mirror of
				https://github.com/RGBCube/serenity
				synced 2025-10-26 07:42:07 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			504 lines
		
	
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			504 lines
		
	
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
 | |
|  * Copyright (c) 2020, Linus Groh <mail@linusgroh.de>
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions are met:
 | |
|  *
 | |
|  * 1. Redistributions of source code must retain the above copyright notice, this
 | |
|  *    list of conditions and the following disclaimer.
 | |
|  *
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright notice,
 | |
|  *    this list of conditions and the following disclaimer in the documentation
 | |
|  *    and/or other materials provided with the distribution.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 | |
|  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 | |
|  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 | |
|  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | |
|  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 | |
|  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 | |
|  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 | |
|  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
|  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
|  */
 | |
| 
 | |
| #include <AK/FlyString.h>
 | |
| #include <AK/Function.h>
 | |
| #include <LibJS/Runtime/GlobalObject.h>
 | |
| #include <LibJS/Runtime/MathObject.h>
 | |
| #include <math.h>
 | |
| 
 | |
| namespace JS {
 | |
| 
 | |
| MathObject::MathObject(GlobalObject& global_object)
 | |
|     : Object(*global_object.object_prototype())
 | |
| {
 | |
| }
 | |
| 
 | |
| void MathObject::initialize(GlobalObject& global_object)
 | |
| {
 | |
|     auto& vm = this->vm();
 | |
|     Object::initialize(global_object);
 | |
|     u8 attr = Attribute::Writable | Attribute::Configurable;
 | |
|     define_native_function(vm.names.abs, abs, 1, attr);
 | |
|     define_native_function(vm.names.random, random, 0, attr);
 | |
|     define_native_function(vm.names.sqrt, sqrt, 1, attr);
 | |
|     define_native_function(vm.names.floor, floor, 1, attr);
 | |
|     define_native_function(vm.names.ceil, ceil, 1, attr);
 | |
|     define_native_function(vm.names.round, round, 1, attr);
 | |
|     define_native_function(vm.names.max, max, 2, attr);
 | |
|     define_native_function(vm.names.min, min, 2, attr);
 | |
|     define_native_function(vm.names.trunc, trunc, 1, attr);
 | |
|     define_native_function(vm.names.sin, sin, 1, attr);
 | |
|     define_native_function(vm.names.cos, cos, 1, attr);
 | |
|     define_native_function(vm.names.tan, tan, 1, attr);
 | |
|     define_native_function(vm.names.pow, pow, 2, attr);
 | |
|     define_native_function(vm.names.exp, exp, 1, attr);
 | |
|     define_native_function(vm.names.expm1, expm1, 1, attr);
 | |
|     define_native_function(vm.names.sign, sign, 1, attr);
 | |
|     define_native_function(vm.names.clz32, clz32, 1, attr);
 | |
|     define_native_function(vm.names.acos, acos, 1, attr);
 | |
|     define_native_function(vm.names.acosh, acosh, 1, attr);
 | |
|     define_native_function(vm.names.asin, asin, 1, attr);
 | |
|     define_native_function(vm.names.asinh, asinh, 1, attr);
 | |
|     define_native_function(vm.names.atan, atan, 1, attr);
 | |
|     define_native_function(vm.names.atanh, atanh, 1, attr);
 | |
|     define_native_function(vm.names.log1p, log1p, 1, attr);
 | |
|     define_native_function(vm.names.cbrt, cbrt, 1, attr);
 | |
|     define_native_function(vm.names.atan2, atan2, 2, attr);
 | |
|     define_native_function(vm.names.fround, fround, 1, attr);
 | |
