_CAPABLE);
m_hardware_flags.multiprocessor_c2 = (sdt->flags & (u32)FADTFlags::FeatureFlags::P_LVL2_UP);
m_hardware_flags.pci_express_wake = (sdt->flags & (u32)FADTFlags::FeatureFlags::PCI_EXP_WAK);
m_hardware_flags.power_button = (sdt->flags & (u32)FADTFlags::FeatureFlags::PWR_BUTTON);
m_hardware_flags.processor_c1 = (sdt->flags & (u32)FADTFlags::FeatureFlags::PROC_C1);
m_hardware_flags.remote_power_on_capable = (sdt->flags & (u32)FADTFlags::FeatureFlags::REMOTE_POWER_ON_CAPABLE);
m_hardware_flags.reset_register_supported = (sdt->flags & (u32)FADTFlags::FeatureFlags::RESET_REG_SUPPORTED);
m_hardware_flags.rtc_s4 = (sdt->flags & (u32)FADTFlags::FeatureFlags::RTC_s4);
m_hardware_flags.s4_rtc_status_valid = (sdt->flags & (u32)FADTFlags::FeatureFlags::S4_RTC_STS_VALID);
m_hardware_flags.sealed_case = (sdt->flags & (u32)FADTFlags::FeatureFlags::SEALED_CASE);
m_hardware_flags.sleep_button = (sdt->flags & (u32)FADTFlags::FeatureFlags::SLP_BUTTON);
m_hardware_flags.timer_value_extension = (sdt->flags & (u32)FADTFlags::FeatureFlags::TMR_VAL_EXT);
m_hardware_flags.use_platform_clock = (sdt->flags & (u32)FADTFlags::FeatureFlags::USE_PLATFORM_CLOCK);
m_hardware_flags.wbinvd = (sdt->flags & (u32)FADTFlags::FeatureFlags::WBINVD);
m_hardware_flags.wbinvd_flush = (sdt->flags & (u32)FADTFlags::FeatureFlags::WBINVD_FLUSH);
}
bool Parser::can_reboot()
{
auto fadt = Memory::map_typed<Structures::FADT>(m_fadt);
if (fadt->h.revision < 2)
return false;
return m_hardware_flags.reset_register_supported;
}
void Parser::access_generic_address(const Structures::GenericAddressStructure& structure, u32 value)
{
switch ((GenericAddressStructure::AddressSpace)structure.address_space) {
case GenericAddressStructure::AddressSpace::SystemIO: {
IOAddress address(structure.address);
dbgln("ACPI: Sending value {:x} to {}", value, address);
switch (structure.access_size) {
case (u8)GenericAddressStructure::AccessSize::QWord: {
dbgln("Trying to send QWord to IO port");
VERIFY_NOT_REACHED();
break;
}
case (u8)GenericAddressStructure::AccessSize::Undefined: {
dbgln("ACPI Warning: Unknown access size {}", structure.access_size);
VERIFY(structure.bit_width != (u8)GenericAddressStructure::BitWidth::QWord);
VERIFY(structure.bit_width != (u8)GenericAddressStructure::BitWidth::Undefined);
dbgln("ACPI: Bit Width - {} bits", structure.bit_width);
address.out(value, structure.bit_width);
break;
}
default:
address.out(value, (8 << (structure.access_size - 1)));
break;
}
return;
}
case GenericAddressStructure::AddressSpace::SystemMemory: {
dbgln("ACPI: Sending value {:x} to {}", value, PhysicalAddress(structure.address));
switch ((GenericAddressStructure::AccessSize)structure.access_size) {
case GenericAddressStructure::AccessSize::Byte:
*Memory::map_typed<u8>(PhysicalAddress(structure.address)) = value;
break;
case GenericAddressStructure::AccessSize::Word:
*Memory::map_typed<u16>(PhysicalAddress(structure.address)) = value;
break;
case GenericAddressStructure::AccessSize::DWord:
*Memory::map_typed<u32>(PhysicalAddress(structure.address)) = value;
break;
case GenericAddressStructure::AccessSize::QWord: {
*Memory::map_typed<u64>(PhysicalAddress(structure.address)) = value;
break;
}
default:
VERIFY_NOT_REACHED();
}
return;
}
case GenericAddressStructure::AddressSpace::PCIConfigurationSpace: {
// According to https://uefi.org/specs/ACPI/6.4/05_ACPI_Software_Programming_Model/ACPI_Software_Programming_Model.html#address-space-format,
// PCI addresses must be confined to devices on Segment group 0, bus 0.