|     define_native_function(vm.names.hypot, hypot, 2, attr);
 | |
|     define_native_function(vm.names.log, log, 1, attr);
 | |
|     define_native_function(vm.names.log2, log2, 1, attr);
 | |
|     define_native_function(vm.names.log10, log10, 1, attr);
 | |
|     define_native_function(vm.names.sinh, sinh, 1, attr);
 | |
|     define_native_function(vm.names.cosh, cosh, 1, attr);
 | |
|     define_native_function(vm.names.tanh, tanh, 1, attr);
 | |
| 
 | |
|     define_property(vm.names.E, Value(M_E), 0);
 | |
|     define_property(vm.names.LN2, Value(M_LN2), 0);
 | |
|     define_property(vm.names.LN10, Value(M_LN10), 0);
 | |
|     define_property(vm.names.LOG2E, Value(::log2(M_E)), 0);
 | |
|     define_property(vm.names.LOG10E, Value(::log10(M_E)), 0);
 | |
|     define_property(vm.names.PI, Value(M_PI), 0);
 | |
|     define_property(vm.names.SQRT1_2, Value(M_SQRT1_2), 0);
 | |
|     define_property(vm.names.SQRT2, Value(M_SQRT2), 0);
 | |
| 
 | |
|     define_property(vm.well_known_symbol_to_string_tag(), js_string(vm.heap(), "Math"), Attribute::Configurable);
 | |
| }
 | |
| 
 | |
| MathObject::~MathObject()
 | |
| {
 | |
| }
 | |
| 
 | |
| JS_DEFINE_NATIVE_FUNCTION(MathObject::abs)
 | |
| {
 | |
|     auto number = vm.argument(0).to_number(global_object);
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
|     if (number.is_nan())
 | |
|         return js_nan();
 | |
|     return Value(number.as_double() >= 0 ? number.as_double() : -number.as_double());
 | |
| }
 | |
| 
 | |
| JS_DEFINE_NATIVE_FUNCTION(MathObject::random)
 | |
| {
 | |
| #ifdef __serenity__
 | |
|     double r = (double)arc4random() / (double)UINT32_MAX;
 | |
| #else
 | |
|     double r = (double)rand() / (double)RAND_MAX;
 | |
| #endif
 | |
|     return Value(r);
 | |
| }
 | |
| 
 | |
| JS_DEFINE_NATIVE_FUNCTION(MathObject::sqrt)
 | |
| {
 | |
|     auto number = vm.argument(0).to_number(global_object);
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
|     if (number.is_nan())
 | |
|         return js_nan();
 | |
|     return Value(::sqrt(number.as_double()));
 | |
| }
 | |
| 
 | |
| JS_DEFINE_NATIVE_FUNCTION(MathObject::floor)
 | |
| {
 | |
|     auto number = vm.argument(0).to_number(global_object);
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
|     if (number.is_nan())
 | |
|         return js_nan();
 | |
|     return Value(::floor(number.as_double()));
 | |
| }
 | |
| 
 | |
| JS_DEFINE_NATIVE_FUNCTION(MathObject::ceil)
 | |
| {
 | |
|     auto number = vm.argument(0).to_number(global_object);
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
|     if (number.is_nan())
 | |
|         return js_nan();
 | |
|     auto number_double = number.as_double();
 | |
|     if (number_double < 0 && number_double > -1)
 | |
|         return Value(-0.f);
 | |
|     return Value(::ceil(number.as_double()));
 | |
| }
 | |
| 
 | |
| JS_DEFINE_NATIVE_FUNCTION(MathObject::round)
 | |
| {
 | |
|     auto number = vm.argument(0).to_number(global_object);
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
|     if (number.is_nan())
 | |
|         return js_nan();
 | |
|     return Value(::round(number.as_double()));
 | |
| }
 | |
| 
 | |
| JS_DEFINE_NATIVE_FUNCTION(MathObject::max)
 | |
| {
 | |
|     if (!vm.argument_count())
 | |
|         return js_negative_infinity();
 | |
| 
 | |
|     auto max = vm.argument(0).to_number(global_object);
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
|     for (size_t i = 1; i < vm.argument_count(); ++i) {
 | |
|         auto cur = vm.argument(i).to_number(global_object);
 | |
|         if (vm.exception())
 | |
|             return {};
 | |
|         max = Value(cur.as_double() > max.as_double() ? cur : max);
 | |
|     }
 | |
|     return max;
 | |
| }
 | |
| 
 | |
| JS_DEFINE_NATIVE_FUNCTION(MathObject::min)
 | |
| {
 | |
|     if (!vm.argument_count())
 | |
|         return js_infinity();
 | |
| 
 | |
|     auto min = vm.argument(0).to_number(global_object);
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
|     for (size_t i = 1; i < vm.argument_count(); ++i) {
 | |
|         auto cur = vm.argument(i).to_number(global_object);
 | |
|         if (vm.exception())
 | |
|             return {};
 | |
|         min = Value(cur.as_double() < min.as_double() ? cur : min);
 | |
|     }
 | |
|     return min;
 | |
| }
 | |
| 
 | |
| JS_DEFINE_NATIVE_FUNCTION(MathObject::trunc)
 | |
| {
 | |
|     auto number = vm.argument(0).to_number(global_object);
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
|     if (number.is_nan())
 | |
|         return js_nan();
 | |
|     if (number.as_double() < 0)
 | |
|         return MathObject::ceil(vm, global_object);
 | |
|     return MathObject::floor(vm, global_object);
 | |
| }
 | |
| 
 | |
| JS_DEFINE_NATIVE_FUNCTION(MathObject::sin)
 | |
| {
 | |
|     auto number = vm.argument(0).to_number(global_object);
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
|     if (number.is_nan())
 | |
|         return js_nan();
 | |
|     return Value(::sin(number.as_double()));
 | |
| }
 | |
| 
 | |
| JS_DEFINE_NATIVE_FUNCTION(MathObject::cos)
 | |
| {
 | |
|     auto number = vm.argument(0).to_number(global_object);
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
|     if (number.is_nan())
 | |
|         return js_nan();
 | |
|     return Value(::cos(number.as_double()));
 | |
| }
 | |
| 
 | |
| JS_DEFINE_NATIVE_FUNCTION(MathObject::tan)
 | |
| {
 | |
|     auto number = vm.argument(0).to_number(global_object);
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
|     if (number.is_nan())
 | |
|         return js_nan();
 | |
|     return Value(::tan(number.as_double()));
 | |
| }
 | |
| 
 | |
| JS_DEFINE_NATIVE_FUNCTION(MathObject::pow)
 | |
| {
 | |
|     return JS::exp(global_object, vm.argument(0), vm.argument(1));
 | |
| }
 | |
| 
 | |
| JS_DEFINE_NATIVE_FUNCTION(MathObject::exp)
 | |
| {
 | |
|     auto number = vm.argument(0).to_number(global_object);
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
|     if (number.is_nan())
 | |
|         return js_nan();
 | |
|     return Value(::exp(number.as_double()));
 | |
| }
 | |
| 
 | |
| JS_DEFINE_NATIVE_FUNCTION(MathObject::expm1)
 | |
| {
 | |
|     auto number = vm.argument(0).to_number(global_object);
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
|     if (number.is_nan())
 | |
|         return js_nan();
 | |
|     return Value(::expm1(number.as_double()));
 | |
| }
 | |
| 
 | |
| JS_DEFINE_NATIVE_FUNCTION(MathObject::sign)
 | |
| {
 | |
|     auto number = vm.argument(0).to_number(global_object);
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
|     if (number.is_positive_zero())
 | |
|         return Value(0);
 | |
|     if (number.is_negative_zero())
 | |
|         return Value(-0.0);
 | |
|     if (number.as_double() > 0)
 | |
|         return Value(1);
 | |
|     if (number.as_double() < 0)
 | |
|         return Value(-1);
 | |
|     return js_nan();
 | |
| }
 | |
| 
 | |
| JS_DEFINE_NATIVE_FUNCTION(MathObject::clz32)
 | |
| {
 | |
|     auto number = vm.argument(0).to_number(global_object);
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
|     if (!number.is_finite_number() || (unsigned)number.as_double() == 0)
 | |
|         return Value(32);
 | |
|     return Value(__builtin_clz((unsigned)number.as_double()));
 | |
| }
 | |
| 
 | |
| JS_DEFINE_NATIVE_FUNCTION(MathObject::acos)
 | |
| {
 | |
|     auto number = vm.argument(0).to_number(global_object);
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