auto pci_address = PCI::Address(0, 0, ((structure.address >> 24) & 0xFF), ((structure.address >> 16) & 0xFF));
dbgln("ACPI: Sending value {:x} to {}", value, pci_address);
u32 offset_in_pci_address = structure.address & 0xFFFF;
if (structure.access_size == (u8)GenericAddressStructure::AccessSize::QWord) {
dbgln("Trying to send QWord to PCI configuration space");
VERIFY_NOT_REACHED();
}
VERIFY(structure.access_size != (u8)GenericAddressStructure::AccessSize::Undefined);
PCI::raw_access(pci_address, offset_in_pci_address, (1 << (structure.access_size - 1)), value);
return;
}
default:
VERIFY_NOT_REACHED();
}
VERIFY_NOT_REACHED();
}
bool Parser::validate_reset_register()
{
// According to https://uefi.org/specs/ACPI/6.4/04_ACPI_Hardware_Specification/ACPI_Hardware_Specification.html#reset-register,
// the reset register can only be located in I/O bus, PCI bus or memory-mapped.
auto fadt = Memory::map_typed<Structures::FADT>(m_fadt);
return (fadt->reset_reg.address_space == (u8)GenericAddressStructure::AddressSpace::PCIConfigurationSpace || fadt->reset_reg.address_space == (u8)GenericAddressStructure::AddressSpace::SystemMemory || fadt->reset_reg.address_space == (u8)GenericAddressStructure::AddressSpace::SystemIO);
}
void Parser::try_acpi_reboot()
{
InterruptDisabler disabler;
if (!can_reboot()) {
dmesgln("ACPI: Reboot not supported!");
return;
}
dbgln_if(ACPI_DEBUG, "ACPI: Rebooting, probing FADT ({})", m_fadt);
auto fadt = Memory::map_typed<Structures::FADT>(m_fadt);
VERIFY(validate_reset_register());
access_generic_address(fadt->reset_reg, fadt->reset_value);
Processor::halt();
}
void Parser::try_acpi_shutdown()
{
dmesgln("ACPI: Shutdown is not supported with the current configuration, aborting!");
}
size_t Parser::get_table_size(PhysicalAddress table_header)
{
InterruptDisabler disabler;
dbgln_if(ACPI_DEBUG, "ACPI: Checking SDT Length");
return Memory::map_typed<Structures::SDTHeader>(table_header)->length;
}
u8 Parser::get_table_revision(PhysicalAddress table_header)
{
InterruptDisabler disabler;
dbgln_if(ACPI_DEBUG, "ACPI: Checking SDT Revision");
return Memory::map_typed<Structures::SDTHeader>(table_header)->revision;
}
UNMAP_AFTER_INIT void Parser::initialize_main_system_description_table()
{
dbgln_if(ACPI_DEBUG, "ACPI: Checking Main SDT Length to choose the correct mapping size");
VERIFY(!m_main_system_description_table.is_null());
auto length = get_table_size(m_main_system_description_table);
auto revision = get_table_revision(m_main_system_description_table);
auto sdt = Memory::map_typed<Structures::SDTHeader>(m_main_system_description_table, length);
dmesgln("ACPI: Main Description Table valid? {}", validate_table(*sdt, length));
if (m_xsdt_supported) {
auto& xsdt = (const Structures::XSDT&)*sdt;
dmesgln("ACPI: Using XSDT, enumerating tables @ {}", m_main_system_description_table);
dmesgln("ACPI: XSDT revision {}, total length: {}", revision, length);
dbgln_if(ACPI_DEBUG, "ACPI: XSDT pointer @ {}", VirtualAddress { &xsdt });
for (u32 i = 0; i < ((length - sizeof(Structures::SDTHeader)) / sizeof(u64)); i++) {
dbgln_if(ACPI_DEBUG, "ACPI: Found new table [{0}], @ V{1:p} - P{1:p}", i, &xsdt.table_ptrs[i]);
m_sdt_pointers.append(PhysicalAddress(xsdt.table_ptrs[i]));
}
} else {
auto& rsdt = (const Structures::RSDT&)*sdt;
dmesgln("ACPI: Using RSDT, enumerating tables @ {}", m_main_system_description_table);
dmesgln("ACPI: RSDT revision {}, total length: {}", revision, length);
dbgln_if(ACPI_DEBUG, "ACPI: RSDT pointer @ V{}", &rsdt);
for (u32 i = 0; i < ((length - sizeof(Structures::SDTHeader)) / sizeof(u32)); i++) {
dbgln_if(ACPI_DEBUG, "ACPI: Found new table [{0}], @ V{1:p} - P{1:p}", i, &rsdt.table_ptrs[i]);