|     if (number.is_nan() || number.as_double() > 1 || number.as_double() < -1)
 | |
|         return js_nan();
 | |
|     if (number.as_double() == 1)
 | |
|         return Value(0);
 | |
|     return Value(::acos(number.as_double()));
 | |
| }
 | |
| 
 | |
| JS_DEFINE_NATIVE_FUNCTION(MathObject::acosh)
 | |
| {
 | |
|     auto number = vm.argument(0).to_number(global_object);
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
|     if (number.as_double() < 1)
 | |
|         return js_nan();
 | |
|     return Value(::acosh(number.as_double()));
 | |
| }
 | |
| 
 | |
| JS_DEFINE_NATIVE_FUNCTION(MathObject::asin)
 | |
| {
 | |
|     auto number = vm.argument(0).to_number(global_object);
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
|     if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
 | |
|         return number;
 | |
|     return Value(::asin(number.as_double()));
 | |
| }
 | |
| 
 | |
| JS_DEFINE_NATIVE_FUNCTION(MathObject::asinh)
 | |
| {
 | |
|     auto number = vm.argument(0).to_number(global_object);
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
|     return Value(::asinh(number.as_double()));
 | |
| }
 | |
| 
 | |
| JS_DEFINE_NATIVE_FUNCTION(MathObject::atan)
 | |
| {
 | |
|     auto number = vm.argument(0).to_number(global_object);
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
|     if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
 | |
|         return number;
 | |
|     if (number.is_positive_infinity())
 | |
|         return Value(M_PI_2);
 | |
|     if (number.is_negative_infinity())
 | |
|         return Value(-M_PI_2);
 | |
|     return Value(::atan(number.as_double()));
 | |
| }
 | |
| 
 | |
| JS_DEFINE_NATIVE_FUNCTION(MathObject::atanh)
 | |
| {
 | |
|     auto number = vm.argument(0).to_number(global_object);
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
|     if (number.as_double() > 1 || number.as_double() < -1)
 | |
|         return js_nan();
 | |
|     return Value(::atanh(number.as_double()));
 | |
| }
 | |
| 
 | |
| JS_DEFINE_NATIVE_FUNCTION(MathObject::log1p)
 | |
| {
 | |
|     auto number = vm.argument(0).to_number(global_object);
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
|     if (number.as_double() < -1)
 | |
|         return js_nan();
 | |
|     return Value(::log1p(number.as_double()));
 | |
| }
 | |
| 
 | |
| JS_DEFINE_NATIVE_FUNCTION(MathObject::cbrt)
 | |
| {
 | |
|     auto number = vm.argument(0).to_number(global_object);
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
|     return Value(::cbrt(number.as_double()));
 | |
| }
 | |
| 
 | |
| JS_DEFINE_NATIVE_FUNCTION(MathObject::atan2)
 | |
| {
 | |
|     auto y = vm.argument(0).to_number(global_object), x = vm.argument(1).to_number(global_object);
 | |
|     auto pi_4 = M_PI_2 / 2;
 | |
|     auto three_pi_4 = pi_4 + M_PI_2;
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
|     if (x.is_positive_zero()) {
 | |
|         if (y.is_positive_zero() || y.is_negative_zero())
 | |
|             return y;
 | |
|         else
 | |
|             return (y.as_double() > 0) ? Value(M_PI_2) : Value(-M_PI_2);
 | |
|     }
 | |
|     if (x.is_negative_zero()) {
 | |
|         if (y.is_positive_zero())
 | |
|             return Value(M_PI);
 | |
|         else if (y.is_negative_zero())
 | |
|             return Value(-M_PI);
 | |
|         else
 | |
|             return (y.as_double() > 0) ? Value(M_PI_2) : Value(-M_PI_2);
 | |
|     }
 | |
|     if (x.is_positive_infinity()) {
 | |
|         if (y.is_infinity())
 | |
|             return (y.is_positive_infinity()) ? Value(pi_4) : Value(-pi_4);
 | |
|         else
 | |
|             return (y.as_double() > 0) ? Value(+0.0) : Value(-0.0);
 | |
|     }
 | |
|     if (x.is_negative_infinity()) {
 | |
|         if (y.is_infinity())
 | |
|             return (y.is_positive_infinity()) ? Value(three_pi_4) : Value(-three_pi_4);
 | |
|         else
 | |
|             return (y.as_double() > 0) ? Value(M_PI) : Value(-M_PI);
 | |
|     }
 | |
|     if (y.is_infinity())
 | |
|         return (y.is_positive_infinity()) ? Value(M_PI_2) : Value(-M_PI_2);
 | |
|     if (y.is_positive_zero())
 | |
|         return (x.as_double() > 0) ? Value(+0.0) : Value(M_PI);
 | |
|     if (y.is_negative_zero())
 | |
|         return (x.as_double() > 0) ? Value(-0.0) : Value(-M_PI);
 | |
| 
 | |
|     return Value(::atan2(y.as_double(), x.as_double()));
 | |
| }
 | |
| 
 | |
| JS_DEFINE_NATIVE_FUNCTION(MathObject::fround)
 | |
| {
 | |
|     auto number = vm.argument(0).to_number(global_object);
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
|     if (number.is_nan())
 | |
|         return js_nan();
 | |
|     return Value((float)number.as_double());
 | |
| }
 | |
| 
 | |
| JS_DEFINE_NATIVE_FUNCTION(MathObject::hypot)
 | |
| {
 | |
|     if (!vm.argument_count())
 | |
|         return Value(0);
 | |
| 
 | |
|     auto hypot = vm.argument(0).to_number(global_object);
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
|     hypot = Value(hypot.as_double() * hypot.as_double());
 | |
|     for (size_t i = 1; i < vm.argument_count(); ++i) {
 | |
|         auto cur = vm.argument(i).to_number(global_object);
 | |
|         if (vm.exception())
 | |
|             return {};
 | |
|         hypot = Value(hypot.as_double() + cur.as_double() * cur.as_double());
 | |
|     }
 | |
|     return Value(::sqrt(hypot.as_double()));
 | |
| }
 | |
| 
 | |
| JS_DEFINE_NATIVE_FUNCTION(MathObject::log)
 | |
| {
 | |
|     auto number = vm.argument(0).to_number(global_object);
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
|     if (number.as_double() < 0)
 | |
|         return js_nan();
 | |
|     return Value(::log(number.as_double()));
 | |
| }
 | |
| 
 | |
| JS_DEFINE_NATIVE_FUNCTION(MathObject::log2)
 | |
| {
 | |
|     auto number = vm.argument(0).to_number(global_object);
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
|     if (number.as_double() < 0)
 | |
|         return js_nan();
 | |
|     return Value(::log2(number.as_double()));
 | |
| }
 | |
| 
 | |
| JS_DEFINE_NATIVE_FUNCTION(MathObject::log10)
 | |
| {
 | |
|     auto number = vm.argument(0).to_number(global_object);
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
|     if (number.as_double() < 0)
 | |
|         return js_nan();
 | |
|     return Value(::log10(number.as_double()));
 | |
| }
 | |
| 
 | |
| JS_DEFINE_NATIVE_FUNCTION(MathObject::sinh)
 | |
| {
 | |
|     auto number = vm.argument(0).to_number(global_object);
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
|     if (number.is_nan())
 | |
|         return js_nan();
 | |
|     return Value(::sinh(number.as_double()));
 | |
| }
 | |
| 
 | |
| JS_DEFINE_NATIVE_FUNCTION(MathObject::cosh)
 | |
| {
 | |
|     auto number = vm.argument(0).to_number(global_object);
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
|     if (number.is_nan())
 | |
|         return js_nan();
 | |
|     return Value(::cosh(number.as_double()));
 | |
| }
 | |
| 
 | |
| JS_DEFINE_NATIVE_FUNCTION(MathObject::tanh)
 | |
| {
 | |
|     auto number = vm.argument(0).to_number(global_object);
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
|     if (number.is_nan())
 | |
|         return js_nan();
 | |
|     if (number.is_positive_infinity())
 | |
|         return Value(1);
 | |
|     if (number.is_negative_infinity())
 | |
|         return Value(-1);
 | |
|     return Value(::tanh(number.as_double()));
 | |
| }
 | |
| 
 | |
| }
 | 