m_sdt_pointers.append(PhysicalAddress(rsdt.table_ptrs[i]));
}
}
}
UNMAP_AFTER_INIT void Parser::locate_main_system_description_table()
{
auto rsdp = Memory::map_typed<Structures::RSDPDescriptor20>(m_rsdp);
if (rsdp->base.revision == 0) {
m_xsdt_supported = false;
} else if (rsdp->base.revision >= 2) {
if (rsdp->xsdt_ptr != (u64) nullptr) {
m_xsdt_supported = true;
} else {
m_xsdt_supported = false;
}
}
if (!m_xsdt_supported) {
m_main_system_description_table = PhysicalAddress(rsdp->base.rsdt_ptr);
} else {
m_main_system_description_table = PhysicalAddress(rsdp->xsdt_ptr);
}
}
UNMAP_AFTER_INIT Parser::Parser(PhysicalAddress rsdp, PhysicalAddress fadt, u8 irq_number)
: IRQHandler(irq_number)
, m_rsdp(rsdp)
, m_fadt(fadt)
{
dmesgln("ACPI: Using RSDP @ {}", rsdp);
locate_static_data();
}
static bool validate_table(const Structures::SDTHeader& v_header, size_t length)
{
u8 checksum = 0;
auto* sdt = (const u8*)&v_header;
for (size_t i = 0; i < length; i++)
checksum += sdt[i];
if (checksum == 0)
return true;
return false;
}
// https://uefi.org/specs/ACPI/6.4/05_ACPI_Software_Programming_Model/ACPI_Software_Programming_Model.html#finding-the-rsdp-on-ia-pc-systems
UNMAP_AFTER_INIT Optional<PhysicalAddress> StaticParsing::find_rsdp()
{
StringView signature("RSD PTR ");
auto rsdp = map_ebda().find_chunk_starting_with(signature, 16);
if (rsdp.has_value())
return rsdp;
return map_bios().find_chunk_starting_with(signature, 16);
}
UNMAP_AFTER_INIT Optional<PhysicalAddress> StaticParsing::find_table(PhysicalAddress rsdp_address, const StringView& signature)
{
// FIXME: There's no validation of ACPI tables here. Use the checksum to validate the tables.
VERIFY(signature.length() == 4);
auto rsdp = Memory::map_typed<Structures::RSDPDescriptor20>(rsdp_address);
if (rsdp->base.revision == 0)
return search_table_in_rsdt(PhysicalAddress(rsdp->base.rsdt_ptr), signature);
if (rsdp->base.revision >= 2) {
if (rsdp->xsdt_ptr)
return search_table_in_xsdt(PhysicalAddress(rsdp->xsdt_ptr), signature);
return search_table_in_rsdt(PhysicalAddress(rsdp->base.rsdt_ptr), signature);
}
VERIFY_NOT_REACHED();
}
UNMAP_AFTER_INIT static Optional<PhysicalAddress> search_table_in_xsdt(PhysicalAddress xsdt_address, const StringView& signature)
{
// FIXME: There's no validation of ACPI tables here. Use the checksum to validate the tables.
VERIFY(signature.length() == 4);
auto xsdt = Memory::map_typed<Structures::XSDT>(xsdt_address);
for (size_t i = 0; i < ((xsdt->h.length - sizeof(Structures::SDTHeader)) / sizeof(u64)); ++i) {
if (match_table_signature(PhysicalAddress((PhysicalPtr)xsdt->table_ptrs[i]), signature))
return PhysicalAddress((PhysicalPtr)xsdt->table_ptrs[i]);
}
return {};
}
static bool match_table_signature(PhysicalAddress table_header, const StringView& signature)
{
// FIXME: There's no validation of ACPI tables here. Use the checksum to validate the tables.
VERIFY(signature.length() == 4);
auto table = Memory::map_typed<Structures::RSDT>(table_header);
return !strncmp(table->h.sig, signature.characters_without_null_termination(), 4);
}
UNMAP_AFTER_INIT static Optional<PhysicalAddress> search_table_in_rsdt(PhysicalAddress rsdt_address, const StringView& signature)
{
// FIXME: There's no validation of ACPI tables here. Use the checksum to validate the tables.
VERIFY(signature.length() == 4);
auto rsdt = Memory::map_typed<Structures::RSDT>(rsdt_address);
for (u32 i = 0; i < ((rsdt->h.length - sizeof(Structures::SDTHeader)) / sizeof(u32)); i++) {
if (match_table_signature(PhysicalAddress((PhysicalPtr)rsdt->table_ptrs[i]), signature))
return PhysicalAddress((PhysicalPtr)rsdt->table_ptrs[i]);
}
return {};
}
}